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Abstract

Numerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype
(CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive,
possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing
on 26 cancer types profiled in the Cancer Genome Atlas (TCGA). We defined CIMP systematically and agnostically, discarding any
effects associated with age, gender or tumor purity. We then clustered samples based on their most variable DNA methylation values
and analyzed resulting patient groups. Our results confirmed the existence of CIMP in 19 cancers, including gliomas and colorectal
cancer. We further showed that CIMP was associated with survival differences in eight cancer types and, in five, represented a
prognostic biomarker independent of clinical factors. By analyzing genetic and transcriptomic data, we further uncovered potential
drivers of CIMP and classified them in four categories: mutations in genes directly involved in DNA demethylation; mutations in
histone methyltransferases; mutations in genes not involved in methylation turnover, such as KRAS and BRAF; and microsatellite
instability. Among the 19 CIMP-positive cancers, very few shared potential driver events, and those drivers were only IDH1 and SETD2
mutations. Finally, we found that CIMP was strongly correlated with tumor microenvironment characteristics, such as lymphocyte
infiltration. Overall, our results indicate that CIMP does not exhibit a pan-cancer manifestation; rather, general dysregulation of CpG
DNA methylation is caused by heterogeneous mechanisms.
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Introduction
DNA methylation has been shown to play an essential
role in the regulation of gene expression [1]. Specifi-
cally, methylation of regulatory regions can prevent bind-
ing of specific transcription factors or repress transcrip-
tion by recruiting chromatin remodeling proteins [2]. In
mammalian organisms, ∼80% of CpG dinucleotides are
methylated. Notable exceptions are CpG islands (CGI),
regions of ∼300–3000 base pairs that are rich in CpG
dinucleotides [3]. Researchers have documented the exis-
tence of hypermethylated CGIs in a battery of cancers.
This ‘CpG island methylator phenotype (CIMP)’ can favor
cancer progression by repressing tumor suppressor genes
through promoter methylation [4, 5].

Initially described in colorectal cancer [6], CIMP was
later documented in bladder [7], breast [8], cervical [9,
10], endometrial [11], esophageal [12], gastric [13, 14],
head and neck [15, 16], hepatocellular [17], lung [18–20],
pancreatic [21], prostate [22] and thyroid cancer [23, 24],
adrenocortical [25] and renal cell carcinoma [26], duode-
nal adenocarcinomas [27], glioma [28, 29], leukemia [30,

31], melanoma [32], neuroblastomas [33] and thymoma
[34]. In these studies, the presence of CIMP often resulted
in tumor suppressor gene promoter methylation, was
linked to clinicopathological patterns such as stage, and
was often associated with better or worse prognosis [35],
supporting the potential use of CIMP status as a clinical
marker to predict cancer progression but highlighting
differences in downstream molecular processes across
cancer types.

But although the topic remains studied and discussed
in recent years [36–40], surprisingly no universal defini-
tion of CIMP has emerged. This absence may be because
the phenotype was seemingly cancer-type-specific [35].
Indeed, when investigators used Weisenberg et al.’s col-
orectal cancer gene panel [41] to study CIMP in their
cancers of interest, the researchers often found no clear
evidence of gene-CIMP linkage.

The need for a universally accepted definition of CIMP
has heightened with the emergence of tautological def-
initions of CIMP tumors (those with high-methylation
profiles) and contradictory findings about the effects of
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CIMP. The confusion may be linked to the current lack
of understanding of the underlying molecular drivers of
CIMP, and therefore investigators have conducted molec-
ular studies and made significant inroads. For example,
researchers found causation between mutations in IDH1,
IDH2 and TET2—which negatively affect DNA hydrox-
ymethylation rates—and CIMP in leukemia [42], gliomas
[29] and several other cancer types [35]. Such results open
the possibility of a clearer definition of CIMP, cancer by
cancer.

Admittedly, other researchers have attempted to
identify a common CIMP etiology through a pan-
cancer approach [43–47]. However, none have corrected
for biases in age or tumor purity, which can distort
DNA methylation signals. Furthermore, most studies
compared only hypermethylated CpG probes to normal
tissue [43, 44, 46, 47], and some involved merely a small
number (5–15) of cancers and/or deployed methodologies
(e.g. k-means clustering) that were not specifically
designed for clusters with significant variation in size,
as would be expected for cancers with a low prevalence
of particular causal mutations [43, 46].

More specifically, Karpinski et al. [44] implicated the
existence of CIMP in all 23 cancer types investigated;
however, the difference in average methylation between
the high-methylation and low-methylation groups could
be as low as 0.01. Similarly, Moarii [45] reported CIMP
in all five cancer types studied. In addition, the ele-
gant work of Yang et al. [46] and Saghafinia et al. [47]
tracked differentially methylated positions and global
methylation dysregulation overall but did not study CIMP
specifically.

Given this backdrop, we aimed to: (i) define CIMP reli-
ably through a pan-cancer approach, analyzing methy-
lation values in the most variable probes of CGIs and
removing the effects of age, gender and tumor purity;
(ii) identify candidate driver events for CIMP through
gene mutation and expression analyses and (iii) analyze
CIMP’s effect on patient survival unraveling its poten-
tial downstream effects. The results show the variety of
CIMP manifestations and diversity of potential causes in
different cancer types. The work also demonstrates the
value of profiling DNA methylation in cancers to stratify
patient risk and customize treatment.

Materials and methods
Datasets
We studied The Cancer Genome Atlas (TCGA) dataset
(https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga), selecting cancer
types that offered at least 80 samples with associated
methylation information in the Genomic Data Com-
mons (GDC) data portal (https://portal.gdc.cancer.gov/).
Our study encompassed 26 cancer types (see List of
Acronyms). Normal samples were extracted from the
TCGA dataset (when available). For low grade glioma

(LGG) and mesothelioma (MESO), we used glioblastoma
multiforme (GBM) and lung adenocarcinoma (LUAD)
normal samples, respectively. For adrenocortical carci-
noma (ACC) and acute myeloid leukemia (LAML), no
healthy tissue samples were available in TCGA. Thus,
we downloaded normal tissue methylation expression
arrays from the Gene Expression Omnibus (GEO) series
GSE77871 and GSE32149 (list of GEO accession numbers
in Supplemental Appendix).

We used preprocessed molecular data characterizing
DNA methylation, gene expression and genomic variants
(Supplemental Methods).

Preprocessing DNA methylation data
We sought to avoid any artificial grouping of tumor
samples linked to gender, age or high proportion of
non-malignant cells with their specific methylation
signal while preserving the potential link between these
variables and a specific cancer subtype [48] (Figure 1).
We chose to employ extensive data processing after
reviewing several studies [64, 65] that demonstrated
the ability of heterogeneous tissue cell composition
to bias downstream analysis, increase within-group
variation and mask valid signals. In addition, numerous
studies [66–69] have highlighted the effect of age
and gender on methylation values in a nontissue
specific manner, which can also confound analysis
results.

First, we removed non-CGI probes, restricting the anal-
ysis to CGIs, CGIs’ ‘shores’ (genomic regions up to 2
kilobases from CGIs) and ‘shelves’ (2 to 4 kilobases from
CGIs) [49]. We removed probes for which there was no
information in at least one patient per cancer cohort [50].
As a first step to avoid gender biases, we also removed
CpG dinucleotides located on the X and Y chromosomes.

Next, we removed potential noise in the data [43, 45]
by selecting the most variable probes. We computed the
distribution of standard deviation (SD) for each probe
and cancer type and then performed k-means clustering
in the SD space (with k = 2). We further removed the
probes belonging to the cluster with the lowest cen-
troid, corresponding to the set of nonvariable probes
(Supplemental Figure 1).

We then corrected for tumor purity, preserving the
potential signal linked to cancer subtypes. Before the
correction, we did observe a strong bias toward tumor
purity in several cancer types, including kidney renal
clear cell carcinoma (KIRC) and lung squamous cell car-
cinoma (LUSC) (Supplemental Figure 2). Thus, we decon-
volved the tumor DNA methylation values into signals
from cancerous and nonmalignant cells and used only
the former. We used the models developed in debCAM
[51] and a subtype-specific approximation of individual
methylation levels, as described in Chen et al. [52] (Sup-
plemental Methods).

Finally, we removed potential pan-cancer age- and
gender-related CpG positions, retaining only those linked

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data


Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype | 3

Figure 1. Pipeline for CIMP classification in a pan-cancer context. (A) Using 26 cancer types from the TCGA dataset, we first selected probes located
in shelves, shores and CpG Islands only, filtered out nonvariable probes, corrected for purity effects and filtered out age and gender-related probes.
Example of the effect of purity correction and age filtering is given for lung squamous cell carcinoma; tumor samples with unknown purity values
were not included in the purity correction plot. (B) We used the beta-value vectorial representation of patients to construct a 10-nearest neighbor
graph and performed 10-fold consensus spectral clustering; we obtained two to three clusters for each cancer type. (C) We defined low, intermediate
and high-methylation groups based on the average beta-values in each cluster of patient samples. (D) We compared the average methylation
values over significantly differentially methylated probes between the high-methylation and low-methylation group to determine which cancer types
presented CIMP.

to the patient age or gender in a particular cancer sub-
type. Specifically, we first removed age-related CpG posi-
tions detected by Slieker et al. [53]. Then, for each cancer
type, we computed the correlation between age (resp.
gender) and CpG probes and recorded the CpG probes
associated with age (resp. gender) [false detection rate
(FDR) q < 0.05] in at least two cancer types. We then
removed from the remaining probes all probes identified
as associated with age (resp. gender) in any two cancer
types. We reasoned that subtype-related probes we were
interested to preserve should not be present in other
cancer types (Supplemental Figure 3).

Clustering DNA methylation data
To detect groups of tumor samples with similar DNA
methylation profiles, we applied unsupervised cluster-
ing on age-filtered and purity-corrected, highly variable
DNA-methylation beta-values. We used spectral cluster-
ing [54] with the 10-nearest neighbor affinity matrix.
We implemented 10-fold consensus clustering to avoid
randomness due to initialization (Figure 1). Of note, we
compared spectral clustering against several clustering

algorithms. We chose spectral clustering because it best
separated our data, according to the average silhouette
score (Supplemental Table 1).

To characterize the group of tumors with similar
DNA methylation profiles (obtained with spectral
clustering), we first compared the distributions of beta-
values between the clusters using a Kruskal–Wallis
test with Bonferroni correction. We then computed for
each cluster the average methylation value per CpG
probe over all significant positions. We refer to the
cluster with the smallest average methylation value
mean over all CpG positions as the low-methylation
group. We refer to the group with the highest value
as the high-methylation group. We have determined in
some instances an intermediate-methylation group. For
each cancer type, we chose at least two distinct DNA
methylation groups, based on the separability of the low-
and high-methylation clusters (Supplemental Methods).

To measure the uncertainty linked to the clustering
of a patient within a methylation group, we computed
the sample silhouette coefficient (SSC) with Euclidean
distance. Generally, samples with negative values of SSC

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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could be attributed to two different methylation clusters
with a similar probability. We refer to patients with SSC
greater than 0 as ‘high confidence’ (HC) patients.

To detect CIMP subsets, we compared DNA methy-
lation values in the high- and low-methylation groups.
We deemed a cancer type CIMP-positive if the difference
in the average beta-values between the high and low
groups was greater than 0.20 and the distributions were
significantly different (Figure 1).

Finally, to elucidate potentially artificial grouping
linked to a specific clinical or molecular subtype for
each cancer, we computed the correlation between
cluster membership and available clinical information
(Kruskal–Wallis for continuous, Chi-square for categor-
ical, Bonferroni-corrected P-values). We identified one
case, pheochromocytoma and paraganglioma (PCPG),
in which two DNA methylation groups clearly corre-
sponded to cancer subtypes. Thus, we excluded the
paraganglioma subtype (consisting of only 39 patients)
and included only pheochromocytoma (PC) (n = 152) for
further analysis.

Mutation analysis
To detect possible genomic drivers of CIMP, we identified
relevant mutations in the methylation groups using
only HC patients. We first computed the percentage
of patients within a group that carried a mutation
within a list of genes associated with DNA and histone
methylation and demethylation (listed in Supplemental
Appendix).

For all cancer types and genes, we computed an asso-
ciated P-value with Fisher’s exact test, corrected by the
Benjamini–Hochberg method. We reported only signifi-
cant mutations (P < 0.05) with a mutation frequency dif-
ference between the low- and high-methylation groups
greater than 10%. We also indicated mutations that did
not pass the FDR 0.1 threshold as nonsignificant (NS). We
compared microsatellite instability (MSI) status in each
group for colon adenocarcinoma (COAD) and uterine
carcinoma (UCEC), using the TCGA consortium calling
[55]. Deploying Fisher’s exact test, we calculated the
enrichment of MSI high, as compared with microsatellite
stable, in the high- versus low-methylation groups.

Random forests for mutation discovery
We trained Random Forest classifiers on HC patients to
identify putative CIMP-driving mutations per cancer type
in genes other than those associated with methylation or
demethylation. We sought to capture nonlinear and non-
additive effects of genomic mutations. We used the full
mutational information to predict group membership for
each cancer type and analyzed the selected features.

CIMP score and mutation correlation
Considering the gradient-like nature of certain groups
[e.g. in adrenocortical carcinoma (ACC)] as opposed to a
more subtype-like nature (e.g. in LGG), we introduced a

continuous CIMP score, consisting of the average beta-
value over all significantly differentially methylated
probes between the high- and low-methylation groups
for each patient. Patients were then ranked according
to their CIMP score, and the point-biserial correlation
between the CIMP score and their gene mutations was
computed.

CIMP and patients’ clinical outcome
To assess whether DNA methylation groups are associ-
ated with distinct clinical outcomes, we computed the
Kaplan–Meier estimator for each cancer methylation
group. We also performed a log-rank test to compare
survival between the groups, using the Benjamini–
Hochberg correction [56] and only HC patients for
modeling. To ascertain whether DNA methylation groups
provide added value in addition to clinical variables in
patient risk stratification, we trained a Cox regression
model [57] correcting for age, gender and stage, when
available or relevant. No stage information was provided
for GBM, LGG, PCPG or sarcoma (SARC), and no gender
correction was performed for cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC).
Both investigations were performed using the Python
lifelines library [58] and used the survival information
derived from the cleaned pan-cancer initiative from Liu
et al. [59].

To investigate how CIMP could be effectively assessed
in the clinic, we searched for a set of up to five probes that
could predict CIMP status with near perfect accuracy.
We trained a logistic regression on each significantly
differentially methylated probe (90%/10% training/test
split, balanced class weights, scoring done with 5-fold
stratified cross validation and adjusted balanced accu-
racy as described previously to predict the CIMP status).
We used Sequential Forward Selection [60] to select n
optimal probes for classification (n = 5).

Analysis of downstream transcriptional changes
and tumor microenvironment
To investigate how the CIMP status might influence
biological processes in cancer cells, we first selected
genes both differentially expressed between the high-
and low-methylation groups and associated with hyper-
methylated probes in the high-methylation group; we
required more than a 10% difference in beta-values
between groups. We refer to this set of genes as
potential CIMP downstream targets. We then used the
method developed for the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [61]
(modified version of Fisher’s exact test) to find enriched
gene sets in the Gene Ontology Biological Processes [62]
and KEGG pathways [63], using the updated version of
the databases (v7.4) retrieved from the Broad Institute
website (https://www.gsea-msigdb.org/gsea/index.jsp).

Independently, we attempted to identify cellular
characteristics of the tumor microenvironment (TME)
that were potentially associated with CIMP status.

https://www.gsea-msigdb.org/gsea/index.jsp
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Using Fisher’s exact test, we first computed significant
enrichments in the immune subtypes described in
Thorsson et al. [64] [wound healing, interferon gamma
(IFN-γ ) dominant, inflammatory, lymphocyte depleted,
immunologically quiet, transforming growth factor beta
(TGF-β) dominant].

Next, we computed the Spearman correlation coeffi-
cient R between the CIMP score and immune signatures
scores and characteristics. We also computed R between
the CIMP score and precomputed estimates from CIBER-
SORT [65] and xCell [66] computational methods to char-
acterize cell composition of complex tissues through
gene expression profiles. We obtained both from Thors-
son et al. [64]. We investigated associations with leukocyte
fraction of the TME, proliferation and three immune
signatures: wound healing [67], macrophage regulation
[68] and lymphocyte infiltration [69].

Statistical tests used in the analysis
For all correlation analyses (Pearson, Spearman and
point-biserial correlations), we used a t-test to compute
associated P-values, corrected by Benjamini–Hochberg
FDR to obtain q-values. The level of significance was
q < 0.05 for age- and gender-related probe filtering
and immune composition, and q < 0.1 for mutation
correlation with CIMP score.

To obtain probes significantly differentially methy-
lated between methylation groups and compare the dis-
tributions of average beta-values between these groups,
we used the Kruskal–Wallis test to calculate P-values,
corrected with Bonferroni correction.

To study significant enrichment in clinical values in
our clusters, we used the Kruskal–Wallis test for contin-
uous and Chi-square test for categorical ones, with the
Bonferroni correction of P-values.

To study associations between cluster membership
and mutations or immune subtypes, we used the Fisher’s
exact test and used Benjamini–Hochberg FDR correction
to obtain q-values.

For survival analyses, we used the log-rank test
corrected with Benjamini–Hochberg FDR for univariate
analyses, and Wald test for the Cox regression, uncor-
rected.

For pathway enrichment analysis, we used the EASE
score, a modified version of Fisher’s exact test devel-
oped for the DAVID [61] tool, corrected with Benjamini–
Hochberg FDR.

Results
All 26 analyzed cancer types demonstrated
dysregulation of DNA methylation; 19 showed a
global CGI hypermethylation pattern
Based on the literature, we defined CIMP as the existence
of a subset of patients displaying significantly higher CGI
DNA methylation compared with another subset, [8, 10,
13, 14]. Using informative CpG probes, we then charac-

terized CIMP prevalence in 26 cancer types, removing
potential biases linked to tumor purity, age or gender.

To account for biases linked to age, gender or tumor
purity that might confound the analysis, we used only
the most variable probes, corrected for tumor purity
[51, 52], and filtered out all potentially age- and gender-
related probes (Methods). Notably, we did not screen for
probes that were differentially methylated as opposed
to normal tissue, but rather a posteriori compared DNA
methylation levels between the CIMP tumor subset and
nonmalignant controls.

After preprocessing, the average number of infor-
mative methylation sites per cancer type was 28 218
[IQR (24 473–31 734)] (Figures 1A and 2A, Supplemental
Table 2). Any tumor purity-linked gradient that was
present disappeared after deconvolution (Figure 1B,
Supplemental Figure 2).

Using spectral clustering, we grouped patients accord-
ing to their DNA methylation profiles (Methods) and uti-
lized this profiling to characterize cancer types. We iden-
tified the optimal number of clusters that would maxi-
mize the separability between low- and high-methylation
clusters (Supplemental Methods, Supplemental Table 3):
2 clusters for 10 of the cancer types and 3 clusters for
the remaining 16 (Figure 2B). For several cancers, clus-
tering structure was apparent in the two-dimensional
Uniform Manifold Approximation and Projection (UMAP)
representation (e.g. GBM), suggesting distinct subtypes
within the cancer type. For the remainder, the boundary
between clusters resembled a gradient (e.g. ACC).

We computed the sample silhouette score (SSC)
as a measure of uncertainty of cluster membership
(Figure 2B, Supplemental Figure 4, and Supplemental
Table 2). We classified tumors by their methylation
status i.e. high, intermediate and low methylation
(Methods). Overall, the mean value of differentially
methylated CpGs was 11 914 [IQR (5211–19 213)]
(Supplemental Table 2). Because the intersection of the
CpG probes selected for all cancer types was empty, we
found that a unique panel of CpG probes cannot be
constructed to identify CIMP in a pan-cancer manner.

To identify patient clusters potentially linked to
underlying clinical features (e.g. cancer subtypes),
we performed correlation analysis between cluster
membership and clinical features. We discovered several
significant relationships (Supplemental Table 4), most of
which were linked to patients’ age at diagnosis, survival
status and stage.

We classified cancer types into CIMP-positive and
CIMP-negative, based on the differences in cluster-wise
average values of DNA methylation (Methods). Although
CIMP had previously been reported in all 26 studied
cancer types, our analysis showed only 19 cancer types as
CIMP-positive (Figure 2C–E and Supplemental Table 3).
Of note, we observed two types of CIMP-positive DNA
hypermethylation: that targeting predominantly CGIs
and that targeting shelves and shores, as well CGIs
(Supplemental Figure 5).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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Figure 2. Discovery of cancer types presenting characteristics of CIMP. (A) Percentage of probes removed by each filter. The first filter removed NA
probes, probes not located on CGI (specifically CGIs, shores or shelves) and probes located on the X and Y chromosomes. The second filter removed
nonvariable probes. The third filter removed potentially age-related probes. (B) UMAP representation of the results of spectral clustering based on
purity-corrected DNA methylation values of filtered CpG probes. The groups are indexed according to their average beta-value over all significantly
differentially methylated probes. Average silhouette coefficients are indicated at the top right of each cancer type. (C) Distribution of average beta-
values over significantly differentially methylated probes for 19 CIMP-positive cancer types. (D) Distribution of average beta-values over significantly
differentially methylated probes for seven CIMP-negative cancer types. Cancer types are ranked according to the difference in average beta-values
between the high-methylation and low-methylation group. Significance is computed with a Kruskal–Wallis test. Distribution of beta-values for normal
reference tissue is displayed in gray next to distribution of cancerous samples. Sizes of groups are indicated as nlow, ninter and nhigh for low, intermediate
and high-methylation, respectively, with nref being the number of the normal reference samples. The white circle indicates the median and the inner
box plot indicates the lower and upper quartile. Significance is reported for Bonferroni-corrected P. NS: P > 0.05; ∗: 0.01 ≤ P < 0.05; ∗∗: 0.001 ≤ P < 0.01; ∗∗∗:
0.0001 ≤ P < 0.001; ∗∗∗∗: P < 0.0001. (E) Percentage of probes hyper- or hypomethylated in the high- versus low-methylation group, computed on the set
of probes significantly differentially methylated between groups. (F) Difference in mean beta-value between the high and low-methylation groups and
high-methylation group and normal tissue, computed using all significantly differentially methylated probes. The cut-off value for CIMP-positiveness
(0.2) is indicated by a horizontal line. BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma PAAD: pancreatic adenocarcinoma; READ:
rectum adenocarcinoma; THYM: thymoma.

In all cancers, the average beta-value distributions
were significantly different between groups (as measured
by Kruskal–Wallis adjusted with Benjamini–Hochberg
correction). Across cancers, only 6% of probes [IQR (1–
11%)] were hypomethylated in the high-methylation
group as compared with the low-methylation group
(Figure 2E). We concluded that the vast majority of
probes in the high-methylation group become hyperme-
thylated individually, as well as the group displaying a
higher degree of methylation overall.

We did not choose our probes a priori to be more
methylated than in the normal reference tissue. However,
we observed that the probes selected for the analysis
did present a consistently positive difference in mean
beta-values between the high-methylation group versus
normal tissue (Figure 2F).

Overall, we found apparent epigenetic dysregulation
in all 26 cancer types studied, in the form of both hypo-
and hypermethylation as compared with normal tissue,
consistent with previous reports [47].
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Among DNA and histone methylation and
demethylation genes, only isocitrate
dehydrogenases IDH1/2 and histone
methyltransferase SETD2 mutations are
reproducible drivers of CIMP
Based on reports of extensive interactivity between his-
tone and DNA methylation in relation to cancer [70, 71],
we analyzed differences in mutations within genes asso-
ciated with DNA and histone methylation or demethy-
lation. Our aim was to identify potential drivers of DNA
hypermethylation in CIMP-positive cancers.

We identified 10 cancer types that exhibited differ-
ences in mutational frequency of greater than 10%
between the high- and low-methylation groups (Table 1).
Cancer types that displayed the largest differences
between groups were LGG (IDH1 1% in the low- versus
95% in the high-methylation group), GBM (IDH1 0%
versus 88%), LAML (IDH1 6% versus 56%; IDH2 3% versus
44%) and KIRC (SETD2 0% versus 36%) (Figure 3A).

In the case of COAD, we discovered that MSI was
significantly enriched in the high-methylation group,
consistent with previous reports [41, 47] (Figure 3B,
P = 4.1 × 10−9). To account for mutational burden in
tumors with MSI, we corrected mutation frequency
with overall mutation rate and computed an empirical
P-value associated with enrichment (Supplemental
Methods, Supplemental Table 5). We discovered that 38%
of COAD-enriched genes were mutated more than by
chance, including KMT2B (5% low- versus 65% high-
methylation group). Of note, we discovered that MSI
was significantly enriched in the high-methylation
group of UCEC as well (Supplemental Figure 6, P = 1.8
× 10−9).

We repeatedly found mutations in the NSD1 gene in
the low-methylation group of head–neck squamous cell
carcinomas (HNSC) (72% versus 4%) and LUSC (55% ver-
sus 2%) suggesting a common mechanism of hypomethy-
lation (Supplemental Figure 7).

Mutations in genes not directly involved in
methylation are associated with CIMP in several
cancer types
To discover potential mutational drivers in genes other
than those involved in DNA and histone methylation or
demethylation, we trained Random Forest classifiers on
the full mutation data. The rationale was that Random
Forest features (i.e. mutations) typically used by the algo-
rithm for CIMP status prediction might be biologically
relevant in CIMP etiology. We identified 10 cancer types
for which the Random Forest detected potential driver
mutations, performing better than a random classifier
to predict samples with CIMP (Supplemental Methods,
Supplemental Figure 8).

The results confirmed known associations (Figure 3C),
such as cancer-related genes involved in the Ras/TP53
pathway [e.g. TP53 (5/10 cancer types) and KRAS (1/10)];
genes involved in chromatin remodeling by the SWItch/-
Sucrose Non-Fermentable (SWI/SNF) complex [e.g. ATRX

(2/10) and ARID1A, PBRM1 (1/10 each)] and genes
previously associated with CIMP [e.g. BAP1 (2/10)]. We
confirmed the association with CIMP of genes primarily
involved in methylation or demethylation, such as IDH1
(2/10) and SETD2 (2/10). Of note, we found several muta-
tions in genes identified within the low-methylation
group to be useful for classification, including NSD1 (1/10
cancers).

Mutations associated with CIMP are correlated
with a continuous CIMP score
Considering the gradient-like nature of clustering in
some cancer types (Figure 2B), we introduced a con-
tinuous CIMP score and computed the point biserial
correlation between the score and gene mutations.
Comparing groups, we discovered that most signif-
icantly enriched mutations were correlated with a
cancer’s CIMP score, further confirming the potential
link between these mutations and hypermethylation
events. Based on their UMAP representation, groups
that exhibited a gradient-like structure also displayed
a gradual enrichment of identified mutations, whereas
groups that exhibited a subtype-like structure dis-
played a more abrupt mutational enrichment (Figure 3D
and Supplemental Figure 9). Of note, we found that
KRAS mutations were enriched in the intermediate
COAD group, consistent with previous reports [72]
(Supplemental Figure 9).

Finally, as we found that only IDH1 and SETD2
mutations were identified as potential genomic drivers of
CIMP across more than two cancer types, we investigated
whether there might be small groups of patients
presenting mutations in IDH1 or SETD2 correlated with
hypermethylation that would remain undetected by
our method. Indeed, the cluster size required by our
approach for DNA methylation groups may be too large
to detect signals coming from a very small portion of
the samples. We thus searched for patients presenting
a mutation in IDH1 or SETD2 and then computed the
point-biserial correlation between the mutation status
and the CIMP score. Other than the seven previously
reported cancer types presenting significant mutations
in either IDH1 or SETD2 in the high-methylation group,
we found four additional cancer types with small
groups of patients whose mutational status significantly
correlated with the increased CIMP score (Figure 3E,
Supplemental Table 6). These observations indicated
that the IDH1 and SETD2 mutations might be potential
genomic driver events of CGI hypermethylation in
a large variety of cancer types. The percentage of
the cancer samples affected by the putative driver
mutations was 6% for kidney renal papillary cell
carcinoma (KIRP), 1% for LUAD and 1% for prostate
cancer (PRAD) (Supplemental Table 6). Of note, although
the presence of the IDH1 and SETD2 mutations was
significantly correlated with hypermethylation in UCEC,
this effect was hard to deconvolve from the MSI status
(Supplemental Figure 6).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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Table 1. Putative drivers of CIMP among mutations and gene expression changes for 19 CIMP-positive cancer types

Cancer (De)Methylation mutation Diff. GEX Non-methylation
mutation

ACC KMT2A (0%/14%)∗ PRDM13 (0.2)∗ MUC16 (5%/12%) (NS)
CESC KMT2D (16%/5%)∗ PRDM13 (0.3)∗, PRDM16

(1.5)∗, TDGF1 (2.8)∗
-

COAD ASH1L (0%/33%)∗, EHMT1 (0%/13%)∗, EHMT2 (2%/13%)∗,
KMT2A (8%/23%)∗, KMT2B (5%/67%)∗, KMT2C (12%/31%)∗,
KMT2D (8%/56%)∗, MECOM (0%/23%)∗, NSD1 (0%/15%)∗,
PRDM1 (0%/13%)∗, PRDM2 (2%/15%)∗, PRDM9 (3%/23%)∗,
PRDM10 (2%/18%)∗, PRDM13 (0%/13%)∗, PRDM15 (2%/15%)∗,
PRDM16 (2%/26%)∗, SETD1A (0%/23%)∗, SETD1B (2%/31%)∗,
SETD2 (3%/36%)∗, SETDB1 (2%/13%)∗, KDM2B (7%/28%)∗,
KDM3B (2%/13%)∗, KDM4A (0%/18%)∗, KDM4B (0%/15%)∗,
KDM5A (2%/13%)∗, KDM5B (2%/15%)∗, KDM6A (2%/13%)∗,
KDM6B (3%/26%)∗, PHF2 (2%/13%)∗, TET1 (2%/18%)∗, TET2
(2%/13%)∗, TET3 (3%/33%)∗, MBD1 (2%/13%)∗, CTCF (0%/10%)∗,
BAZ2A (0%/15%)∗, DNMT1 (0%/15%), UHRF1BP1L (2%/18%%)∗

PRDM13 (0.2)∗, PRDM8
(1.3)∗, TDGF1 (0.7)∗

KRAS (23%/20%) (NS) BRAF
(0%/75%), TP53 (81%/40%)

GBM IDH1 (0%/88%), ATRX (16%/62%) - TP53 (44%/100%)
HNSC NSD1 (72%/4%), PRDM9 (17%/0%)∗ PRDM13 (2.2)∗, PRDM8

(0.8)∗, CTCFL (3.6)∗
-

KIRC SETD2 (0%/36%) TDGF1 (2.4)∗ PBRM1 (0%/58%)
KIRP - - -
LAML IDH1 (6%/56%), IDH2 (3%/44%), - -
LGG IDH1 (1%/95%), ATRX (7%/45%) PRDM13 (3.2)∗, SMYD1

(1.3)∗, TET1 (0.8)∗
EGFR (37%/0%), CIC
(1%/26%), FUBP1 (0%/11%),
TP53 (15%/56%), NF1
(20%/3%), PTEN (22%/1%)

LIHC - PRDM6 (1.3)∗, PRDM16
(1.7)∗, PRDM9 (0.4)∗

CTNNB1 (27%/8%)∗, BAP1
(0%/16%), ALB (14%/4%)∗,
TP53 (41%/18%),

LUAD - CTCFL (2.4)∗

LUSC NSD1 (55%/3%)∗, SETD1A (14%/3%)∗ (NS) CTCFL (3.1)∗ CYP8B1 (10%/0%)
MESO KMT2B (0%/18%)∗ (NS), SETD2 (0%/18%)∗ (NS) - BAP1 (0%/36%), LATS2

(4%/45%)∗

PCPG - -
READ - - CDH13 (27%/0%)
SARC CTCFL (4.4)∗ -
SKCM IDH1 (3%/14%) (NS) - -
STAD - - PIK3CA (11%/75%), TP53

(53%/12%), ARID1A
(22%/50%), CTNNB1
(5%/19%),

THCA - - -

The putative mutations were extracted from the mutation analysis with the Random Forest method. Differential gene expression (Diff. GEX) was computed
through DESeq2 between high and low-methylation groups for genes involved in DNA and histone methylation. Mutations are indicated as low-methylation
group %/high-methylation group %, gene expression is indicated as fold change (FC) between high- and low-methylation groups. (FC > 1 corresponds to
overexpression in the high-methylation group). Only significant mutations (Fisher exact test P < 0.05) with a difference > 10% between the low- and high-
methylation groups were reported. Mutations that did not pass the 0.1 threshold on q-value are indicated by NS. Cancer types for which the indicated mutations
had not yet been described in relationship with CIMP are indicated by an asterisk (∗). Candidate driver mutations or differential gene expression shared among
at least two cancer types are indicated in bold.

BORIS/CTCFL, recently linked to changes in DNA
methylation, is differentially expressed between
low- and high-methylation groups in four cancer
types
We further hypothesized that aberrations in the tran-
scriptional levels of genes related to DNA or histone
methylation can potentially drive CIMP in certain can-
cers. We used DESeq2 to investigate differential gene
expression between high- and low-methylation groups in
the 19 identified CIMP-positive cancers.

Our results showed that the transcription of the ‘mod-
ulator brother of regulator of imprinted sites’ (BORIS),
also known as CCCTC binding factor-like (CTCFL), was
upregulated in the high-methylation group of four types

of cancers (3.6-fold change for HNSC, 2.4 for LUAD, 3.1 for
LUSC and 4.4 for SARC). We hypothesized that mutated
BORIS/CTCFL might displace the highly conserved zinc
finger protein CTCF that protects CGIs from methylation
in healthy cells, thereby promoting aberrant hyperme-
thylation [2].

Mutations and gene expression changes between
DNA methylation groups suggest four main
potential etiologies for DNA hypermethylation
Combining the analyses of mutations and gene expres-
sion changes in different DNA methylation groups,
we arrived at four types of etiologies that might
underlie a CIMP presentation in a cancer type (Table 1
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Figure 3. Discovery of possible drivers of CIMP. (A) UMAP representation of patients with mutations in IDH1/2 or SETD2 genes. (B) MSI status of COAD.
MSI annotations are taken from the TCGA consortium calling, using Cortes-Ciriano [55] Supplementary Tables, indeterminate status is colored in gray.
(C) Genes selected in the Random Forest analysis as potential drivers for either low, intermediate or high-methylation groups and their associated
pathways. We trained Random Forests for 10 CIMP-presenting cancer types. The number of cancer types for which the gene was selected is indicated.
(D) Mutations significantly correlated with CIMP score and (E) mutations in IDH1 and SETD2 significantly correlated with CIMP score. Patients are ranked
for each cancer type according to their CIMP score. Patients presenting a mutation in the gene of interest are indicated by a black bar, in IDH1 by a blue
bar and in SETD2 by a red bar. Point biserial correlation coefficient r is indicated. For (D), only mutations with a correlation coefficient (r) over 0.25 are
shown; the full mutation panel is depicted in Supplemental Figure 9. Significance is reported for FDR Benjamini–Hochberg-corrected q-value for (D)
and (E). NS: q > 0.1; ∗: 0.01 ≤ q < 0.1; ∗∗: 0.001 ≤ q < 0.01; ∗∗∗: 0.0001 ≤ q < 0.001; ∗∗∗∗: q < 0.0001. (F) Potential etiologies of CIMP in 19 CIMP-positive cancer
types. Cancer types are represented as a portion of the circle with an associated color. The four circles represent the four candidate etiologies for CIMP
in these cancer types: mutations in the DNA demethylation associated genes, mutations in the histone methylation associated genes, MSI and diverse
or unelucidated mechanisms.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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and Figure 3F). The first, represented by COAD, involved
a high-methylation group coincident with tumors
exhibiting MSI [73]. This group presented a high number
of mutations in genes involved in DNA methylation,
alongside with genes responsible for methylation of
histone residues H3K4, H3K9 and H3K36, such as the
KMT2 gene family and SETD2. Of note, SETD2 was
previously linked to CIMP in KIRC [74] but not COAD.

The second category, represented by GBM, LGG and
LAML, showed CIMP drivers to be mutations in the DNA
demethylation genes IDH1/2, as previously reported [29–
31]. To a lesser extent, we found additional IDH1 muta-
tions in high-methylated skin cutaneous melanomas
(SKCM), in accord with previous studies [75]. Of note,
we found that small groups (1%) of LUAD and PRAD
presenting IDH1 mutations had a higher methylation
level, consistent with previous reports for PRAD [76]. IDH1
mutations in LUAD have previously been reported as rare
events and potential drivers of subclonal evolution [77]
but not of CIMP.

The third category was based on mutations in genes
involved in histone methylation or demethylation. The
main driver of CIMP appeared to be the SET domain-
containing family, whereby the loss of function of
SETD2 is associated with hypermethylation events and
can lead to ectopic H3K36me3 [78]. We observed a
significant increase in SETD2 gene mutations in the high-
methylation group of COAD (2% low- versus 36% high-
methylation group), KIRC (0% versus 37%) and MESO (0%
versus 18%). We also found that SETD2 mutations were
significantly correlated with a higher methylation level
in KIRP. Supporting this finding, studies have reported
SETD2 mutations to be characteristic of a certain group of
renal cancers associated with CIMP [74]. Interestingly, our
results showed a significant increase in NSD1 mutations
in the low-methylation groups of several cancer types,
in accord with previous results [79, 80]. NSD1 is also a
SET domain-containing protein involved in methylation
of H3K36 and known to recruit DNMT3A/B to gene bodies
[70].

The fourth category involved four cancer types in
which the CIMP etiology was discernible, based on our
mutational analysis and a literature search. For CESC,
DNA hypermethylation may be caused by the HPV E7
viral protein [81]. In MESO and liver hepatocellular
carcinoma (LIHC), BAP1 mutations were enriched in
the high-methylation group, in accord with previous
studies [74]. We observed BORIS/CTCFL overexpression in
the high-methylation groups of HNSC, LUSC, LUAD and
SARC. Finally, mutations in BRAF, KRAS, PBRM1 and PTEN
were found in the hypermethylated groups of COAD, KIRC
and LGG, consistent with previous analyses [43].

CIMP is a prognostic factor in numerous cancer
types and can be cost-effectively assessed in the
clinic
To investigate the role of CIMP as a survival predic-
tor and independent prognostic marker, we performed

both univariate and multivariate analyses, using log-
rank tests and Cox proportional hazard models. We iden-
tified eight cancer types with significantly different sur-
vival times across DNA methylation groups: ACC, HNSC,
KIRC, KIRP, GBB, MESO, SKCM and LGG (Figure 4A and
B and Supplemental Table 7). The link between patient
survival and CIMP for all but HNSC had been previously
reported in literature [25, 26, 28, 29, 74, 82].

Reports of the contribution of the CIMP status to sur-
vival in SKCM have been mixed [83–86]. Our analysis
suggested that the cancer type violated the Cox propor-
tional hazard model; patients with tumors bearing high
methylation rates showed better survival within the first
two to three years but poorer overall survival long term.

To assess the potential of DNA methylation as an
independent prognostic marker, we further trained Cox
regression models on all cancer types and included age,
stage, and gender, when relevant. We found five cancers
in which CIMP status provided an added value in improv-
ing accuracy of patient risk stratification: ACC (hazard
ratio 4.4), HNSC (0.5), KIRP (6.8), LGG (0.3) and MESO (3.5)
(Figure 4C and Supplemental Table 8). We interpret the
results as CIMP positivity within ACC, KIRP and MESO
tumors is associated with a worse prognosis, consistent
with previous reports [25, 74, 82]. Meanwhile, the highly
methylated tumors in HNSC and LGG are associated with
a better prognosis, previously reported for LGG [28, 29]
only. Finally, we reported for the first time that HNSC
patients with highly methylated tumors were likely to
have a good prognosis, independent of age, gender or
stage (Figure 4A).

To illustrate the translation of our CIMP testing results
to the clinic, we used a logistic regression (90%/10%
training/test set split, balanced class weights, 5-fold cross
validation) to identify a set of up to five probes that could
differentiate CIMP and non-CIMP status with near per-
fect accuracy. We successfully classified patient samples
with a 5-fold average adjusted-balanced accuracy (ABAC)
of 0.989 [IQR (0.981–1.000)] (Supplemental Table 9). The
performance on the held-out test set showed an average
ABAC of 0.936 [IQR (0.900–1.000)]. We concluded that for
most cancer types, we could test for the methylation
status of up to five cancer probes in a cost-effective
manner and thereby assess the CIMP status. Of note,
IDH1 mutation status was also a significant prognostic
factor in LGG and GBM (although to a lesser extent than
CIMP status) (Supplemental Figure 10) and could form
the basis of a cost-effective clinical test.

Pathway enrichment analysis identified nervous
system development, pattern specification, cell
signaling, differentiation and proliferation as
potential downstream events of cancers with
CIMP
We sought to identify downstream effects of hyperme-
thylation by ascertaining which genes and pathways
were ultimately affected. We defined potential down-
stream CIMP targets as genes that are both differentially

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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Figure 4. CIMP as a prognostic factor for patients’ clinical outcome. (A) Kaplan–Meier representation of univariate overall survival (OS) analysis for
eight cancer types with significant differences in OS between DNA methylation groups. (B) Kaplan–Meier representation for 11 cancer types without
significant differences in OS between DNA methylation groups; 95% confidence interval (CI) is represented by a colored area around the Kaplan–Meier
curve. The associated log-rank test P-value is indicated as low- versus high-methylation group (L-H), and when relevant, low versus intermediate (L-I)
and intermediate versus high-methylation groups (I-H). (C) Cox regression model representation of hazards for significant associations. The hazard
ratios (HR, with 95% CI) associated with each variable for all significant cancer types are represented. High-methylation group (resp. inter. meth. group)
quantifies the hazard ratio associated with belonging to the high-methylation (resp. intermediate-methylation) as compared with the low-methylation
group.

expressed and associated with CGI hypermethylation in
the high-methylation cluster.

The most enriched pathways for cancer-related events,
reproducibly identified by the EASE score [61], were ner-
vous system development/neurogenesis (7 of 19 cancers),

pattern specification (7 of 19), cell–cell signaling (7 of 19)
and cell differentiation/fate commitment (7 of 19), cell
adhesion (5 of 19), cell proliferation (3 of 19) and cation
transport (3 of 19). (Figure 5A, Supplemental Table 10). As
nervous system development, developmental pathways,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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cell adhesion are all associated with cell migration and
metastasis [87–89], DNA methylation could be a promis-
ing target for some cancer type-specific therapies.

Tumors with CIMP show significant associations
with specific immune subtypes
Turning to TME, we hypothesized that CIMP status might
factor into a personalized medicine approach for some
cancer types. Indeed, the immune activation of can-
cer types has been shown to correlate with classical
therapies like cisplatin [90] or radiotherapy [91], as well
as more recent therapies such as immune checkpoint
inhibitors [92].

We computed the methylation enrichment of immune
subtypes, as described by Thorsson et al. [64]. We also
analyzed the correlation between CIMP score and TME
characteristics [64], as precomputed by CIBERSORT [65]
and xCell [66].

We observed several notable associations (Figure 5B):
the high-methylation group was enriched in a specific
immune subtype in 11 cancer types. Specifically, we
observed associations between CIMP and the wound
healing subtype in KIRP; the IFN-γ dominant subtype
in COAD, stomach adenocarcinoma (STAD), HNSC
and MESO; the inflammatory subtype in LIHC, the
lymphocyte-depleted subtype in ACC and SARC and the
immunologically quiet subtype in LGG.

Thorsson et al. [64] reported differences in progno-
sis linked to immune subtype. Due to its characteristic
immunosuppressed microenvironment, the lymphocyte-
depleted subtype conferred the worst prognosis. At the
same time, the inflammatory subtype carried the best
prognosis, consistent with the need for a dominant, type
I immune response against cancer [93].

Our analysis confirmed the previously reported link
between IDH mutations and lymphocyte depletion in
LGG. The mechanism may be based on decreased
leukocyte chemotaxis [94], as well as enrichment of
the immunologically quiet subtype in highly methylated
tumors of LGG [64].

We also found numerous significant associations
between high-methylation and general immune signa-
tures and characteristics (Figure 5C), namely association
with significantly increased proliferation in seven cancer
types and decreased proliferation in two. High methy-
lation was also associated with increased macrophage
regulation in four cancer types and decreased regulation
in four, as well as a stronger lymphocyte infiltration in
four and weaker in three.

Analysis of the immune composition deconvolved by
CIBERSORT showed that some specific immune cell
types were enriched in the high-methylation group
(Figure 5D). Specifically, COAD, STAD and HNSC showed
an increase in activated immune cells (dubbed, ‘immune
hot’), whereas in LIHC, LUAD and SARC, enrichment was
apparent in resting or regulatory immune cells (dubbed,
‘immune cold’). These observations were generally in

agreement with the results of the immune composition
analysis by xCell [66] (Supplemental Figure 11).

Overall, the high number of significant associations
between the CIMP score and immune cell composition
indicated the methylation status of cancerous cells may
influence the TME, making CIMP a potential biomarker
for immunotherapy in the clinics. However, more exper-
imental work is needed to investigate the functional
relationship between CIMP and immune cell composition
in cancers.

Discussion
Our goal was to define CIMP in human cancers and
ascertain with available data whether the phenotype was
present in all cancer types. Our primary aim was for the
first time to create a definition agnostically (not based
on a preexisting panel of genes or a priori knowledge of
methylated positions, as had been done previously [11,
13, 17–19, 21, 22, 27, 30–32, 95]). The main advantage of
our technique is its reliance on unbiased signals from
as many informative probes as possible, while eliminat-
ing biases associated with gender, age at diagnosis, and
tumor purity.

Based on CGI methylation patterns, we characterized
26 cancer types into two categories, CIMP-positive and
negative and investigated the effect of dysregulated
methylation on clinical outcome. We discovered CGI
hypermethylation was significantly associated with
survival in 8 of 19 CIMP-positive cancer types and had
a prognostic value independent from age at diagnosis,
stage, or gender in 5, including ACC, HNSC, KIRP, LGG
and MESO.

We also have identified candidate driver events of
CIMP in four broad categories: MSI, mutations in DNA
demethylation genes, mutations in histone demethyla-
tion genes and mutations in upstream signaling path-
ways. We have investigated the potential downstream
effects of CIMP and confirmed cellular functions known
to be impacted by DNA methylation, such as cell–cell sig-
naling, cell adhesion and neural system differentiation.
We have also shed light on the link between CIMP and the
TME, paving the way for potential further causal analysis.

Other studies have explored DNA methylation dysreg-
ulation in a pan-cancer manner [43–47]. However, our
approach involved strict preprocessing of DNA methyla-
tion data, correcting for age, gender and tumor purity.
In addition, we characterized CIMP status by scoring
significant hypermethylation of CGIs in specific tumor
subsets as compared with others within the same cancer
type—as opposed to measuring generalized hyperme-
thylation compared with normal tissue. For this reason,
we did not screen for probes that were differentially
expressed as compared with normal tissue; we only com-
pared methylation events to normal tissue levels a pos-
teriori (Figure 2E).

We acknowledge that our study does have limitations.
For example, our definition of CIMP included not only

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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Figure 5. Downstream effects of CIMP and associations with immune cell composition. (A) Enriched pathways in the DAVID analysis. We selected
genes that were both differentially expressed and presented hypermethylation in associated probes in the high-methylation group; we computed their
enrichment in the DAVID [61] tool. The number of cancer types for which the pathways were enriched is indicated. (B) Enrichment in immune subtypes
as described in Thorsson et al. [64]. Percentage of the immune subtypes in the high-methylation cluster is indicated. Subtypes significantly enriched
in the high-methylation cluster as compared with the low-methylation cluster (Fisher’s P < 0.05) are indicated with a (∗). (C) Spearman correlation
coefficients between the CIMP score and the immune signatures and characteristics as described in Thorsson et al. [64]. (D) Spearman correlation
coefficients between the CIMP score and the cell composition as precomputed using CIBERSORT [65]. Only significant associations (P-values adjusted
with Benjamini–Hochberg correction <0.05) are annotated for (C) and (D).

CGIs but also shores and shelves, thereby excluding some
cancer types, such as UCEC and esophageal carcinoma
(ESCA), from the CIMP-positive category. Further, some
cancer types are inherently age- or gender-related e.g. a
better prognosis subgroup of younger patients has been
documented for ESCA [96]. Although in our analysis we
only discarded CpG probes as associated with age or gen-
der when this correlation had been observed in at least
two cancer types, our analysis in such cancers might
still suffer from overfiltering. We estimate this effect
being minor given similar proportions of filtered probes
across all cancer types (Figure 2A). However, we cannot
exclude that a less stringent correction for age- and

gender-related effects might change the CIMP-negative
status of some cancer types. Inversely, we did not correct
for ethnicity, which might account for some portion of
the variability in DNA methylation [97]. However, ethnic-
ity did not correlate with the high-methylation group in
any of the cancer types.

In addition, we compared the methylation patterns
of cancerous samples to those of adjacent normal
tissue, assuming (perhaps incorrectly) that the cancer
originated from the same tissue of origin. We did not
correct for genomic differences between individuals,
even though methylation can be influenced by individual
SNPs. Instead, we assumed that we circumvent the issue
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by using the Illumina 450 k array to obtain data from
functional parts of the genome, which are less subject to
variation [50]. For interpretability and comparability with
other studies, we chose to use beta-values rather than
M-values to characterize the level of DNA methylation,
although M-values may have higher power for detecting
differential methylation levels [98].

We also chose to use a hard assignment clustering
algorithm instead of the soft assignment of points to
clusters. Although the former technique has the advan-
tage of eased analysis and interpretation, it introduces
loss of information and potential inaccuracies in further
analyses. We tried to mitigate this effect by introducing
some measure of uncertainty and using only HC patients
for subsequent analyses. This can, however, lead to over-
filtering patients that could represent the complexity
and diversity of the underlying biology of CIMP in cancer.

Finally, we simplified some analyses, which may have
affected results. For example, we fixed the cutoff for
CIMP presentation at an arbitrary value: 20% difference
in average beta-values. To palliate the somewhat
arbitrary nature of the cutoff to define a cancer
type as CIMP-positive, we provide information on
potential mutational drivers and the survival analysis
for CIMP-negative cancers in Supplemental Materials
(Supplemental Figures 12–14 and Supplemental Tables 11–
12). In addition, we did not perform a grid search to
optimize the hyperparameters of the Random Forest
classifiers, which may have altered results. We focused
on the discovery of impactful features rather than on the
classification of tumors for further analysis. Finally, we
did not verify the proportional hazards assumption in the
Cox regression model, as it is often ‘untrue’ in medical
settings [99]. Hence, we advise interpreting hazard ratios
as a weighted average of the true hazard ratio [100].

The results of this study align with published research,
validating well-documented genomic drivers of CIMP (i.e.
mutations in IDH1/2 and SETD2). Noteworthily, we find
that IDH1 and SETD2 mutations are potential shared
drivers across nine CIMP-positive cancer types, albeit in
sometimes rare subpopulations (such as in LUAD).

Similarly, our survival analysis confirmed for many
cancer types previous reports of significant differences in
survival linked to CIMP status [23, 25, 26, 28, 29, 74, 82–84].
We found that several of the genes discovered as mutated
in the high-methylation group were known tumor sup-
pressor genes (e.g. TP53, ATRX, NF1) or oncogenes (e.g.
KRAS, BRAF, EGFR). Although the relationship between
some of these mutations and CIMP has been investigated
(e.g. for BRAFV600 [101] or PIK3CA [102]), studies on the
causality between DNA hypermethylation and activation
or inactivation of these genes are still lacking. Under-
standing the link between DNA hypermethylation and
genomic variants in these oncogenes and tumor suppres-
sors would potentially enable better targeted therapy in
the affected cancer types.

We note that we could not find candidate driver events
for PC and thyroid carcinoma (THCA), suggesting either

lack of statistical power or heterogeneous mechanisms.
In addition, we could not reproduce results that linked
the SDHx gene family mutations to CIMP in PCPG [103].

In terms of survival (correcting for age at diagnosis,
clinical stage and gender), only GBM and LGG [29] were
previously analyzed using a similar multivariate anal-
ysis. In contrast, we report CIMP-linked survival differ-
ences for HNSC, both univariate and multivariate analy-
ses, and SKCM, previously reported as mixed [83–86].

In terms of clinical relevance, we showed the ability
to cost-effectively predict with near perfect accuracy the
CIMP status of almost all CIMP-positive cancer types
using up to five probes. This predictive factor can be
useful to stratify patients, for instance, using CIMP status
as a more accurate survival prognosticator than IDH1
status for patients with LGG and GBM.

There were some cancer types with reported CIMP
that we did not identify as CIMP-positive (bladder, breast,
esophageal and UCEC). In addition, we could not repro-
duce previous associations of CIMP with clinical out-
comes for KIRC [17], LUAD [19], STAD [13], LUSC [19] or
SARC [104]. We note that most of these reports used gene
panels to define CIMP, and the entire basis of this study
was to provide an independent agnostic means to define
the phenotype.

Also noteworthy, we were unable to reproduce previ-
ous results demonstrating the prognostic impact of CIMP
on survival for COAD [105, 106]. We argue that this is
not surprising, given that such reports showed mixed
results [106] i.e. discussing the necessity of both MSS
and KRAS/BRAF mutations to link CIMP status to survival
[107].

Finally, we found numerous associations between
CIMP status and the TME. Understanding how the
methylation state of cancerous cells influences the
tumor immunogenicity and microenvironment or vice
versa warrants further investigation, as it might enable
better prediction of the response to classical and
immunotherapies of patients with different methylation
states.

In conclusion, we have thus investigated and charac-
terized the presence of CIMP in 26 cancer types using the
TCGA database, highlighting that although CGI dysreg-
ulation is present in all studied cancer types, its level
varies greatly cancer by cancer. We have shown sub-
stantial differences between CIMP and non-CIMP groups,
mainly involving mutations and the altered expression
of genes involved in DNA or histone methylation and
demethylation. Finally, we have evidenced the biological
and clinical importance of CIMP in predicting survival,
finding significant differences in survival between the
low- and high-methylation groups in eight cancer types
overall and five specifically, after correction by age, stage
and gender.

We have further exemplified the translational capabil-
ity of methylation testing in the clinic with the use of
a small panel that accurately predicts CIMP status. We
have also investigated the potential immunomodulatory

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab610#supplementary-data
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role of CIMP through immune subtype classification and
immune cell correlation. Provided that several drugs tar-
geting DNA methylation have been already approved for
clinical use [108], we argue that elucidating the etiology
of DNA methylation dysregulation in cancer, as well
as understanding its impact on patient survival, would
enable significant inroads in cancer treatment.

Data Availability
The code used to perform the analysis and supplemental
information on patient and cancer levels are available at
https://github.com/BoevaLab/CIMP_etiology_oncogenic_
transformation.

The TCGA datasets were derived from sources in the
public domain at UCSC Xena browser: http://xena.ucsc.
edu/.

The normal data for ACC and LAML are available in the
Gene Expression Omnibus (GEO) dataset at https://www.
ncbi.nlm.nih.gov/gds, and can be accessed with unique
identifiers GSE77871 and GSE32149.

Acronym section
ABAC: adjusted balanced accuracy; ACC: adrenocortical
carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA:
breast invasive carcinoma; CESC: cervical squamous
cell carcinoma and endocervical adenocarcinoma; CI:
confidence interval; CGI: CpG Island; CIMP: CpG island
methylator phenotype; COAD: colon adenocarcinoma;
DAVID: database for annotation, visualization and
integrated discovery; ESCA: esophageal carcinoma; GBM:
glioblastoma multiforme; HC patient: high confidence
patient; HNSC: head and neck squamous cell carci-
noma; HR: hazard ratio; KIRC: kidney renal clear cell
carcinoma; KIRP: kidney renal papillary cell carcinoma;
LGG: brain lower grade glioma; LAML: acute myeloid
leukemia; LIHC: liver hepatocellular carcinoma; LR:
logistic regression; LUAD: lung adenocarcinoma; LUSC:
lung squamous cell carcinoma; MESO: mesothelioma;
mRNA: messenger RNA; MSI: microsatellite instability;
MSS: microsatellite stability; NS: non-significant; PAAD:
pancreatic adenocarcinoma; PCPG: pheochromocytoma
and paraganglioma; PRAD: prostate adenocarcinoma;
READ: rectum adenocarcinoma; SARC: sarcoma; SD:
standard deviation; SKCM: skin cutaneous melanoma;
SSC: sample silhouette coefficient; STAD: stomach ade-
nocarcinoma, TCGA: The Cancer Genome Atlas; THCA:
Thyroid carcinoma; THYM: thymoma; TSS: transcription
start site; UCEC: uterine corpus endometrial carcinoma.

Key Points

• To define cancer types characterized by CIMP, we ana-
lyzed CGI methylation, eliminating biases linked to age
at diagnosis, gender, and tumor purity.

• Although consistent methylation dysregulation exists in
all cancers, CIMP does not seem to be present in all
cancer types studied.

• Mechanisms causing CIMP are heterogeneous, including
mutations in IDH1/2 and SETD2 that were previously
reported in specific cancer types, as well as reported
for the first time here in new cancer types; the novel
overexpression of BORIS/CTCFL spanned several cancer
types.

• CIMP is often a prognostic factor: it influences survival
in eight cancer types and is a prognostic marker inde-
pendent of age at diagnosis, stage and gender for five
cancers. This relationship was reported for HNSC for the
first time in this study.

• CIMP appears to be linked to a specific TME in many
cancer types, affecting immune cell composition and
signatures.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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