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Abstract

Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We

sought to distinguish noninvasively the differences in 53 cats before and soon after induc-

tion of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical

pattern recognition was improved considerably by preprocessing the spectra with probabi-

listic quotient normalization and glog transformation. Classification of the 106 preprocessed

spectra by principal component analysis and partial least squares with discriminant analy-

sis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By fil-

tering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly

improved the separation of the healthy and early asthmatic states, attaining 94% specificity

and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the

specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the

most promising biomarkers of allergic asthma in cats to include increased acetone, metab-

olite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metab-

olite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats

with early asthma. The noninvasive detection of early experimental asthma, biomarkers in

EBC, and metabolic perturbation invite further investigation of the diagnostic potential in

humans.

Introduction

Asthma is characterized by airways with inflammatory infiltrates, hyper-responsiveness,
remodeling, and limited airflow, i.e. shortness of breath [1]. Asthma can range frommild to
life-threatening. Almost 10% of children in industrialized countries develop asthma [2]. This
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places a disproportionate burden on health care systems, with incremental costs estimated at
$56 billion in the US in 2007 [3].

The domestic cat is the only animal species that spontaneously develops a syndrome of
asthma which replicates the hallmark features of the human disease [4]. Feline asthma is itself
a major veterinary concern that affects between 1 and 5% [5] of the 74 million pet cats in the
U.S. The similarities between human and feline allergic asthma led to the establishment and
characterization of a feline experimentalmodel of allergic asthma that mimics the hallmark
clinicopathologic features in humans [6–8]. Allergic asthma is experimentally induced in cats
using the clinically relevant Bermuda grass allergen (BGA) as aeroallergen to induce airway
eosinophilia, airway hyperresponsiveness and histologic evidence of airway remodeling [6].
Additionally, cats develop spontaneous clinical signs after allergen challenge (cough, wheeze
and/or labored breathing on exhalation), BGA-specific IgE and a T helper 2 cytokine profile
[6]. This model is robust and has been used to investigate a variety of relevant clinical therapies
including inhibitors of neurogenic inflammation, antihistaminics / antiserotonergics, enantio-
mers of albuterol, allergen-specific immunotherapy, small molecule inhibitors, and adipose-
derivedmesenchymal stem cells, among others [9–14]. Since eosinophilic airway inflammation
drives airway hyperresponsiveness and remodeling, it is the primary outcome measure evalu-
ated in this model. Aeroallergen-induced asthma is utilized herein to develop a noninvasive
diagnostic approach to feline asthma.

Current clinical diagnosticmethods are imprecise, low in sensitivity, and frustrated by the
overlapping symptoms of other lower airway disorders [15, 16]. Consequently, there has been
a clear need for accurate and objective early detection of asthma, as well as for means of ongo-
ing monitoring of asthma and its management [17–19]. The clearest indication of allergic
asthma in cats, together with clinical signs, is� 17% eosinophils in the cytology of bronchoal-
veolar lavage fluid (BALF) [20]. Several barriers have been encountered in the development of
disease-specificbiomarkers for asthma diagnosis: Standard clinical tests for asthma such as the
cytology of BALF are accurate but invasive and impart some risk, making the approach unsuit-
able for serial sample collection from children and pet cats. NMR spectra of urine samples of
children, interpreted using supervised statistics, showed high accuracy in separating stable,
chronic asthma from health or from acute asthma [17]. In serum and urine, no abnormalities
have thus far been found to be definitively diagnostic for asthma in cats however [16].
Although concentrations of metabolites in exhaled breath condensate (EBC) samples are much
lower and harder to detect than in serum or urine, EBC collection is noninvasive and directly
samples airway fluids and the lung microenvironment.

Metabolomics of body fluids, including EBC, often relies on measurements by mass spec-
trometry or NMR spectroscopy, as they are sensitive enough to detect unique spectral “finger-
prints” of a wide variety of metabolites [21, 22]. NMR has the advantages of quick and
quantitative measurement of body fluids, good resolution of spectral peaks, and no manipula-
tion or destruction of samples [21]. NMR spectra of EBC interpreted statistically attained a
high degree of discrimination of healthy from asthmatic children [18]. NMR assay of EBC
from 79 asthma patients discriminated those with neutrophil-rich sputum or using inhaled
corticosteroids with high accuracies of 79% and 85%, respectively [23]. This relied upon use of
multiple regions of the NMR spectra in the statistical analyses [23]. Even higher discrimination
of health from the mild asthma of a smaller number of patients was obtained by interpreting
NMR spectra of EBC using supervised statistics, regardless of the EBC being collected at -5 or
-27°C [24]. Gas chromatography–mass spectrometry (GC-MS) detection of volatile organic
compounds in EBCwith statistics classified asthma with an accuracy of 96% [25]. Statistical
models from the same study successfully classified the patients with well-controlled asthma or
eosinophilia or neutrophilia in sputum [25]. Our purposes describedbelow have been to
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investigate procedures, performance, and possibilities for analyzing NMR-based “breathprints”
for noninvasive “breathomics” of asthma [22, 24], using the feline model of allergic asthma.

Metabolomics studies have often proceeded by untargeted [21, 26] or targeted approaches
[27, 28]. The former divides each NMR spectrum into segments called bins or buckets for
investigation of the proportions that the bins contribute to the total of the statistical variances
across the measurements compared [26]. The more recent targeted approach estimates abso-
lute concentrations by comparison with a library of reference spectra of the individual metabo-
lites found in the body fluid [27]. Both approaches proved highly effective in discriminating
mild asthma from health from NMR spectra of EBC analyzed with supervised statistics [24].
The concentration-dependent targeted strategy proved to be an enhancement with tighter clus-
tering of the patient groups [24]. However, the composition of EBC has been unclear. No
libraries of spectra of NMR-observable compounds in EBC have appeared at this writing for
estimating their concentrations, as evident from the latest software for targeted profiling [28].
Consequently, the established untargeted approach using spectral binning was adopted for the
current study. The sparseness of EBC spectra and high resolution at 800 MHz moderate the
concern of peak overlap in bins.

Choice of preprocessing steps is crucial and heavily influences the perceived importance of
metabolites [29]. Normalization of spectra by their integral addresses the highly variable con-
centrations of specimens of urine and EBC, but can be skewed by strong signals to introduce
artifacts [30, 31]. This systematic error can be overcome by calculating the most probable dilu-
tion factor using probabilistic quotient normalization (PQN) [31]. After suitable preprocessing,
multivariate statistics are applied to find patterns associated with biological status [21, 26]. The
popular unsupervisedmethod of principal component analysis (PCA) simplifies or projects the
many measured features (variables) in spectra down to fewer uncorrelated principal compo-
nents (PCs) that suggest trends shared among measured variables in the spectra [26, 32–34].
Variations on partial least squares (PLS) are popular to predict the class or phenotype of the
sample, after an initial phase of training the statistical model [26, 32]. PLS uses multiple linear
regression to derive from the data matrixX (here, the NMR spectra) the significant compo-
nents related to the categories or phenotypeY (here, the presence or absence of allergic asthma
in the feline patients). This makes use of “latent variables” not only to represent X, which PCA
also represents, but also to correlate X with Y [26, 32]. A function called discriminant analysis
(DA) is typically applied to clarify separation between categories [26, 32].

However, PLS-DA can be hampered by variation unrelated to the categories of interest [32].
In order to overcome large variations between subjects or patients, multi-level PLS-DA was
proposed for sets of data where each subject has a before and after condition (“crossover
design”)[35], e.g., before and after asthma induction in this work. By separating the between-
subject variation from within-subject variation, the within-subject variation accompanying dis-
ease or treatment can be analyzed by PLS-DA with potentially improved classification [35]. As
an alternative to improve PLS-DA classification performance, orthogonal signal correction
(OSC) can be applied to the data to remove the contributions of variances unrelated (orthogo-
nal) to the class Y, and thereby improve categorization [36–38].

This work investigates the potential of untargeted metabolomics using NMR spectra of
EBC, interpreted using multivariate statistics, to diagnose asthma noninvasively in cats. The
study exploits the feline model of allergic asthma induced by Bermuda grass allergen [6] by
comparing the EBC of cats in a state of health with a subsequent state of allergic asthma early
after induction (six weeks after initial exposure to antigen). The choice of preprocessing with
PQN normalization and glog transformation proved pivotal. Classification of health or early
asthma among 106 samples using statistically validated OSC-PLS-DA or multi-level PLS-DA
appears superior, with excellent sensitivity and specificity. OSC-PLS-DA points out the trends
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of increase in acetone, increase in two metabolites of unclear identity, and decrease of phthalate
in EBC from cats with allergic asthma.

Materials and Methods

Animal Care

All animals were domestic shorthair, purpose-bred cats. 27 were from a commercial vendor
(Liberty Research, Inc, Waverly, NY). The remainder were bred from a high-responder asth-
matic cat colony (Comparative Internal Medicine Laboratory, University of Missouri, Colum-
bia MO). There were 39 males and 14 females. The care of the 53 cats in the study followed the
NIH Guide for the Care and Use of Laboratory Animals. The University of Missouri Animal
Care and Use Committee approved the study design (ACUC protocols #6912 and 7891). A
commercial mixture of kitten and adult maintenance dry kibble diet was fed ad libitum. The
research cats were housed in groups in large runs, with a variety of enrichment toys (e.g, hang-
ing hammocks, elevated platforms to climb, baby toys, toy mice, balls with bells, etc.). Addi-
tionally, the cats were socializedand monitored at least daily by members of the research team,
in addition to beingmonitored by members of the Office of Laboratory Animal Care. None of
the cats became ill or died during this study. All of the cats were adopted to private homes after
the study.

Induction of Allergic Asthma

In order to induce allergic asthma, on day 0, cats< 1 year of age were administered 12 μg of
Bermuda grass allergen (BGA) in 10 mg of alum and 100 ng Bordetella pertussis toxin (both
subcutaneously). On day 14, intranasal BGA (75 μg of BGA in 200 μL of phosphate-buffered
saline) was given. On day 21, 12 μg of BGA in 10 mg alum was injected subcutaneously. On
day 28, the formation of wheals on an intradermal test confirmed sensitization to BGA. For the
next 2 weeks, intensive aerosol challenges were administered to all cats with BGA (500 μg of
BGA in 4 mL of phosphate-buffered saline) over 10 min in awake and unrestrained cats in a
sealed plastic chamber. A nebulizer (Acorn nebulizer, model 646, Devilbis Health Care, Somer-
set, PA) delivered an aerosol of the BGA solution at an air flow rate of 9.3 l /min. An air com-
pressor (Easy Air 15, PrecisionMedical, Inc., Northampton, PA) supplied the compressed air
flow at a pressure of 2.93 kg/cm2. At week 6, samples were collected 24 h after challenge with
BGA aerosol (see below).

Collection of Body Fluids and Evaluation of Airway Eosinophilia

In all cats, EBC and BALF were collected before (day 0) and after (week 6) sensitization to
BGA. The EBCwas collected non-invasively just prior to BALF collection by placing cats in a
25 L plexiglass chamber for 20 to 30 min according to a previously published design with mod-
ifications [39]. BALF was collected in a blind fashion under anesthesia using an 8 French red
rubber catheter passed through an endotracheal tube according to a previously describedpro-
tocol [40]. The percentage of eosinophils in each BALF modifiedWright’s stained cytospin was
determined by counting 200 nucleated cells, with an asthmatic phenotype defined as>17%
eosinophils. The EBC and the supernatant of centrifugedBALF remaining were promptly
stored at -80°C until further analysis. NMR spectra of the EBCwere measured for use in train-
ing and evaluating statistical approaches and biomarkers.
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Collection of NMR Spectra of EBC

To maximize the sensitivity and resolution of NMRmeasurements of inherently dilute EBC
specimens, we collected their spectra with a Bruker Avance III 800 MHz spectrometer with 5
mm TCI cryogenic probe. EBC samples were prepared with 7% D2O and 20 μM trimethylsilyl
propanoic acid as 0 ppm reference standard. 1D 1H NMR spectra were collected using
W5-WATERGATE water suppression [41] supplemented by presaturation of the water reso-
nance at minimal power. 32,768 transients were normally averaged. After data collection, the
1H NMR free induction decays were zero filled to 32,768 points, apodizedwith 2 Hz exponen-
tial broadening to enhance sensitivity, and Fourier transformed into spectra spanning from -2
to 12 ppm, with correction of phases and baseline using Bruker Topspin 3.1.

Spectral Preprocessing

About 30,000 points from 0.02 to 10 pm were retained for analyses, while the region around
the suppressed water peak from 4.5 to 5.38 ppm was omitted. Preprocessing steps were con-
ducted with Topspin and Origin. To accommodate the large variability in overall concentra-
tions of biomolecules condensed in EBC, the amplitudes of the NMR spectra were normalized
to the mean spectrumby probabilistic quotient normalization (PQN) [31]. The first step of the
PQN was unit normalization of the integral of each spectrum to 1.0. The median quotient was
calculated from the quotients of all the spectral positions (variables) to those of the mean spec-
trum [31]. Then all variables of each original spectrumwere divided by the median quotient of
that spectrum.The NMR spectra of EBC specimens were next binned into segments to accom-
modate slight inequities in NMR peak positions and line shapes as recommended [26]. (EBC
spectra are sparse enough to avoid the greater overlap within buckets of spectra of serum and
urine [24]. Collecting the spectra at 800 MHz resolved the overlap of peaks enough to improve
the reliability of binning. Shortcomings of bins have been discussed [30]). Each spectrumwas
divided into 455 bins each 0.02 ppm (16 Hz) wide and was then scaled with either Pareto scal-
ing or glog transformation for comparison. Pareto scaling used the following expression where
~xmn is the scaled peak height [29]:

~xmn ¼
x0mn
ffiffiffiffisn
p ; where sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

m¼1
ðx0mn � x0nÞ

2

m � 1

s

ð1Þ

Scaling by glog transformation instead proved much better at increasing the weighting of the
smaller variances. It uses the relationship [42]:

~xmn ¼ lnðx0mn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02mn þ lÞ

q

ð2Þ

where λis the glog transformation parameter. λwas obtained by dividing the same sample into
eight replicates (aliquots). Each replicate was handled independently for the NMR analysis.
The spectra of the replicates were preprocessed identically to ensure that the variances from
the replicates arise solely from “technical” variations. In order to avoid the scaling effect caused
by the transformation, the modified Jacobian of the glog function proposed [42] was applied.
λwas then calibrated using the Maximum likelihood criterion and Nelder-Mead minimization
algorithm in MATLAB, using the equation and script provided in ref [42]. Data were mean-
centered at the outset of multivariate statistical analysis.
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Multivariate Statistical Analyses and Validation

PCA decomposes the spectra (data matrixX) into PCs, which are a linear combination of
weighted variables observed in the spectra. The optimized weights generate a loading plot.
Each point of the score plot represents a spectrum’s projection onto the PC. The PCs were
computed using eigenvectors by singular value decomposition [43]. PCA was performed using
the MATLAB Statistics Toolbox. (The R-script princomp is also suitable; see http://www.
inside-r.org/r-doc/stats/princomp).

PLS generated components instead using multiple linear regression, not only to model the
spectral data matrixX, but also to calculate the projectionmatrix that maximizes the covari-
ance betweenX and the class matrix Y of “response variables” [21, 26] or asthmatic pheno-
types. Discriminant analysis (DA) was then applied to seek separation between the categories
[21, 26] of absence and presence of allergic asthma. PLS-DA was performedwith MATLAB
using libraries of H. Li available from http://www.mathworks.com/matlabcentral/fileexchange/
47767-libpls-1-95-zip. (R script plsda is also suitable: http://www.inside-r.org/packages/cran/
mixOmics/docs/plsda).The collection of EBC before and after allergic induction of asthma
was exploited in order to evaluate the multilevel PLS-DA approach to this crossover design in
the data [35]. Multilevel PLS-DA was implemented in MATLAB with M-files developed at the
Univ. of Amsterdam [44] and available at: http://www.bdagroup.nl/content/Downloads/
software/software.php

Preprocessing by filtering out one OSC component to remove the largest variance ofX
orthogonal to Y (again, presence or absence of asthma) [36–38] was evaluated as well.
OSC-PLS-DA calculations used the R script at: https://gist.github.com/dgrapov/5166570. To
avoid overfitting, leave-one-out cross-validation was performed to select the optimal number of
the components for use in model prediction. The prediction power of the statistical modeling
was evaluated and validated by intensive Monte Carlo cross-validation and permutation testing.

Identification of Pertinent Metabolites and Implications

For identifying dilute small molecules trapped in EBC, high sensitivity was obtained using the
800 MHZNMR system with cryoprobe and overnight signal averaging of sensitivity-enhanced
13C heteronuclear single quantum coherence (HSQC) [45–47]. For broad bandwidth, the
HSQCused chirp adiabatic inversion and refocusing pulses [48]. Reference NMR spectra were
found at the Human Metabolome Database (HMDB) [49, 50] and Madison-QingdaoMetabo-
lomics ConsortiumDatabase (MMCD) [51]. The database and server named ComplexMixture
Analysis by NMR (COLMAR) 13C-1H HSQC [52] was used in semi-automated comparisons of
these databases’ reference spectra with the natural abundance 13C HSQC in order to identify
multiple carboxylic acids detected.

Statistical total correlation spectroscopy (STOCSY) was proposed for identifying biomark-
ers by calculating the correlation matrix of the NMR data sets [53]. A STOCSY correlation
map was prepared from the 106 NMR spectra once preprocessed, segmented into 0.02 ppm
bins, and glog-transformed. A 1H-1H correlation matrix (455X455 points) was generated from
these preprocessed spectra. Covariance with a correlation coefficient r� 0.7 was considered as
significant and plotted in the STOCSY correlation map.

Variable Importance in Projection (VIP) from the OSC-PLS-DA and OSC-correctedmulti-
level analyses was calculated in order to evaluate the diagnostic significance of each spectral
bin. Spectral bins with VIP value larger than 1.0 are considered to discriminate between groups
[54]. Potential pathways affected by induction of the early stage of allergic asthma were antici-
pated by submitting the biomarker candidates to the MetaboAnalyst 3.0 server [55] at: http://
www.metaboanalyst.ca/faces/ModuleView.xhtml

NMR Breathomics and Biomarkers of Feline Early Asthma

PLOS ONE | DOI:10.1371/journal.pone.0164394 October 20, 2016 6 / 21

http://www.inside-r.org/r-doc/stats/princomp
http://www.inside-r.org/r-doc/stats/princomp
http://www.mathworks.com/matlabcentral/fileexchange/47767-libpls-1-95-zip
http://www.mathworks.com/matlabcentral/fileexchange/47767-libpls-1-95-zip
http://www.inside-r.org/packages/cran/mixOmics/docs/plsda
http://www.inside-r.org/packages/cran/mixOmics/docs/plsda
http://www.bdagroup.nl/content/Downloads/software/software.php
http://www.bdagroup.nl/content/Downloads/software/software.php
https://gist.github.com/dgrapov/5166570
http://www.metaboanalyst.ca/faces/ModuleView.xhtml
http://www.metaboanalyst.ca/faces/ModuleView.xhtml


Results

EBC and BALF specimens were collected from a research cohort of 53 cats when healthy, and
six weeks after beginning the protocol of exposing them to Bermuda grass antigen in order to
induce allergic asthma. The most trusted evidence of allergic asthma in cats is the elevation of
eosinophils above 17% in BALF [20]. Before sensitization, the eosinophils averaged 3.9 ± 3.0%
among the 53 animals (S1 Table). By the end of the six week period of sensitization to the aero-
allergen, each cat had developed allergic asthma according to eosinophil counts elevated to an
average of 54.9 ± 23.9% and exceeding 17% in all 53 cats (S1 Table).

Preprocessing of NMR Spectra of EBC for Statistical Comparisons

In pursuit of metabolomics discrimination and biomarkers of early allergic asthma, 1D NMR
spectra were acquired for the EBC specimens of each of the 53 before and after inducing the
asthma. Overall concentrations of solutes in EBC samples varied over a 5-fold range. To
remove the impact of this large variation in overall metabolite concentrations among the sam-
ples, the peak heights in the NMR spectra were normalized by PQN [31] (S1 Fig). Normaliza-
tion is part of the spectral binning (untargeted) strategy [26] and enables statistical comparison
of the proportions that the NMR peaks represent in the samples (in contrast to absolute concen-
trations of selectedmetabolites). PQN suppresses artifacts introduced by normalizing to the
integral [31]. This improves the reliability of statistical comparisons of EBC specimens col-
lected from patients with potential variations in exhaled volume, pulmonary gas exchange, and
ambient humidity in the condensation chamber. The untargeted approach was also motivated
by the biomarkers being unknown during the undertaking and development of the project.
Since scalingmethods influence statistical results [56], the effects of Pareto scaling (Eq 1) and
glog transformation (Eq 2) [42] were compared. Without scaling, the bins with highest intensi-
ties (which tend to have higher variances) dominate the total variances (S2 Fig) and biased the
statistics towards the tallest NMR peaks. Pareto scaling improved the situation but still resulted
in a large range of variance among the bins (S2 Fig). The glog transformation gives greater
weight to small variances that most likely result from small peak heights (S1 and S2 Figs). Pre-
processing with PQN and glog transformation proved essential to discriminating asthma from
health by enabling many spectral regions besides those of concentrated lactate to be considered
by multivariate statistical analyses.

Principal Component Analysis of the NMR Spectra

PCAwas applied to the 106 preprocessedNMR spectra. The first two PCs account for about 38%
of the total variance among the spectra (Fig 1A). The loading plot of PC1 and PC2 identifies
many spectral bins with large variances among the 106 spectra.Metabolites represented by some
of these spectral bins, identified by efforts describedbelow, are labeled on the loading plots (Fig
1A–1C). The 3D plot of scores using the first three PCs does not adequately separate the healthy
and asthmatic states of the cats (Fig 1D). This is due to unsupervisedPCA placing high weights
on the high variance of NMR peaks that are uncorrelated with the disease state of the cats.

Partial Least Squares Improves Separation of Asthma from Health

SupervisedPLS-DA methods were applied in a quest for better separation of asthmatic and
healthy states of the cats and to recognize diagnostic spectral features. Five PLS components
optimized the performance and reliability of the separation of the cats when healthy or asth-
matic, as judged by the decrease of the root mean square error of the prediction (RMSEP) and
the increase of the Q2 value (S3 Fig) from leave-one-out cross-validation. PLS-DA achieved
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much better separation than PCA in the score plot between cats before and after developing
early allergic asthma (Fig 1D and 1E), presumably due to increasedweights on variables that
distinguish the health of the cats.

Multi-level PLS-DA was introduced to paired data sets to separate between-subjectvariation
(e.g., due to genetic background) and within-subject variation (effect of “treatment”) in the
data [35]. The crossover design of our data set (before and after induction of asthma) allowed
us to test if multi-level PLS-DA could improve performance. After removing the between-sub-
ject variation, the loading plot is better dispersed than that of PLS-DA (Fig 1B and 1C). The
score plot frommulti-level PLS-DA better separates the groups, provided that the PQN type of
normalization has been used (Fig 1F).

The spectra were preprocessed further using orthogonal signal correction (OSC) that
removed two OSC components. This filtered out variances between spectra unrelated to sepa-
ration between health and asthma in subsequent PLS-DA and multi-level PLS-DA calculations.
Plots of RMSEP and Q2 generated by leave-one-out cross-validation showed that OSC-PLS-DA
and multi-level PLS-DA perform clearly better in predictions than PLS-DA (S3 Fig). Multi-
level OSC-PLS-DA performed the best of all by these criteria (S3 Fig). OSC-PLS-DA and
multi-level PLS-DA reduced the RMSEP and increasedQ2 more significantly than did PLS-DA
when using the same number of components (S3 Fig). The first three to four components are
enough to optimize the performanceOSC-PLS-DA, which is a simplifying advantage over
PLS-DA (S3 Fig). Two to three components suffice for multi-level OSC-PLS-DA to offer supe-
rior predictive power (S3 Fig).

Fig 1. Comparison of loading and score plots generated from preprocessed NMR spectra of EBC from 53 cats before

(black) and after induction of early allergic asthma (red), using multivariate statistics. Panels A and D show PCA results.

Panels B and E plot PLS-DA results. Panels C and F report multi-level PLS-DA results. Components 1 and 2 are plotted in the

loading plots (A–C). Components 1, 2, and 3 are plotted in the score plots (D–F). Biomarkers that increased in the experimental

asthma are labeled in red. A marker that decreased in the experimental asthma is labeled in blue. A peak too weak to be useful is

labeled in gray. Efforts to identify the markers are described below.

doi:10.1371/journal.pone.0164394.g001
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The score plot fromOSC-PLS-DA using the first three components shows group separation
(Fig 2A) that is much improved over PCA and PLS-DA (Fig 1D and 1E). In the 2D score plot
form OSC-PLS-DA, around three spectra of EBC from asthma are not distinguished from
health (Fig 2A). Multi-level OSC-PLS-DA fully resolves the specimens from heath and asthma
in the score plot (Fig 2C), and needs only two components to do so (S4 Fig). In order to test the
prediction power of the model, two-thirds of the 106 samples were randomly selected as the
training set, and the remaining third was used as the test set. Monte Carlo cross-validation sug-
gests that the OSC-PLS-DA model with four components has very good predictive power with
Q2 = 0.70, contrasting the negative control of random permutation testing with Q2 = -0.07
(Table 1). Cross-validation suggests even better predictive power from the multi-level
OSC-PLS-DAmodel with three components where Q2 = 0.84 and the randomly permuted neg-
ative control has Q2 = -0.15 (Table 1). The prediction for the training set (a third of the

Fig 2. Orthogonal signal-corrected statistical results for the preprocessed spectra of EBC from 53 cats before and after induction of

allergic asthma. Panels (A,B) show results from OSC-PLS-DA. Panels (C,D) show results from multi-level OSC-PLS-DA. (A,C) Scores are

plotted, using the three largest principal components, for specimens collected before (black) and after induction of asthma (red). (B,D) The

variable importance in projection (VIP) plots suggest the spectral features that most distinguish the experimental asthma from the health of the

cats. As VIP values rise above 1.0, they imply increasing diagnostic significance [54]. Biomarkers increased by feline asthma are labeled red. A

marker decreased by the experimental asthma is labeled blue. The weakness of the tentatively assigned NMR peak of malonate (labeled in gray)

diminishes its diagnostic value below that implied by the VIP values.

doi:10.1371/journal.pone.0164394.g002
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specimens) using the OSC-PLS-DA model with four components has sensitivity of 94.1% and
specificity of 94.1% (Table 1). The multi-level OSC-PLS-DA separation of the specimens into
healthy and asthmatic classes is annotated with the names of the cats on a 2D score plot in S4
Fig. The prediction frommulti-level OSC-PLS-DAmodel using three components has sensitiv-
ity of 94.1% and specificity of 100% (Table 1).

NMR Identification of Metabolites in EBC from Cats

Independently from the untargeted statistical process of discriminating asthma from heath, we
sought to identifymore of the metabolites in feline EBC using two strategies. The more infor-
mative strategy proved to be a 13C HSQC spectrumof a relatively concentrated EBC sample
from a healthy cat (Fig 3). Compounds present in the natural abundance 13C HSQC spectrum
were analyzed using the COLMAR 13C HSQCdatabase and server [51] that matches the spec-
trum against the MMCD and HMDB databases of NMR spectra of 555 compounds. Additional
matching was done manually against reference NMR spectra available in HMDB [48, 49] and
MMCD [50] databases. These efforts identified the amino acids alanine, aspartic acid, glycine,
isoleucine, leucine, phenylalanine, serine, threonine, tyrosine, and valine (Fig 3). The 13C
HSQC identified additional metabolically significant carboxylic acids of acetate, lactate, and
pyruvate (Fig 3A and 3B). Also present are the dicarboxylic acids phthalate, hexanedioic acid
(adipate) and either or both of heptanedioic acid (pimelate) and octanedioic acid (suberate),
for which the NMR peaks overlap. Weak peaks for most but not all of the groups of sucrose or
a related sugar are also observed (Fig 3A). An anomeric proton doublet at 5.41 ppm in 1D spec-
tra is consistent with the presence of a sucrose-likemolecule. A weak peakmatching trimethy-
lamine is also observed in the 13C HSQC (not shown). Overall, carboxylic acids predominate in
NMR spectra of feline EBC.

The second strategy to gain more information to identify and confirmmolecules was to
ascertain co-variation among the 106 preprocessed 1D NMR spectra and to plot the co-varia-
tion as a correlation map known as STOCSY [52] (Fig 4). Two or more co-varyingNMR peaks
lying away from the diagonal constitute a ‘spin system’ represented by spots along a row or col-
umn (Fig 4 and S5 Fig), which better define the identity of a molecule than a single peak can.
Comparison of the positions of the correlations in the STOCSY against the database of TOCSY
spectra at the COLMAR server [57] identified niacinamide, benzoate, and another aromatic
metabolite that probably contains a hydroxyphenyl moiety (Fig 4). The STOCSY also con-
firmed phthalate and tyrosine. The aliphatic region of the STOCSY and comparison of spectra
of EBC from cats with the HMDB database identifies isopropanol, propionate, and butyrate

Table 1. Sensitivity, specificity, and testing of predictions from the orthogonal signal-corrected models.

OSC-PLSDA ML-OSC-PLSDA

Prediction (2/3 training, 1/3 testing)

Sensitivity 94.1% 94.1%

Specificity 94.1% 100%

Q2 of Model Testing

Cross-Validation 0.698 ± 0.042 0.844 ± 0.018

Permuted Model (random) -0.068 ± 0.199 -0.151 ± 0.205

P-value 1.25e-62 4.25e-71

RMSEP of Model Testing

Cross-Validation 0.345 ± 0.042 0.248 ± 0.048

Permuted Model (random) 0.607 ± 0.060 0.602 ± 0.053

P-value 3.03e-81 3.04e-116

doi:10.1371/journal.pone.0164394.t001
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(S5 Fig). (The latter’s potential alternative assignment as methyl butanoate appears unlikely
due to the absence from the STOCSY of a correlation to the methyl peak expected in the range
of 3.35 to 3.65 ppm. Nor is there a correlation for isobutyrate.) The STOCSY confirms the
assignments of lactate and hexanedioate (S5 Fig) based on the 13C HSQC (Fig 3A). The buty-
rate is confirmed by TOCSY spectra and multiplet line shapes in 1D NMR spectra. The propio-
nate and isopropanol are also confirmed by 1D spectra. A number of spin systems evident in
the STOCSY (S5 Fig) failed to match the online databases, suggesting the absence from the
databases of multiple compounds present in EBC.

Metabolites and Pathways Perturbed by Allergic Asthma

The VIP plots fromOSC-PLS-DA and multi-level OSC-PLS-DA suggest the spectral features
that best distinguish the EBC of cats in states of health and early allergic asthma. The trends in
the six best markers in the VIP plots were manually inspected in the 106 PQN-normalized
NMR spectra (Table 2). The highest VIP score (Fig 2B and 2D) suggests acetone to be the best
biomarker identified. Acetone in EBC is clearly elevated by early allergic asthma in 74% of the
cats, in whom acetone was scarcely detectable during health (Table 2, Fig 5A). The unidentified

Fig 3. Multiple carboxylic acids are exhaled by cats. Regions of a natural abundance 13C HSQC NMR spectrum of a comparatively

concentrated EBC specimen from a healthy cat are plotted with assignments for (A) the methine (-CH) region, (B) the methylene and

methyl regions, and (C) the aromatic region. The sensitivity-enhanced HSQC was acquired at 25˚C for 17.5 h at 800 MHz with a

cryoprobe. Apodization with a squared sine bell introduced enough line broadening in the 1H dimension to mask multiplet splittings.

doi:10.1371/journal.pone.0164394.g003
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metabolites giving rise to broad, overlapped peaks near 5.8 ppm are elevated by early allergic
asthma in 70% of the cats (Fig 5B). The unidentified, probably hydroxyphenyl-containing aro-
matic metabolite is increased by the experimental asthma in 62% of the cats (Table 2). Isopro-
panol is increased in 51% of the cats when asthmatic, and niacinamide in 43% of them
(Table 2). Leucine levels are not affected by asthma in 73% of the cats, rendering it unreliable
as a marker despite VIP scores> 1. Decreased phthalate upon onset of experimental allergic
asthma in 60% of the cats (Table 2, Fig 5C) suggests its diagnostic value, despite its origins in
environmental sources.

Fig 4. Covalent connectivity of metabolites in feline EBC is suggested by co-variation (STOCSY) among

the 106 preprocessed NMR spectra. The aromatic region is plotted. Off-diagonal spots represent correlations

(r� 0.7) of two chemical groups across the spectra, suggesting that they belong to the same metabolite or

pathway.

doi:10.1371/journal.pone.0164394.g004

Table 2. Biomarkers of early allergic asthma in cats, ranked in descending order of diagnostic value. The relative sizes of the NMR peaks were com-

pared across the 106 probabilistic quotient normalized spectra.

Biomarker Proportion of the 53 cats by relative level of biomarker

Increased in asthma Decreased in asthma Unchanged in asthma

Acetone 73.6% 17% 9.4%

NMR peaks near 5.8 ppm 69.8% 11.3% 18.9%

Hydroxyphenyl-containing 62.3% 1.9% 35.8%

Phthalate 30.2% 60.4% 9.4%

Niacinamide 43.4% 9.4% 47.2%

Isopropanol 50.7% 39.6% 9.4%

doi:10.1371/journal.pone.0164394.t002
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The primarymarker of acetone and secondarymarkers of isopropanol and niacinamide
were submitted to metabolic pathway analysis by MetaboAnalyst 3.0 [55, 58]. A P-value of 0.05
suggests that nicotinate and nicotinamide (niacinamide)metabolism could be perturbed in the
asthmatic animals that exhale more niacinamide. NAD+, NADP+, nicotinamide ribotide, and
nicotinamide riboside each are precursors to nicotinamide. The frequent elevation of acetone
in early allergic asthma in cats implicates synthesis and degradation of ketone bodies with P-
value of 0.007. Inclusion of isopropanol in the pathway analysis implies perturbation of pro-
panoate metabolism by the experimental asthma, with the confidence of a P-value of 0.0006.
Acetone accumulates in the majority of cats with allergic asthma presumably because of active
synthesis of ketone bodies. This can be regarded as belonging to a larger set of pathways of pro-
panoate metabolism. Isopropanol, which appears elevated in half of the cats with experimental
asthma, is an immediate precursor to acetone. Acetoacetate is the better known precursor of
acetone and lies on the pathway from acetyl-CoA,which is central in metabolism.

Discussion

Novel noninvasive means for diagnosing asthma and monitoring its management present a
significant need and opportunity in both pediatric care [15, 18, 19, 59] and veterinary care of
pet cats [16]. Earlier studies reported statistically promising diagnostic potential for human
asthma by collecting EBC and assaying it by NMR for asthma in both children [18] and adults
[23], but did not identify biomarkers. The metabolomics results in the feline asthma model bol-
ster these evidences for EBC being a noninvasively accessible fluid that is measurable by NMR
for diagnostic value for asthma. Increases of acetone, a group of overlapped peaks near
5.8 ppm, and a hydroxyphenyl-like metabolite, as well as decreases of phthalate, have emerged
as the best NMR-detectable markers in EBC of early allergic asthma in cats (Figs 2 and 5 and
Table 2). Increases of isopropanol and niacinamide in EBC are confirmatory of allergic asthma
in part of the cats. These NMR-detected observations complement the volatile organics
detected by GC-MS [25, 60] or electronic nose [61].

Ketosis in Allergic Asthma

Clinically relevant ketones in cats produced during states of decreased glucose utilization or
negative energy balance include acetone, β-hydroxybutyrate, and acetoacetate. In 74% of the
cats of this study, exhaled acetone was increasedwith induction of allergic asthma, implying
increased ketogenesis. The acetone may have been produced locally by microbiota in the lung
or emanated from the circulation of these cats. Acetone is one of the serummetabolites that
was found to be related to the severity of eosinophilic asthma and airflow limitation in adult
humans [62]. In cats, increased serum β-hydroxybutyrate, is characteristic of diabetes [63], dia-
betic ketoacidosis, hepatic lipidosis, and less frequently other conditions such as chronic kidney
disease and hyperthyroidism in which fat is used as an energy source [64, 65]. Ketonemia in
cats is typically associated with a shift from glucose utilization to β-oxidation of fatty acids and
negative energy balance [64, 66]. No evidence of negative energy balance was noted in the 53
cats of this study however.

Fig 5. Changes in the NMR peaks of three biomarkers in several cats before (solid lines) and after

development of allergic asthma (dashed lines). The spectra shown are PQN-normalized. The cats

providing these EBC samples are named at right. (A) Acetone is increased in 74% of cats soon after

developing allergic asthma, suggesting a shift in central energy metabolism. (B) The unidentified collection of

broad, overlapped peaks that increased in 70% of the cats with experimental asthma is plotted. (C) The

doublet NMR peak of phthalate is often decreased in the early allergic asthma. The legend names the cats

sampled, with a suffix of H denoting health and a suffix of A denoting asthma.

doi:10.1371/journal.pone.0164394.g005
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Similarly in humans, increases of acetone in serum accompanied decreases of % forced expi-
ratory volume in 1 s (FEV1%), an important manifestation of asthma [62, 67]. The lower
FEV1% was also correlated with much increased very low and low density lipoprotein (VLDL/
LDL), which is strongly suggestive of altered lipid metabolism [62, 67]. The authors suggested
the increases of acetone and histamine release result from the elevation of VLDL/LDL [67].
This could be related to the increased exhalation of volatile organic compounds in asthma,
which has been attributed to increased peroxidation of lipids [25, 60].

Other Metabolic Biomarkers of Asthma

The decrease of glucose and increase of lactate in serum from adult humans with asthma,
detected by NMR-based metabolomics,may be suggestive of hypoxia [67]. Those changes
could be consistent with the increase of exhaled acetone and apparent ketogenesis in asthmatic
cats. At the early stage of feline allergic asthma, the changes in lactate levels were, however,
highly heterogeneous and without clear trend (not shown). This may be attributable to vari-
ability in the recent exercise and nutrition of the cats. An NMR-detected study of EBC from
adults suggestedmild asthma to decrease short-chain fatty acids, valine, formate, hippurate
and urocanic acid, as well as to increase proline, propionate, isobutyrate, and phenylalanine
[24], Such changes cannot, however, be corroborated in cat EBC upon onset of experimental
asthma. The human study normalized the EBC spectra to their spectral area [24], a common
practice that can introduce artifacts of somemetabolites appearing to decrease [30]. The study
of EBC of adult humans made no mention of an increase of acetone by asthma. These differ-
ences in prospective biomarkers of asthma suggest the need for caution and limits to generaliz-
ing across very different cohorts of asthma patients.

Why was phthalate observed in this feline study? Phthalates are found in many consumer
products. Humans consume phthalate esters introduced to the diet by the processing of foods,
especially food packaging films and meats, which contain di-2-ethylhexylphthalate [68–74].
The dry kibble diet of the cats was highly processed and contained animal fats, i.e. likely
sources of phthalate esters by analogy with the contamination documented in human diets.
Perhaps exhalation could be a route of elimination of phthalates that was impaired by the
experimental asthma in the cats.

The most serious technical impediment to use of EBC from cats is the inherent large variabil-
ity, which appears unrelated to the pulmonary disease state. This stymied PCA from distinguish-
ing early experimental asthma from health. Fortunately, probabilistic quotient normalization
[31] enabled successful discrimination using supervised statistical methods based on PLS-DA.
For the best diagnostic separations, multi-level PLS-DA or preprocessing with orthogonal signal
correction suppressed much variability that interfered in diagnostic classification.With
OSC-PLS-DA, the predictivemodel was simplified to only three to four components and attained
predictive power of 94% sensitivity and 94% specificity (Table 1). Multi-level suppression of
between-subjectvariability [35] combined in novel fashion with orthogonal signal correction
(Fig 2C) notably increased the specificity in predicting asthma to 100% (Table 1). Consequently,
the combination of OSC and multi-level enhancements to PLS-DA appears promising for com-
parative metabolomic and clinical research studies where specimens can be assayed from each
subject before and after a treatment or change in clinical status.

Conclusions

After preprocessing of NMR spectrawith probabilistic quotient normalization and glog transfor-
mation, OSC-PLS-DA and multi-level PLS-DA overcame confounding variability among EBC
samples to distinguish asthma from health noninvasively in a cohort of research cats. The
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predictive ability of the OSC-PLS-DAmodel is promising as both the sensitivity and specificity are
94%. The promising biomarkers of allergic asthma in cats to emerge in their EBC are increases in
acetone, unidentifiedmetabolite(s) with broad NMR peaks near 5.8 ppm, and an aromatic com-
pound probably containing a hydroxyphenyl group. Also promising is the decrease of phthalate in
60% of the cats with asthma. The noninvasive, untargeted approach utilizing properly prepro-
cessedNMR spectra of EBC interpreted with OSC-PLS-DA appears worth further evaluation for
translational research. Reliable differential diagnosis of early asthma in children is especially
needed.

Supporting Information

S1 Fig. Effects of preprocessing steps on spectraof EBC collectedbefore and after induction
of early allergic asthma in a cat. (A) The original spectra are plotted. (B) The spectra are plot-
ted after probabilistic quotient normalization (PQN). (C) The PQN-normalized spectra were
segmented into bins of 0.02 ppm width and plotted. (D) The binned spectra were scaled by glog
transformation.
(TIF)

S2 Fig. Evaluation of scalingmethods for improving prospects for multivariate statistics by
distributing variancesmore equitably among peaks of the NMR spectra. (A) The variance
of each bin is plotted against the rankedmean of the data before (black) and after either Pareto
scaling (red) or glog transformation (blue). Glog transformation redistributes the variance
among the NMR spectra of feline EBCmore widely and evenly than does Pareto scaling. (B)
Calibration of the key λ parameter of glog transformation (Eq 2) is shown. λ was optimized
using the Maximum likelihood criterion and the Nelder-Mead minimization algorithm in
MATLAB as previously describedby Parsons et al. (2007). SSE refers to the sum of the squared
errors. The optimized λ = 7.183X1012 that minimizes SSE was used in spectral preprocessing.
(TIF)

S3 Fig. RMSEP (A) and Q2 plots (B) from leave-one-out cross-validation from PLS-DA
(black squares), OSC-PLS-DA (blue triangles),ML-PLS-DA (red circles), and
ML-OSC-PLSDA (pink triangles). The orthogonal signal correction (OSC) decreases the num-
ber of components needed.
(TIF)

S4 Fig. Score plot frommulti-levelOSC-PLS-DA that includes names of the 53 cats. This
corresponds to Fig 2C, but plots only components 1 and 2. Health is symbolized by black
squares and a suffix of H. Asthma is symbolized by red circles and a suffix of A.
(TIF)

S5 Fig. Aliphatic region of the STOCSY correlationmap among EBC spectra.Spin systems
of some recognizablemetabolites are labeled.
(TIF)

S1 Table. Eosinophil counts of 53 cats before and after induction of experimental asthma.
(DOCX)

Acknowledgments

We are grateful to Richard H. Barton for recommending the PQNmethod and for comments
on the manuscript.

NMR Breathomics and Biomarkers of Feline Early Asthma

PLOS ONE | DOI:10.1371/journal.pone.0164394 October 20, 2016 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164394.s006


Author Contributions

Conceptualization:CRR SRV.

Data curation:YGF CRR SRV.

Formal analysis:YGF SRV.

Funding acquisition:CRR SRV.

Investigation: YGF MF CHCHR CRR SRV.

Methodology:YGF SRV CRR.

Project administration: SRV CRR.

Resources:CRR CHCHR SRV YGF.

Software:YGF.

Supervision:SRV CRR.

Validation: YGF SRV CRR.

Visualization: YGF SRV.

Writing – original draft: SRV YGF.

Writing – review& editing:CRR SRV YGF CHCHR.

References
1. Busse WW, Camargo CAJ, Boushey HA, Evans D, Foggs MB, Janson SL, et al. THIRD EXPERT

PANEL ON THE DIAGNOSIS AND MANAGEMENT OF ASTHMA: National Heart, Lung, and Blood

Institute; 2007 [cited 2015]. Available from: http://www.nhlbi.nih.gov/health-pro/guidelines/current/

asthma-guidelines/full-report.

2. Prevention CfDCa. Vital signs: asthma prevalence, disease characteristics, and self-management

education: United States, 2001–2009. MMWR Morb Mortal Wkly Rep. 2011; 60(17):547–52. PMID:

21544044

3. Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002–2007. J Allergy Clin

Immunol. 2011; 127(1):145–52. doi: 10.1016/j.jaci.2010.10.020 PMID: 21211649

4. Cohn LA, DeClue AE, Cohen RL, Reinero CR. Effects of fluticasone propionate dosage in an experi-

mental model of feline asthma. Journal of Feline Medicine and Surgery. 2010; 12(2):91–6. doi: 10.

1016/j.jfms.2009.05.024 PMID: 19647461

5. Padrid P. Chronic bronchitis and asthma in cats. In: Bonagura J, Twedt D, editors. Current veterinary

therapy. XIV. Philadelphia: WB Saunders; 2009. p. 650–8.

6. Norris Reinero CR, Decile KC, Berghaus RD, Williams KJ, Leutenegger CM, Walby WF, et al. An

experimental model of allergic asthma in cats sensitized to house dust mite or bermuda grass allergen.

Int Arch Allergy Immunol. 2004; 135(2):117–31. doi: 10.1159/000080654 PMID: 15345910

7. Kirschvink N, Leemans J, Delvaux F, Snaps F, Clercx C, Gustin P. Functional, inflammatory and mor-

phological characterisation of a cat model of allergic airway inflammation. Vet J. 2007; 174(3):541–53.

doi: 10.1016/j.tvjl.2006.11.004 PMID: 17306576

8. Padrid P, Snook S, Finucane T, Shiue P, Cozzi P, Solway J, et al. Persistent airway hyperresponsive-

ness and histologic alterations after chronic antigen challenge in cats. Am J Respir Crit Care Med.

1995; 151(1):184–93. Epub 1995/01/01. PMID: 7812551 doi: 10.1164/ajrccm.151.1.7812551

9. Grobman M, Graham A, Outi H, Dodam JR, Reinero CR. Chronic neurokinin-1 receptor antagonism

fails to ameliorate clinical signs, airway hyper-responsiveness or airway eosinophilia in an experimen-

tal model of feline asthma. J Feline Med Surg. 2016; 18(4):273–9. doi: 10.1177/1098612X15581406

PMID: 25964466

10. Lee-Fowler TM, Guntur V, Dodam J, Cohn LA, DeClue AE, Reinero CR. The Tyrosine Kinase Inhibitor

Masitinib Blunts Airway Inflammation and Improves Associated Lung Mechanics in a Feline Model of

NMR Breathomics and Biomarkers of Feline Early Asthma

PLOS ONE | DOI:10.1371/journal.pone.0164394 October 20, 2016 17 / 21

http://www.nhlbi.nih.gov/health-pro/guidelines/current/asthma-guidelines/full-report
http://www.nhlbi.nih.gov/health-pro/guidelines/current/asthma-guidelines/full-report
http://www.ncbi.nlm.nih.gov/pubmed/21544044
http://dx.doi.org/10.1016/j.jaci.2010.10.020
http://www.ncbi.nlm.nih.gov/pubmed/21211649
http://dx.doi.org/10.1016/j.jfms.2009.05.024
http://dx.doi.org/10.1016/j.jfms.2009.05.024
http://www.ncbi.nlm.nih.gov/pubmed/19647461
http://dx.doi.org/10.1159/000080654
http://www.ncbi.nlm.nih.gov/pubmed/15345910
http://dx.doi.org/10.1016/j.tvjl.2006.11.004
http://www.ncbi.nlm.nih.gov/pubmed/17306576
http://www.ncbi.nlm.nih.gov/pubmed/7812551
http://dx.doi.org/10.1164/ajrccm.151.1.7812551
http://dx.doi.org/10.1177/1098612X15581406
http://www.ncbi.nlm.nih.gov/pubmed/25964466


Chronic Allergic Asthma. Int Arch Allergy Immunol. 2012; 158(4):369–74. doi: 10.1159/000335122

PMID: 22487554

11. Reinero C, Lee-Fowler T, Chang CH, Cohn L, Declue A. Beneficial cross-protection of allergen-specific

immunotherapy on airway eosinophilia using unrelated or a partial repertoire of allergen(s) implicated

in experimental feline asthma. Vet J. 2012; 192(3):412–6. doi: 10.1016/j.tvjl.2011.07.003 PMID:

21937250

12. Reinero CR, Delgado C, Spinka C, DeClue AE, Dhand R. Enantiomer-specific effects of albuterol on

airway inflammation in healthy and asthmatic cats. Int Arch Allergy Immunol. 2009; 150(1):43–50. doi:

10.1159/000210379 PMID: 19339801

13. Schooley EK, McGee Turner JB, Jiji RD, Spinka CM, Reinero CR. Effects of cyproheptadine and cetiri-

zine on eosinophilic airway inflammation in cats with experimentally induced asthma. Am J Vet Res.

2007; 68(11):1265–71. doi: 10.2460/ajvr.68.11.1265 PMID: 17975984

14. Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Cohn LA, et al. Long-term evaluation of mesen-

chymal stem cell therapy in a feline model of chronic allergic asthma. Clin Exp Allergy. 2014; 44

(12):1546–57. doi: 10.1111/cea.12411 PMID: 25220646

15. Bacharier LB, Guilbert TW. Diagnosis and management of early asthma in preschool-aged children. J

Allergy Clin Immunol. 2012; 130(2):287–96; quiz 97–8. doi: 10.1016/j.jaci.2012.04.025 PMID:

22664162

16. Trzil JE, Reinero CR. Update on feline asthma. Vet Clin North Am Small Anim Pract. 2014; 44(1):91–

105. doi: 10.1016/j.cvsm.2013.08.006 PMID: 24268335

17. Saude EJ, Skappak CD, Regush S, Cook K, Ben-Zvi A, Becker A, et al. Metabolomic profiling of

asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol.

2011; 127(3):757–64 e1-6. doi: 10.1016/j.jaci.2010.12.1077 PMID: 21377043

18. Carraro S, Rezzi S, Reniero F, Heberger K, Giordano G, Zanconato S, et al. Metabolomics applied to

exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007; 175(10):986–90.

Epub 2007/02/17. doi: 10.1164/rccm.200606-769OC PMID: 17303796

19. Greenwald R, Fitzpatrick AM, Gaston B, Marozkina NV, Erzurum S, Teague WG. Breath formate is a

marker of airway S-nitrosothiol depletion in severe asthma. PLoS One. 2010; 5(7):e11919. doi: 10.

1371/journal.pone.0011919 PMID: 20689836

20. Nafe LA, DeClue AE, Lee-Fowler TM, Eberhardt JM, Reinero CR. Evaluation of biomarkers in bronch-

oalveolar lavage fluid for discrimination between asthma and chronic bronchitis in cats. Am J Vet Res.

2010; 71(5):583–91. doi: 10.2460/ajvr.71.5.583 PMID: 20433386

21. Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabo-

nomics and metabolomics. Annu Rev Anal Chem (Palo Alto Calif). 2008; 1(1):45–69. doi: 10.1146/

annurev.anchem.1.031207.113026 PMID: 20636074

22. Santini G, Mores N, Penas A, Capuano R, Mondino C, Trove A, et al. Electronic Nose and Exhaled

Breath NMR-based Metabolomics Applications in Airways Disease. Curr Top Med Chem. 2016; 16

(14):1610–30. doi: 10.2174/1568026616666151223113540 PMID: 26693732

23. Ibrahim B, Marsden P, Smith JA, Custovic A, Nilsson M, Fowler SJ. Breath metabolomic profiling by

nuclear magnetic resonance spectroscopy in asthma. Allergy. 2013; 68(8):1050–6. doi: 10.1111/all.

12211 PMID: 23888905

24. Motta A, Paris D, D’Amato M, Melck D, Calabrese C, Vitale C, et al. NMR metabolomic analysis of

exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Res. 2014;

13(12):6107–20. doi: 10.1021/pr5010407 PMID: 25393672

25. Ibrahim B, Basanta M, Cadden P, Singh D, Douce D, Woodcock A, et al. Non-invasive phenotyping

using exhaled volatile organic compounds in asthma. Thorax. 2011; 66(9):804–9. doi: 10.1136/thx.

2010.156695 PMID: 21749985

26. Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical mag-

netic resonance. Prog Nucl Magn Reson Spectrosc. 2001; 39(1):1–40.

27. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of

1H NMR metabolomics data. Anal Chem. 2006; 78(13):4430–42. doi: 10.1021/ac060209g PMID:

16808451

28. Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, et al. Accurate, fully-automated

NMR spectral profiling for metabolomics. PLoS One. 2015; 10(5):e0124219. doi: 10.1371/journal.

pone.0124219 PMID: 26017271

29. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and

transformations: improving the biological information content of metabolomics data. BMC Genomics.

2006; 7:142. doi: 10.1186/1471-2164-7-142 PMID: 16762068

NMR Breathomics and Biomarkers of Feline Early Asthma

PLOS ONE | DOI:10.1371/journal.pone.0164394 October 20, 2016 18 / 21

http://dx.doi.org/10.1159/000335122
http://www.ncbi.nlm.nih.gov/pubmed/22487554
http://dx.doi.org/10.1016/j.tvjl.2011.07.003
http://www.ncbi.nlm.nih.gov/pubmed/21937250
http://dx.doi.org/10.1159/000210379
http://www.ncbi.nlm.nih.gov/pubmed/19339801
http://dx.doi.org/10.2460/ajvr.68.11.1265
http://www.ncbi.nlm.nih.gov/pubmed/17975984
http://dx.doi.org/10.1111/cea.12411
http://www.ncbi.nlm.nih.gov/pubmed/25220646
http://dx.doi.org/10.1016/j.jaci.2012.04.025
http://www.ncbi.nlm.nih.gov/pubmed/22664162
http://dx.doi.org/10.1016/j.cvsm.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/24268335
http://dx.doi.org/10.1016/j.jaci.2010.12.1077
http://www.ncbi.nlm.nih.gov/pubmed/21377043
http://dx.doi.org/10.1164/rccm.200606-769OC
http://www.ncbi.nlm.nih.gov/pubmed/17303796
http://dx.doi.org/10.1371/journal.pone.0011919
http://dx.doi.org/10.1371/journal.pone.0011919
http://www.ncbi.nlm.nih.gov/pubmed/20689836
http://dx.doi.org/10.2460/ajvr.71.5.583
http://www.ncbi.nlm.nih.gov/pubmed/20433386
http://dx.doi.org/10.1146/annurev.anchem.1.031207.113026
http://dx.doi.org/10.1146/annurev.anchem.1.031207.113026
http://www.ncbi.nlm.nih.gov/pubmed/20636074
http://dx.doi.org/10.2174/1568026616666151223113540
http://www.ncbi.nlm.nih.gov/pubmed/26693732
http://dx.doi.org/10.1111/all.12211
http://dx.doi.org/10.1111/all.12211
http://www.ncbi.nlm.nih.gov/pubmed/23888905
http://dx.doi.org/10.1021/pr5010407
http://www.ncbi.nlm.nih.gov/pubmed/25393672
http://dx.doi.org/10.1136/thx.2010.156695
http://dx.doi.org/10.1136/thx.2010.156695
http://www.ncbi.nlm.nih.gov/pubmed/21749985
http://dx.doi.org/10.1021/ac060209g
http://www.ncbi.nlm.nih.gov/pubmed/16808451
http://dx.doi.org/10.1371/journal.pone.0124219
http://dx.doi.org/10.1371/journal.pone.0124219
http://www.ncbi.nlm.nih.gov/pubmed/26017271
http://dx.doi.org/10.1186/1471-2164-7-142
http://www.ncbi.nlm.nih.gov/pubmed/16762068


30. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC. Scaling and normalization effects in NMR

spectroscopic metabonomic data sets. Anal Chem. 2006; 78(7):2262–7. doi: 10.1021/ac0519312

PMID: 16579606

31. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to

account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem.

2006; 78(13):4281–90. doi: 10.1021/ac051632c PMID: 16808434

32. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007; 6(2):469–

79. Epub 2007/02/03. doi: 10.1021/pr060594q PMID: 17269704

33. Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: a practical guide: Wiley-Interscience; 1998.

34. Adams MJ. Chemometrics in Analytical Spectroscopy. Cambridge: Royal Society of Chemistry; 2004.

35. van Velzen EJ, Westerhuis JA, van Duynhoven JP, van Dorsten FA, Hoefsloot HC, Jacobs DM, et al.

Multilevel data analysis of a crossover designed human nutritional intervention study. J Proteome Res.

2008; 7(10):4483–91. doi: 10.1021/pr800145j PMID: 18754629
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