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Deep Learning Method 
to Accelerate Discovery of Hybrid 
Polymer‑Graphene Composites
Farzaneh Shayeganfar1,2* & Rouzbeh Shahsavari3*

Interfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide 
 (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding 
of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the key to 
bottom‑up design of molecular devices. We develop an integrated multidisciplinary approach based 
on electronic structure computation [density functional theory (DFT)] and big data mining [machine 
learning (ML)] in parallel with neural network (NN) and statistical analysis (SA) to design hybrid 
polymers from assembly on substrate. Here we demonstrate that interfacial pressure and structural 
deformation of polymer network adsorbed on GE and  SiO2 offer unique directions for the fabrication of 
1D/2D polymers using only a small number of simple molecular building blocks. Our findings serve as 
the platform for designing a wide range of typical inorganic heterostructures, involving noncovalent 
intermolecular interaction observed in many nanoscale electronic devices.

Nanostructured materials with exciting physicochemical properties attract intense interest. The simulation of new 
materials can accelerate the discovery of targeted materials in the laboratory. Intermolecular and molecule-sur-
face interactions and complex correlations of atoms and molecules constitute the formation of  nanostructures1.

Fundamental understanding of the electronic and structure interaction of molecular building blocks deliver 
desired bottom-up nanostructures and improve experimental control of collective properties.

The development of new compounds via traditional synthesis methods is time consuming and entails high 
cost. Inorganic–organic hybrid  materials2–4 and solvothermal syntheses have been studied for decades, leading 
to a large number of new  materials5,6. To overcome the technical barriers in discovery of new materials, several 
groups have developed strategies to accelerate design of polymers such as simulation,smart and big data in 
 imaging7 and thermoelectric, thermodynamic methods (for example, gas adsorption  capacity8, charge  mobility9, 
photovoltaic  properties10) with data mining to clustering similar crystallographic structures and target candidates 
for experimental synthetic process.

Coordination polymers (CPs) nanostructures adsorbed on insulating substrate reveal electrical conductivity 
suggesting polymer based nanowires could be suitable for nano-transistor  devices11.

Gel formation of inorganic CPs with metal ions (metallogels)12,13 have attracted recent interest due to various 
features of metal ions, such as catalysis, phosphorescenc and spin crossover, drug delivery by trapping drug mol-
ecules within the metal cages, storing gases such as hydrogen as fuel in cars, and also for water  purification14,15.

Self-assembly of monolayer of CPs on substrates holds a great promise to design novel nanostructured materi-
als and complex nanoporous materials with applications in gas storage, catalysis, selective ion exchange, encoding 
molecular information to produce biological function, high density data storage, processing devices, etc.16,17.

We present various examples that have qualitatively and quantitatively addressed questions such as: How do 
intermolecular interactions and interfacial correlation matrixes (CM) of CPs adsorbed on substrate dictate the 
formation of exclusive nanostructures? How can these variations be harnessed to design novel functional mate-
rials? To address these questions, we employ computational tools for exploiting and controlling self-assembly 
of CPs materials. In particular, we show how an integrated multidisciplinary approach can be used to gain new 
chemical and physical information encoded at the nanoscale materials, achieving a successful model to char-
acterize new materials.

Two-dimensional (2D) vdW heterostructures offer significant properties for capacitance, photovoltaic appli-
cations, plasmonic devices, light emitting diodes, logic  devices18,19 2D heterostructures provide slit-shaped ion 
diffusion channels for high-performance energy storage, especially Li-ion  batteries20.
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Data generation
As we have previously observed that molecular adsorption on graphene layers can tune the electronic and 
mechanical properties of substrate by structural deformation, charge transfer and orbital  mixing21–23, interfacial 
properties of polymer adsorbed on graphene layers offer the best starting point.

Herein, we demonstrate a exclusive approach to predicting hybrid organic–inorganic nanomaterials via 
leveraging advanced computational techniques including ab initio quantum mechanical computation based on 
density functional theory (DFT), statistical analysis techniques such as machine learning (ML), and neural net-
work (NN) methods rooted in intelligent data mining (Figure S1). The selection of simulation tools for materials 
screening must be guided by clearly defined objectives in terms of the electronic properties of polymer network 
interface that are desired for the target technology.

The adsorption of a 1D and 2D CPs/GE  (SiO2) as semiconductor heterostructures introduce significant vari-
ations of the electronic properties of substrate through structural deformation and orbital mixing, creating new 
class of materials with specific electronic surface states, which is unattainable in conventional  semiconductors24.

To compare the electronic properties induced by 1D and 2D polymer adsorbed on two substrates, we calcu-
late various interfacial properties via DFT calculations. The dataset for 244 material motifs of 4-blocks such as 
unitcells shown in Figs. 1, S4, S5, S13, S22 was gained by DFT quantum computation. We consider to the build-
ing blocks (BB) of the following seven possibilities:  CH2,  SiF2,  SiCl2, GeF 2,  GeCl2,  SnF2, and  SnCl2. These BB set 
to be  CH2, leading to polyethylene (PE), a common polymeric insulator. The Group IV halides introduced in a 
base polymer such as PE involve the beneficial effects on various properties.

On‑demand interface properties and prediction
Some physical interfacial properties of adsorption of 1D CPs/GE such as adsorption energy  (Eads), the net 
Mulliken charges, structural deformation, energy gap, interfacial pressure (P =

∑

i,jFi,j
A  , where  Fi;j is the force 

on polymer ith atom due to graphene jth atom and A is GE area) and dipole moment are considered to acquire 
from DFT calculation.

When a polymer and graphene or  SiO2 are brought together, a host of phenomena can occur at their inter-
faces. The calculated band gap opening for 1D CPs/GE is around 0.5–2 eV (Figures S9, S10, S11, S12) and for 
1D CPs/SiO2 (Figures S16, S17, S20, S21), indicating that different functional groups and arrangement in these 
networks may introduce a symmetry breaking of the π-states near Fermi  energy25. This suggestion is supported 
by the resulting band structure (Supplementary Information 4) where our calculated band gap openings agree 
with previous  works21,23 where a small charge transfer and states mixing of the adsorbate with GE provokes a 
small band gap opening by breaking the local symmetry of band states of GE. The major effect at an interface is 
breaking the symmetry, which leads to a modification of the electronic and structural properties. A modification 

CH2SiCl2GeF2SnCl2 (BB1) CH2SiCl2GeCl2SnCl2 (BB2) CH2SiF2GeF2SnF2 (BB3) CH2SiCl2GeCl2SnF2 (BB4) 

CH2SiCl2GeF2SnF2 (BB5) CH2SiF2GeCl2SnCl2 (BB6) CH2SiF2GeF2SnCl2 (BB7) CH2SiF2GeCl2SnF2 (BB8) 

C

Cl

Sn

Si

Ge

F

Figure 1.  Material motifs. Examples of a 1D Chain polymer with different building blocks (BBs) adsorbed on 
graphene (GE). Building blocks of  CH2SiCl2SnF2GeCl2 (BB1),  CH2SiCl2SnCl2GeCl2 (BB2),  CH2SiF2GeF2  SnF2 
(BB3),  CH2SiCl2GeCl2  SnF2 (BB4),  CH2SiCl2GeF2  SnF2 (BB5),  CH2SiF2GeCl2  SnCl2 (BB6),  CH2SiF2GeF2  SnCl2 
(BB7),  CH2SiF2GeCl2  SnF2 (BB8).
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of the distribution of states and charge density nearby the adsorption site causes to breaking the local symmetry 
of band states of graphene. STM simulation images (Figures S7, S8) and Mulliken population analysis (Table S2) 
support this local mixing of states. In semiconductor heterostructures, (see SI 2, 4, 5) this phenomenon has been 
exploited in a wealth of devices ranging from p-n junctions and Schottky diodes to high-mobility transistors 
based on 2D electron gases (2DEGs)24.

To probe the electronic states and states mixing in our system, we obtained the simulated scanning tunneling 
microscopy (STM) images for the adsorption of CPs/GE  (SiO2), plotted in Figures S7, S8, S18, S19, which give a 
perspective of the influence of CPs on substrates. Computing a STM image could reveal subtle information on 
the variation of electronic properties and extra electronic states; red protrusions are related to negative charge 
accumulation on the polymer moiety, consistent with Mulliken charge analysis presented in Tables S2, S3.

The DFT results of 1D CPs/GE  (SiO2) provide the necessary inputs for predicting new materials by ML 
(Figs. 2, S14I), and for NN interpretation by self-organization, Figs. 2, S14II. Figures 2, S14I show the agreement 
between trained data acquired by ML and test set data for six interfacial properties. The NN can cluster ML data 
into different classes topologically, providing insight into the correlation and similarity of interfacial interactions 
and a useful tool for creating classifications. NN qualitatively show a weight plane for each of the six input inter-
facial properties (Figs. 3, S14II), connecting each input to each of the 576 neurons in the 24 × 24 hexagonal grid 
(vector of dimension sizes [24 24] for clustering of data). Darker colors represent larger weights. If two inputs 
have similar weight planes (i.e. their color gradients may be the same or in reverse) they are highly correlated. 
For instance in Fig. 3 the adsorption energy and energy gap have reverse gradient color, then highly correlated.

Correlation diagrams as shown in Figs. 3, S14II offer a pathway to design novel materials with on-demand 
chemical-physical properties. One of the unique features of van der Waals (vdW) assembly of 2D crystals tech-
nology is the possibility of trapping molecules, which experience pressures as high as 1  GPa26. Here we demon-
strate this interfacial pressure by adsorption of inorganic molecules and reveal its effect on the structural and 
conformational changes.

The correlation between pressure and other interfacial properties for CP/GE is key to predict new materials, 
which will be discussed shortly.

Figure 4 demonstrates correlation of vdW hetero-structure pressure with several interfaces features of inor-
ganic molecules adsorbed on GE. For instance, a search for a chain polymer adsorbed on GE with large pressure 
and charge transfer as shown by green circle in Fig. 5a, would lead to those systems at Fig. 5b i.e, systems with 
one Si at the starting point of chain and  CH2 at the middle of chain (for polymer/SiO2 features see SI 2, 5).

Finally, we predict new materials by using 8-block trained data obtained from 4-block trained data. We 
consider eight building blocks drawn from extension of the 4-block structures, such as:  CH2  SiF2SnF2GeF2 
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Figure 2.  Learning performance of interfacial properties. Parity plots comparing interfacial properties of 
4-block 1D chain polymer adsorbed on graphene (CPs/GE) computed using DFT against predictions made 
using machine learning algorithm. Pearson’s correlation value is indicated in each panel, showing the agreement 
between training and test set data, which the test data is for 8-block 1D chain polymers.
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 CH2SiCl2SnCl2GeCl2, and their permutations. At first step, we compare DFT results of 8-block structures as test 
data with learning prediction and then for expanding our data into a family of 1D-chain polymers with 8-block 
repeat units (~ 60,000 data [244*244]), we employed the augmentation learning methodology to data sampling 
of huge number of possible cases. Determination of properties of 8-block trained data then followed by the 
estimation of Pearson’s correlation coefficient for each pair of interfacial properties.

On‑demand polymer design
To this end, while an excellent agreement between the ML training data of 4-block polymers and the DFT results 
for some interfacial properties is existing, the real application of this prediction paradigm establishes a platform 
for exploring a much greater systems than is practically possible using DFT computations (or experimentation).

For instance, a search for high-mobility transistors via correlation map of Fig. 5h suggests a semiconduc-
tor with large band gap as shown by the purple circle in this Figure (in the case CPs/GE). The triangular map 
(Fig. 5d) confirms systems of contiguous  SnF2GeF2SiCl2, indicating darker colors (see highlighted candidates by 
orange colors in Table S2). Moreover, a search for semiconductor heterostructures applicable in perovskite solar 
 cells27–29, p–n junction and diodes require a system with high charge transfers between adsorbate and substrate. 
The top parts of panel (c) of Figure S15 (red circle) in the case of CPs/SiO2 are good candidate to satisfy this 
purpose. As matched in the correlation map (the triangle in Figure S15), these are systems that contain 2 or more 
contiguous  GeF2SnF2 units as highlighted by orange color in Table S3, but with some fraction of  CH2. Theses 
correlation diagrams can aid to extract the proper candidate from data, which can dictate material behavior such 
as Hume-Rothery-like semi-empirical rules. Moreover, Fig. 5e,f capture an inverse relationship between the 
adsorption energy and charge transfer with pressure (histogram of pressure in Fig. 5j). Figure 5h shows a direct 
relationship between band gap and pressure for 8-block 1D CPs, consistent with correlation matrix of CPs/GE in 
Fig. 4, which is for 4-block structures. These behaviors for adsorption energy (Fig. 5e), charge transfer (Fig. 5f), 
electrical dipole moment (Fig. 5g) band gap (Fig. 5h) and structural deformation (Fig. 5i) are quite familiar to 
the semiconductor  community30.

The ML might offer new hypotheses and a step toward the creation of successful hybrid nanomaterials. 
Moreover, NN and CM between different interfacial properties of 1D polymer adsorption on graphene suggest 
that correlation between van der Waals pressure and other characters plays a key role to accelerate material 
discovery (as recently van der Waals pressure created new phase of  materials23,26), in line with experimental 
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Figure 3.  Neural networks analysis. The active feedback between the DFT results of 4-block 1D chain polymer 
adsorbed on graphene (CPs/GE) and neural network (NN) interpretation by self-organization automatic data 
interpretation. The adsorption energy and energy gap have reverse gradient color, then highly correlated.
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evidence for high pressure synthesized material that introduced new phase of material with new type of physical 
and chemical behavior like as cubic boron  nitride31.

2D CPs/GE as layered thin films heterostructures are modeled and analyzed by ML, NN and CM in SI (see 
Sect. 3.6 in SI for more details).

Moreover, correlation matrix of 2D systems (Figure S24) reveals that both electrical dipole moment and 
energy gap correlates with other interfacial properties as well. Our findings suggest that for 2D polymers, inves-
tigation of their adsorption on graphene and specifically the behavior of energy gap or dipole moment relative 
to electronic properties (Figure S25) could be used as to predict novel materials.

Summary
This paper highlights integrated computational studies of physics phenomena at interfaces for polymer group 
IV adsorbed on GE  (SiO2), where non-intuitive interfacial interaction exists due to specific electronic surface 
states combined with quantum phenomena. We proposed a classified framework, in which the discovery of 
new materials accelerates by investigating electronic properties of adsorption of 1D and 2D polymers on GE 
and  SiO2 using first principles DFT, statistical analysis of big data, NN and ML analytical tools. The structural 
deformations of the polymers affect the modulation of electronic properties (charge transfer, band gap, adsorp-
tion energy, dipole moment) of GE and  SiO2. Our findings show that the correlation between van der Waals 
pressure and other interfacial properties for CP/GE and the correlation between of structural deformation and 
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other interfacial properties for CP/SiO2 (see SI for more details) play a major role on the prediction of materials. 
For instance, a search for p–n junction and diodes heterostructures such as polymers of group IV adsorbed on 
graphene  (SiO2) leads to systems that contain 2 or more contiguous  GeF2SnF2 units with an overall fraction of 
 CH2 (based on our computational results).

Finally, our demonstration of emergent computational approach that uses NN, ML and CM algorithms trained 
on DFT big and deep data illustrates a path for developing new materials with exclusive physical and chemical 
properties that would be difficult to achieve through experimental set up. Such an approach could ultimately lead 
to the development of artificial materials for the creation of synthetic living materials as well as self-assembly 
networks for nanoengineering sciences.
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Figure 5.  Pathway of predictions and correlations from machine learning. (a–c) High throughput prediction 
from neural network and machine learning of 4-block CPs/GE. (a) The green circles indicate material discovery 
related to large charge transfer and pressure for CPs/GE (Fig. 4). (b) The middle panel presents several atomistic 
model for chain polymer adsorbed on two substrates, where different functional group as BB1….BB8 is 
located in dashed rectangular, and (c) related to large charge transfer and structural deformation for CPs/SiO2 
(Figure S14III). (d–j) Correlation map between different interfacial properties of 1D chain polymer adsorbed 
on graphene layer for 8-block trained data. (d) The triangle presents the possible building blocks of 8-block 
chain polymers. This map reveals that correlation of electrostatic pressure with other interfacial properties is 
dominant. Panels (e–j) indicate the correlation of pressure with (e) adsorption energy, (f) charge transfer, (g) 
electrical dipole moment, (h) energy gap, (i) structural deformation and (j) histogram of pressure. The purple 
circle in panel (h) indicates systems with a simultaneously large energy gap and large pressure.
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Methods
DFT study. To study the structural properties of polymer adsorbed on GE and  SiO2, we have used the peri-
odic density functional theory (DFT) technique that employs localized atomic orbital basis functions implica-
tion in SIESTA  packages32. The dispersion corrected and vdW function (vdW-DF) is used for the exchange cor-
relation term as described by Roman-Perez and  Soler33, in conjunction with a basis set of double-ζ  polarized34. 
To include nonlinearity and transferability of core corrections, we used relativistic norm-conserving Troullier-
Martins pseudopotentials for carbon, fluorine, chlorine, hydrogen, tin, silicon, oxygen atoms. The Brillouin zone 
(BZ) sampling is performed within the Monkhorst–Pack35 by a fine grid of 12 × 12 × 1 to produce an accurate 
band structure. Optimization convergence criteria for the total energy were set to less than  10–5 eV, with the 
self-consistent field (SCF) cycle set to  10–5 Ryd and ≤ 0.01 eV/Å for  forces36,36. The Mulliken method was used for 
charge transfer analysis, which is based on the linear combination of atomic and molecular orbitals to provide a 
means of estimating partial atomic charges.

To study and compare the variation of electronic properties induced by 1D and 2D polymer adsorbed on two 
substrates, we consider eight possible functional polymers for adsorption on GE. We have investigated different 
functional network structures shown in Figs. 1, S13, S22, S23. It is worth to note that we modeled these structures 
by repeating the unitcell in periodic boundary condition for both chain polymer and substrate simultaneously.

Figures 1, S13 show the unit cells used to model the chain polymer on GE and  SiO2 network. The former 
system contains 54 atoms, comprised of 14 chain polymer for the adsorbate and 40 carbon atoms for GE and 50 
atoms for  SiO2. In the case of 2D polymer system (Figures S22, S23) the model contains 78 atoms, comprised of 
18 atoms for the 2D-polymer and 60 C atoms for GE. The interfacial electronic properties of these 2D polymers 
are plotted in Figures S26, S27, S28.

Kernel ridge regression. We apply the ML algorithm, kernel ridge regression (KRR) to our 1D and 2D 
polymer adsorbed on GE and  SiO2. As we mentioned, the initial dataset was created using DFT with polymer 
building blocks of 4 atoms. We took 33 basis set for both 1D CPs/GE and CPs./SiO2, as shown in Fig. 5b 11 row*3 
column), with 8 building blocks (BB1,…,BB8), which are different combination of  SiF2,  SiCl2,  SnF2 ,  SnCl2,  GeF2, 
 GeCl2,  CH2 and with total number 33*8 = 244 samples (for more details see Table S1).

We used ML algorithm based on KRR and probabilistic models for classification of  datasete37. From a math-
ematical point of view with a regression task, we seek a function or model P, mapping an input vector x onto 
the corresponding property such as adsorption energy, charge transfer, etc. The ML algorithm is defined as a 
minimization problem of the  form38:

where the first term “l” is loss function, describing empirical risk, which determines the quality of the function 
PTra. In our case study, we apply the squared loss function of l

(

PTra

(

xi
′
)

, PDFT (xi)
)

=

(

PTra(xi
′

)− PDFT (xi)
)2

, where PTra is the training property label vector and PDFT is the interfacial property by DFT calculation. The 
second term is a regularization term, which determines the complexity or roughness of function PTra. The inter-
play between these two terms relates to all functions PTra predicting outputs i.e. interfacial properties from input 
x. At each of n discrete compositions, the variable xi indicate different structures of building block (BB1,…,BB8), 
present in the Figs. 1, S13, S22 (i.e., the domain of xi extends over the set of non-equivalent structure types that 
can occur at ith BB such as x1 is BB1 sample, x2 is BB2 sample, …, x8 is BB8). We have a multiclass classification 
with k classes (every class related to one interfacial property, we have 6 different classes include 6 interfacial 
properties), and the feature from class k is modeled by an independent Gaussian with mean μk and variance σk

2 
(likelihood procedure).

Linear regression functions are generalized by KRR toward nonlinear functions, using a kernel function 
k
(

x, x
′
)

 to do it in one operation. One commonly used kernel is Gaussian kernel (k
(

x, x
′
)

= exp(− 1
σ 2 |

∣

∣

∣
x − x

′
∣

∣

∣
|
2
)

)38, facilitating treat of nonlinear problems by mapping into infinite-dimensional feature space, which σ is 
obtained by training data on the system. KRR uses the weights αi as quadratic constraints and solves the nonlinear 
regression  model38:

with PTra(x) =
∑n

i=1 αik(xi , x).
After solving the minimization problem, the solution α = (K + �I)−1PDFT will acquired, where PDFT is the 

DFT label vector and K is the kernel matrix. The regularization parameter � is a hyperparameter and kernel 
dependent  parameters39,40.

The ML approach is based on establishing high quality prediction models, which are measured by the pre-
diction error bar on new data. To separate the data set into training and a test set, we construct the average loss 
over the test  set38:

Equation (3) approximately determines the generalization error to build test set data.

(1)minP

n
∑

i=1

l
(

PTra(xi
′

),PDFT (xi)
)

+ �r(PTra)

(2)minα

n
∑

i=1

(

PTra(xi
′

)− PDFT (xi)
)2

+ �

∑

i,j

αik(xi , xj)αi

(3)errtest =
1

n

n
∑

i=1

l
(

PTra(xi
′

)− PDFT(xi)
)
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In a learning machine method, we need both optimizing the loss function regard to the model parameters, 
and choosing the hyper parameters accurately to tune the optimization problem. Herein, we used the established 
five-fold cross-validation38 procedure to select the hyper parameters.

Neural network (NN). One of the major NN applications is the clustering data, involving grouping data 
into related subdivisions. The workflow for NN process has the following steps: (i) collect data, (ii) create the 
network, (iii) configure the network, (iv) initialize the weights and biases, (v) train the network, (vi) post-train-
ing analysis (validate the network), and (vii) use the  network41. In a NN simulation method, three functional 
operations take place (for more details see Figure S3). Self-organizing map classifies vectors dataset and consists 
of a competitive layer (Figure S3b). The input weigth vector of competitive layer IWi,j is made by the negative 
distance between input vector P and the weight vectors and adding the biases b. If input vector P equals the 
neuron’s weight vector, all biases become zero. 2D topology network of neurons in a competitive layer distribute 
themselves to form a representation of input  vectors41. The || ndist || box in Figure S3b, accepts IWi,j (input weight 
matrix), and produces a Si elements vector of weight matrix. The competitive transfer function returns neuron 
output of zero for net input vector except for the winner.

The NN simulation is trained with the self-organized  algorithm41, using clustering process to categorize NN 
according to relative topology or pattern similarity. To simplify the data, one set data clustering map before 
further analysis.

Correlation matrix (CM). The correlation between different interfacial properties acquired by DFT and 
ML play a key role in predicting large library of polymers. We plotted the correlation matrix for different proper-
ties in Figs. 4, S13 for 1D-chain polymer/GE and /SiO2. This correlation matrix between interfacial properties 
serves a full loop in the design cycles for materials discovery. To calculate the correlation matrix, we employ the 
most commonly method; Pearson correlation = 

∑

(x−mx)(y−my)
√

∑

(x−mx)
2 ∑ (y−my)

2
 , where x,y are two arrays of length n, and 

mx, my are the means of x and y variables. Pearson correlation depends on the distribution of data and compute 
a linear dependency between two properties (x,y).

In this paper, we focus on the description of interfacial properties of polymer adsorbed on GE and  SiO2 to 
discover novel polymers. We start from electronic structure calculation by using first principles DFT calculations, 
and then we employ ML methodology to train DFT data. Then we use statistical analysis to correlate different 
features to guide designing accurate polymer structures.

Data availability
The datasets generated during the current study are available from the corresponding authors upon reasonable 
request.
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