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Fast and accurate cerebrospinal fluid cytology is the key to the diagnosis of many

central nervous system diseases. However, in actual clinical work, cytological counting

and classification of cerebrospinal fluid are often time-consuming and prone to human

error. In this report, we have developed a deep neural network (DNN) for cell counting

and classification of cerebrospinal fluid cytology. The May-Grünwald-Giemsa (MGG)

stained image is annotated and input into the DNN network. The main cell types

include lymphocytes, monocytes, neutrophils, and red blood cells. In clinical practice,

the use of DNN is compared with the results of expert examinations in the professional

cerebrospinal fluid room of a First-line 3A Hospital. The results show that the report

produced by the DNN network is more accurate, with an accuracy of 95% and a

reduction in turnaround time by 86%. This study shows the feasibility of applying DNN

to clinical cerebrospinal fluid cytology.

Keywords: neural network, white blood cell, cerebral spinal fluid, classification, clinical, image recognition

INTRODUCTION

The central nervous system (CNS) is one of the most crucial systems in the human body. One
important aspect of the CNS is the cerebral spinal fluid (CSF), which is typically sterile and only
contains around 1–5 white blood cells (WBCs) per microliter (µl) under normal conditions. Many
neurological diseases cause changes in cerebrospinal fluid cytology, especially in infectious diseases
of the nervous system. When perturbed by an infectious disease, the human body responds by
increasing WBC population leading to an inflammation of the CNS, which leads to increased
mortality and morbidity if not correctly diagnosed and properly treated. The global burden of CNS
infections in 2016 was tabulated in a recent study (1) and estimated to be 9.4million incidences with
a mortality rate of 5% or 458,000 deaths annually. With such a high clinical priority and impact,
there is always a need for improvement on the aspect of rapid diagnose for CNS infection.
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The current diagnostic method for CNS infections consists of
a series of tests, such as CSF test, culturing, and gram staining.
In developing countries, the sensitivity of culturing and gram
staining is low (2). CSF test is the most commonly used and
includes several crucial key factors, such as cell counting, cell
staining, and cell identification. Treatment usually begins at the
onset of signs of CNS inflammation, immediately after the cell
count and differential cell count become abnormal. This WBC
identification is typically achieved with the May-Grünwald-
Giemsa (MGG) staining of the CSF, which stains the nucleus
and granules of the WBCs. In the case of one of the biggest
hospitals in the northwestern region in China where this study
is conducted, the hospital annually treats 120,000 outpatients
with neurological diseases and among these, 4,000 patients are
suspected of CNS infections (3). Because of this number, the
hospital employs a large number of resources with an estimated
10 working hours per day dedicated just for CSF cell counting,
cell staining, and cell identification alone.

Recent years have seen the boon of machine learning for
analyzing large datasets and in particular, deep neural network
(DNN) has been used to help to analyze and differentiate red
blood cells (RBCs) and WBCs in whole blood (4–10). These
studies imply different tactics, such as image segmentation,
clustering, thresholding, local binary pattern, and edge detection
(6). However, the initial implementation of these strategies
for this application resulted in low clinical accuracies, thus
accommodating a more generalized model, a generic object-
detection neural network, such as region-based convolutional
neural network (R-CNN), was explored and found to be more
successful (11). To date, there have not been any studies forWBC
differentiation in CSF using any machine-learning algorithms to
the best of our knowledge.

In this study, the objective is to explore the feasibility of letting
DNN to completely replace the currently employed manual labor
leading to significant improvement in cell counting accuracy
and cost savings. DNN is utilized in the differentiation of
lymphocyte, monocyte, neutrophil, and erythrocytes for CNS
inflammation diagnosis. To highlight how DNN accomplishes
this, there are three main pillars presented in this study: (1)
systematic validation of the DNN to confirm the similar quality of
care to current standards, (2) analysis of accuracy and precision
in automation, and (3) analysis of time savings if applied to the
real case. The data reported in the present study are expected to
greatly improve patient care when it comes to the diagnosis of
infectious CNS diseases.

MATERIALS AND METHODS

MGG Staining Procedure and OM Capture
Details
Patients suspected of CNS inflammation had their CSF drawn
from a typical lumbar puncture, where usually 10ml of CSF was
collected. The CSF was then split into two parts: (1) for cell
count, 10 µl of CSF was dropped onto a hemocytometer and
cells were counted, (2) based on the cell count, a proportional
amount of CSF was used in the cytocentrifuge, and the cells

were concentrated onto a microscope slide. MGG staining was
done by first taking the microscope slide out and fixing them
with acetone-formaldehyde. After they were fixed, the slides
were stained with an MGG staining kit. The samples were then
observed under a normal optical microscope (Leica DM2500)
with the 20× lens used first to get a general idea of the patient’s
condition. Additional 100× images were subsequently taken
when particular cells of interest were located; these 100× images
were the type sent to the DNN for training and testing. Afterward,
the fixed microscope slides were preserved in a sample bank in
case of future analysis.

Preprocessing
All images were taken using an optical microscope (Leica
DM2500) with the 100× lens. Images are in the format of 8-
bit JPEG. Each image was individually labeled with the type
of each cell using an open-source software called Labellmg
(12) by trained technicians with cell identification experience
of 10 y. The Labellmg also helps to establish spatial locations
of each cell by the function of the “user draw boxes”.
Then, the saturation, the contrast, and the brightness of all
images were randomly adjusted. All images were also randomly
horizontally flipped.

Training and Inference
Model training was performed in Python 3.6 and TensorFlow
1.14 using two NVIDIA 2080Ti 11 GB graphics processing units.
Models were based on the Faster R-CNN architecture. The DNN
software is a region-based convolution neural network (CNN)
so it has great edge detection capability. It uses label mapping
to separate labeled areas from the non-labeled background
areas. Labeled images were split into two sections with a
ratio of 9:1 and were separately put into the training and
the testing folders, respectively. Model weights were initialized
with weights pre-trained on the COCO database. Models
were trained for 4-way classification (lymphocytes, monocytes,
neutrophils, and RBCs). The RMSprop optimizer was used
with a softmax loss and an exponential decay rate schedule
with an initial learning rate of 0.001. Models were trained
for 32,000 steps. The batch size was 4 and the Intersection
over Union (IOU) threshold was 0.5. The model for each
training episode was selected based on the PASCAL VOC
detectionmetrics on the validation set. Predictions were averaged
across all models and all cell images to produce a final
prediction for each case. An external test set comprised of
images from the rest of the dataset was used to evaluate the
generalization performance of the model. Preprocessing scripts
were written in Python to organize the data for utilization in
TensorFlow. And the training was done until the loss function
was saturated and observed via Tensorboard. Once the newly
trained model was frozen, validations were done on the test
image folder and compared with the ground truths of the trained
technicians. After a reasonable accuracy was achieved, additional
unlabeled images were evaluated with the frozen DNN model.
For the training process of the DNN, 1,300 images, which
include around 30,000 cells, were individually labeled and fed
into the program.
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FIGURE 1 | (A) Optical microscope image taken at 100× with a scale bar of 10µm. Cells were fixed and stained with MGG, which provides a light color to the

cytoplasm of the cell and purple color to the lobes of the nucleus. Labels for the three WBCs and the RBCs can be seen in the picture. (B) Schematic of how the

object-detection DNN model is trained to form its basic architecture. The model structure is Faster R-CNN with an initial learning rate of 0.001, a batch size of 4, and

an IOU threshold of 0.5. The structure along with an online database was used to train the DNN model and then with the basic architecture, the weights and biases

are optimized for the MGG-stained cell images of each classification. MGG, The May-Grünwald-Giemsa; DNN, deep neural network; RBC, red blood count; WBC,

white blood cell.

RESULTS/DISCUSSION

Validating the DNN
The application of the DNN in this study is in the identification of
the 4 main types of cells found in infectious CNS disease patients’
CSF. The four main types of cells typically found are lymphocyte,
monocyte, neutrophil, and erythrocytes. When a doctor suspects
a CNS infection, the routine procedure of lumbar puncture is
done and CSF is withdrawal from the patient, which will be
stained for clear cell identification by the hospital technicians.
The MGG staining provides a red acidic stain, a blue basic

stain, and a purple color for cellular components (13, 14). This

effectively gives the RBCs a dark gray or red-pink color, the
WBCs a blue color with the lymphocyte a distinctive singular

round purple nucleus, the monocyte with a large and bean-
shaped purple nucleus, and finally the neutrophil with multi-

lobed purple-colored nucleus (15). An example of MGG staining

is shown in Figure 1A, where all four types of cells can be seen
from CSF for one patient.

The DNN model employed for this study is based on

an object-detection image-based neural network built on the
TensorFow and pre-trained on the COCO dataset (16). The

basics of a neural network can be considered as a repeating

algorithm that classifies the importance of an input based on an
activation function. An activation function is similar to the action

potential of a human neuron cell, where a necessary stimulus

causes the firing of the neuron, which is an all-or-nothing
process. This is analogous to artificial neural networks where the
activation function is a mathematical threshold value and once
that is met, the result is similar to the firing of a human neuron.
There are additional nuances to this mathematical equation
with a coupling of weights and bias values, and the resultant
firing is not a step function, but a specialized mathematical
function containing in-between 0 and 1 activation values; an
example is the sigmoid function. However, the main concepts
translate to the idea that only the important characteristics of
an image will be filtered through this activation function with
each of these characteristics being represented as a neuron in
one layer of the neural network. The addition of multiple layers
gives rise to the non-linearly of a DNN and these features
allow a DNN to recognize an image, similar to mimicking
the image processing of a human brain. Coupled with the
introduction of CNN, the processing requirement for image-
based neural networks dropped significantly, paving the way
for large advancements in the field (17). However, the detailed
description and workings of each of these improvements are
beyond the scope of this study, and a sample of this literature can
be found in References. (11, 18, 19).

The application of the DNN to recognize WBCs and RBCs
was made possible by first applying the pre-trained DNN to a
database of optical microscope (OM) images labeled by doctors
for each cell classification. The specifics of the Faster R-CNN
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FIGURE 2 | A trend graph of the number of cells per patient needed for

certain patient condition examples. It can be seen that after a certain amount

of cells, the percentage of the WBC type saturates thus determining the

number of cells needed for a successful and accurate hospital report. This

trend graph shows that on average, 315 cells are needed with even the onset

of saturation starting at around 150 cells. WBC, white blood cells.

model used can be found in this study (11, 19) and the training
on the open-source image database, COCO by Microsoft (16),
allowed for a DNN architecture to handle the complexities of the
various cell types. As can be seen in Figure 1B, this pre-trained
DNNmodel has already predetermined the number of layers, and
neurons are needed for an optimal score of the COCO database
and by carrying out a process of transfer learning (20), this model
has re-trained itself by adjusting its weights and biases for MGG-
stained cell images. The specific structure of the DNN model is
Faster R-CNN, and an initial learning rate was 0.001, the batch
size was 4, and the IOU threshold was 0.5.

The typical hospital protocol in WBC type classification
involves checking around 200 cells per patient. This is known
as the cell classification step and it is one of the most time-
consuming processes for the hospital. As can be seen in
Supplementary Table 1, there are significant numbers of patients
the hospital handles daily and as such, the hospital has the CSF
Cytology Department to devote half-day daily to handle the
suspected CSF samples. According to the hospital, the 200 cell
minimum is an arbitrary standard set a while ago without much
scientific basis but has not led to failure. As such, an objective
study was also done to determine the minimum number of cells
needed per patient and also to determine the minimum number
of images needed to be taken per patient. Figure 2 shows the
result of this focused study where only the three mainWBC types
are compared with the total number of cells identified per patient.
For a typical hospital CSF cytology report, the doctors base their
diagnosis on the percentage of these WBCs. The CSF Cytology
Department has stored cytological smears of more than 100,000
patients in the last 10 y. Among these cytological smears diseases,

FIGURE 3 | The DNN model’s training accuracy shows its precision vs. the

number of iteration steps. As can be seen that the graph takes on a 1/x,

asymptotic relationship with saturation quickly established within the first few

thousand steps. After 200,000 iterations, the precision % has not improved

that much and the training of the model stopped, which took around 2 days of

nonstop training. DNN, deep neural network.

TABLE 1 | The number of cells labeled in the validation dataset between human

and AI for each cell type.

Erythrocyte Lymphocyte Monocyte Neutrophil

Human

Person 1 13 66 67 41

Person 2 12 43 48 40

Person 3 20 77 70 43

Person 4 27 80 73 54

Human std dev 7 17 11 6

DNN

Round 1 28 77 66 50

Round 2 28 77 66 50

Round 3 28 77 66 50

Round 4 28 77 66 50

AI Std Dev 0 0 0 0

5 different cases can be categorized: (1) low WBC count (W =

0–4), (2) high neutrophil cell count, (3) high RBC count, (4)
medium WBC count (W = 5–50), and 5) high WBC count (W
≥ 50). According to the characteristics of these types, we selected
the corresponding cytological smears. Then we collected OM
images of cells on each smear to analyze the threshold number
of cells and the percentage of each cell type and subsequently to
determine the required collecting cell number for each smear.

For Case 1, the low cell count typically means that the CSF
of the patient is within the normal range and that the symptoms
exhibited by the patient are from a different cause. However, Case
1 also has another difficulty where the entire cytospin sample
contains typically <200 cells. As can be seen in Figure 2, the gray
curves depict this, and the saturation of the curves is not met. For
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Cases 2–5, there are enough cells present and Figure 2 shows that
saturation of the curves occurs after 315 cells are labeled. This
number was calculated from an average of all the curves and from
interpolations between data points after the minimum condition
of saturation occurred. The onset of saturation can also be seen
around 150 cells, but the error margin of 5% can be calculated.

For the training of the DNN, 100× OM images were taken,
and every cell in each image was labeled by a trained technician
and cross-checked with specialized doctors. For the training
process of the DNN, 1,300 images or around 30,000 cells were
individually labeled and fed into the program. To verify the
effectiveness of the training process, Figure 3 shows the loss value
plotted against the number of iterations. The lower the value
of the loss function indicates the more fully trained the DNN
model. The loss function has become to an absolute limit of 0,
which indicates that the model is perfectly trained. Generally, all
DNN models are given trained values with a certain amount of
noise, or in this case, a variety of images of different situations, so

that the DNN can have the flexibility and not be over-fitted to a
degree that it cannot identify images perfectly matching its initial
training dataset. Figure 3 shows the output loss values in gray
along with a moving average for a better visual representation
of the graph. An exponential decay function is also fitted to
highlight the saturation of the loss function. The training of
this DNN took around 200,000 iterations and around 2.5 days.
However, once a DNN is trained, it requires only around 7 s for
an output.

The Precision of the Neural Network
Besides merely relying on the loss function plot, a cross-check
of the validation was performed to verify the accuracy of the
DNN model. A certain portion of the image dataset was kept
from training as the testing validation set, and the ratio amount
chosen was 9:1. For comparison, four trained technicians were
also arranged to label the same validation dataset, and then
their results were compared with the DNN’s prediction. Table 1

FIGURE 4 | An example output of the DNN model with boxed labels along with the model’s percentage prediction. One can see the predicted outputs of neutrophil,

monocyte, lymphocyte, and erythrocyte with their respective colors along with the DNN model’s percentage prediction. In addition, some cells are labeled with the

“unknown” label tag (tan and orange boxes) when the prediction percentage is below 80% or when the shape of the cell indicates a possibility of a rare cell type (i.e.,

basophil, eosinophil, mitotic, etc.). DNN, deep neural network.
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TABLE 2 | Blind testing results of the DNN vs. the Hospital Diagnosis Report.

% Lymphocyte % Monocyte % Neutrophil

Hospital Technician

Patient 1 (ID# 190931) 5 3 92

Patient 2 (ID# 191155) 1 7 91

Patient 3 (ID# 191172) 18 23 59

Patient 4 (ID# 191158) 87 6 7

DNN

Patient 1 (ID# 190931) 7 18 75

Patient 2 (ID# 191155) 4 7 90

Patient 3 (ID# 191172) 27 20 53

Patient 4 (ID# 191158) 89 8 3

Comparison Between Human vs AI

Patient 1 (ID# 190931) 2 16 16

Patient 2 (ID# 191155) 3 0 1

Patient 3 (ID# 191172) 9 3 6

Patient 4 (ID# 191158) 2 2 3

Average Difference 4 5 7

shows the labeling results of the validation dataset comparing
the variations between the human labeling and the labeling of
the DNN. The immediate takeaway is the confirmation that the
multiple evaluation rounds of the DNN will produce the same
result, however, that is not always the case. As can be seen
in Supplementary Figure 1, there is a possibility for the DNN
within the same validation round and with the same model
version to produce two different image labeling outputs. In this
case, the four validation rounds did not produce any variations.
The other interesting factor comes from the human side with SD
among the technicians producing large variability. However, such
inaccuracy is suitable in the clinical setting where speed is more
important and the WBC typing percentage can have a swing of
± 10% as the MGG cell classification report is only one of the
many diagnostic tests typically done in series on a patient’s CSF.
This further shows the importance of implementing artificial
intelligence (AI) in cell classification to improve the accuracy of
the clinical results to reduce the reliance on subsequent tests in
aiding the diagnosis of the doctor.

There are two outputs of the DNN program: (1) a labeled
image with each DNN-recognized cell boxed with its prediction
percentage, and (2) a report with the statistics of the recently
run evaluation. An example of the output image can be seen
in Figure 4 where the four major cell types are labeled by the
DNN program. The program puts a predicted boxed area around
the target cell and then gives each cell a classification prediction
percentage. If that percentage falls under 80%, then the program
will instead add another orange box over the original label and
give it the label “unknown” so that a human technician can
manually check the cell. Moreover, the cells that the program
outputs the light brown boxes correspond to the “unknown”
label, which is the more rare cell types (lymphoid, mitotic,
basophil, etc.) and these will require the human technicians to
check them as well. While the spatial location is innovative, it
has not been widely used for common diagnosis reports, the

TABLE 3 | The time-saving potential when compared between the DNN and

hospital technician.

Average time per

day (mins)

Average time per

patient (mins)

%

Hospital technician

Cell classification 211 ± 25.3 13.4 ± 0.86 N/A

Report writing 70 ± 13.4 4.4 ± 0.20 N/A

Total time 281 ± 38.5 17.8 ± 0.92 N/A

DNN

Cell classification 34 ± 4.5 2.2 ± 0.04 N/A

Report writing 3 ± 0.3 0.2 ± 0.00 N/A

Total time 37 ± 4.8 2.4 ± 0.04 N/A

Time saved 243 ± 38.8 15.5 ± 0.92 86 ± 4

DNN, deep neural network.

percentage of WBC types is important for diagnosis, and the
program calculates and outputs a statistical report of the three
major WBC types.

Accuracy of the Neural Network
To determine the effectiveness of the DNN in a real-world
application setting, a blind test was performed and the
comparison can be found in Table 2. During the blind test,
the images were taken by operators without knowledge of the
hospital report and given to a DNN operator, without any
patient information except their ID number. The ID number
is scrambled with the key being kept by a third party. From
Table 2, the average differences show that the DNN model is
fairly accurate when compared with the hospital report with
the largest margin of error in cell classification with neutrophil
and the largest patient variability with Patient #1. Overall, the
DNN was able to handle the various infectious disease cases
presented to it, they are as follows: (1) high neutrophil count,
(2) high RBC count, (3) even distribution of WBC types, and
(4) high lymphocyte count. The average accuracy of this DNN
for these three WBC types is 95%. Compared to similar studies
done on whole blood, our result is on similar levels of accuracy
(6–8, 10). In addition, the average accuracy of this DNN is
similar to these three WBC types of the same patient. Patient
#2 provides a sample with a high neutrophil count. For Patient
#2, the average error of this DNN for these three WBC types is
minimal, i.e., only ∼1.3%. For Patient #3 with a close amount
of three WBC types, the average error of this DNN for these
three WBC types is ∼6%. In addition, for Patient #4 with a high
lymphocyte count, the average error of this DNN for these three
WBC types is ∼2.3%. For Patients #2–4, the error of this DNN
for monocytes is minimal compared to those of lymphocytes and
neutrophils. However, for Patient #1, neutrophils and monocytes
showed large recognition errors. Upon closer inspection of the
data discrepancy for Patient #1, it was found that the DNN
had not previously encountered abnormal neutrophil images
during its training phase. These abnormal neutrophil pictures
had the individual nuclei lobes clustered together into a similar
shape of the monocyte nuclei producing a false negative result;
an example of this can be seen in Supplementary Figure 2.
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These misclassifications led to the uneven monocyte/neutrophil
percentage and thusly incorrect report. To better apply the DNN
for future clinical situations, the training regime will have more
of an emphasis on the number of patients trained rather than the
number of cells trained for each cell classification to account for
the complex clinical patient situations.

Time-Saving Potential
One of the main advantages of using the DNN program to
replace the mundane task of cell type labeling is the time savings
for the doctors so that their attention can be more focused
on other tasks. To quantify these time savings, a short survey
was conducted during a working week to estimate the time
committed on each patient and daily basis. An example of the
complete survey can be found in Supplementary Table 1,Table 3
shows the time required by the hospital personnel for the two
time-saving procedures that the DNN can contribute: 1) cell
classification and 2) report writing. As can be seen in Table 3,
the DNN can save around 16min per patient and around 4 h
per day; this amounts to a doctor time reduction of 86% daily.
The DNN time was calculated from the validation dataset and
extrapolated with an average number of patients from the short
survey. The minimum number of cells per patient, extrapolated
from Figure 2, and the average number of cells per image were
also factors used. In addition, the DNN processing time required
per image was also found to be independent of the number of
cells present, with processing time slowing down as heat became
more difficult to dissipate from the machine.

CONCLUSION

This study presents a pioneering application of image-based
DNNs to patient samples in a clinical setting. Image analysis
of MGG-stained patient samples is done for CSF cytology. By
applying neural network technology to the clinical space of cell-
type classification, a significant saving in time has been achieved.
The daily saving in the time spent counting cells of hospital
technicians is estimated to be approximately 86 ± 4%. DNN
further rendered more consistent analyses capability against the
large variability common to human classification analyses. Blind
tests result in an average accuracy of 95% among the three WBC
types, with the addendum being that the accuracy of the program
can always be improved further with additional training from a
wider variety of patients. This report clearly demonstrates the
promise of DNN in clinical practices pertaining to infectious
diseases of the CNSs.
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