
RESEARCH ARTICLE Open Access

A scoping review of studies using
observational data to optimise dynamic
treatment regimens
Robert K. Mahar1,2,3* , Myra B. McGuinness1,4 , Bibhas Chakraborty5,6,7 , John B. Carlin1,8 ,
Maarten J. IJzerman2,3,9† and Julie A. Simpson1†

Abstract

Background: Dynamic treatment regimens (DTRs) formalise the multi-stage and dynamic decision problems that
clinicians often face when treating chronic or progressive medical conditions. Compared to randomised controlled
trials, using observational data to optimise DTRs may allow a wider range of treatments to be evaluated at a lower
cost. This review aimed to provide an overview of how DTRs are optimised with observational data in practice.

Methods: Using the PubMed database, a scoping review of studies in which DTRs were optimised using
observational data was performed in October 2020. Data extracted from eligible articles included target medical
condition, source and type of data, statistical methods, and translational relevance of the included studies.

Results: From 209 PubMed abstracts, 37 full-text articles were identified, and a further 26 were screened from the
reference lists, totalling 63 articles for inclusion in a narrative data synthesis. Observational DTR models are a recent
development and their application has been concentrated in a few medical areas, primarily HIV/AIDS (27, 43%),
followed by cancer (8, 13%), and diabetes (6, 10%). There was substantial variation in the scope, intent, complexity,
and quality between the included studies. Statistical methods that were used included inverse-probability
weighting (26, 41%), the parametric G-formula (16, 25%), Q-learning (10, 16%), G-estimation (4, 6%), targeted
maximum likelihood/minimum loss-based estimation (4, 6%), regret regression (3, 5%), and other less common
approaches (10, 16%). Notably, studies that were primarily intended to address real-world clinical questions (18,
29%) tended to use inverse-probability weighting and the parametric G-formula, relatively well-established
methods, along with a large amount of data. Studies focused on methodological developments (45, 71%) tended
to be more complicated and included a demonstrative real-world application only.
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Conclusions: As chronic and progressive conditions become more common, the need will grow for personalised
treatments and methods to estimate the effects of DTRs. Observational DTR studies will be necessary, but so far
their use to inform clinical practice has been limited. Focusing on simple DTRs, collecting large and rich clinical
datasets, and fostering tight partnerships between content experts and data analysts may result in more clinically
relevant observational DTR studies.

Keywords: Dynamic treatment regimens, Adaptive treatment policies, Sequential multiple assignment randomised
trials, Observational data, Causal inference, Directed acyclic graphs

Background
The medical needs of patients with chronic or progres-
sive conditions often evolve over time and the treat-
ments administered to these patients need to be
regularly reviewed. Treatment decisions may depend on
the dynamics of a number of factors or require continual
switching between different treatments. Therefore, mak-
ing optimal treatment decisions requires information
across many time intervals. Dynamic treatment regimens
(or regimes) (DTRs) formalise the multi-stage and dy-
namic decision problems clinicians often face when
treating chronic or progressive conditions [1–5]. A DTR
can be thought of as a set of rules describing how treat-
ment could be assigned in response to some dynamically
changing factor, for example, treatment response.
A DTR can be defined using decision rules, functions

that map each patient’s accumulated clinical and treat-
ment history to the subsequent treatment at each treat-
ment decision point. These rules are typically derived
from parametric models. An optimal decision rule is one
that optimises the long-term value of the decision, for
example, expected overall survival. The values of the de-
cision rules are estimated using statistical methods that
can account for time-varying treatment effect mediation
and confounding. In order for the estimated treatment
effects that inform the decision rules to have a causal in-
terpretation, a number of conditions must be met, which
are summarised in the next section.
One real-world example of a decision problem that

has been framed and optimised as a DTR is ‘when to
begin’ antiretroviral treatment in patients with human
immune-deficiency virus (HIV), which is often based on
their CD4 count history [6, 7]. The decision to start a
patient’s treatment may not be appropriate if it is based
only on their most recent clinical history, ignoring
whether their CD4 count has been stable or not. An-
other real-world example of a DTR is ‘how to modify’
prophylaxis for graft-versus-host disease following stem-
cell transplantation for blood cancer, when a patient
may receive either the standard or an experimental
prophylaxis [8, 9]. If the patient subsequently develops
acute graft-versus-host disease (i.e., the allocated
prophylactic treatment has not been effective) they may

then receive either a standard or an experimental salvage
treatment. The selection of treatment at each stage is
based on a suite of time-varying disease characteristics.
Optimising DTRs relies on estimating the value of the

decision rules using data from either sequential multiple
assignment randomised trials (SMARTs) [1, 10–12],
which are designed to randomise and re-randomise par-
ticipants to different treatments over time conditional
on their observed outcomes, or from observational
sources such as cohort studies, electronic health records
(EHRs), and clinical registries. Estimating optimal DTRs
using SMART data provides the highest-quality evidence
of regimen efficacy by reducing confounding bias
through randomisation. However, SMARTs are more
complex to design and implement than standard trial
designs and therefore are resource intensive.
A potentially less costly and more operationally feas-

ible alternative is to emulate a ‘target trial’ using existing
observational data [6, 13, 14]. However, without treat-
ment randomisation, the causal relationships between
the covariates, treatments, outcomes must be carefully
considered, and in particular, it is necessary that all
relevant confounders are measured to obtain unbiased
estimates of the causal effects of interest [1, 14]. Never-
theless, observational data has several potential advan-
tages over trial data. For example, without rigid
inclusion criteria and control protocols, observational
data may better reflect the heterogeneity of both patient
populations and treatment implementation, which may
allow a broader range of treatment regimens to be evalu-
ated and therefore represent actual treatment practice
better than trial data. Some authors suggest that optimal
DTR-based treatment decisions should be estimated
using observational data, where possible, before proceed-
ing to the relevant SMART design stage [1, 15]. Indeed
for some dynamic treatment regimens, particularly for
‘when to treat’ regimens that involve delayed treatment,
it may be neither feasible nor ethical to conduct a rando-
mised trial.
The effective use of observational data to evaluate dy-

namic treatment decisions has the potential to provide
insight into the management of chronic or progressive
conditions, yet it is unclear to what extent it is done in
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practice. This study provides a scoping review [16] to
systematically map how observational data have been
used to estimate the value of DTRs in practice with the
following specific aims:

▪ To summarise what medical areas, participant
numbers, types of outcomes, and statistical methods
have been used in real-world practice.
▪ To describe whether key methodological aspects of
the real-world applications were considered.
▪ To ascertain whether the real-world application was
designed more to inform statistical or clinical practice.

The overarching aim was to identify whether any par-
ticular domains dominate the literature and why this
may be so, in order to understand the potential for evi-
dence regarding DTRs to be developed using observa-
tional data, and to identify existing gaps in the
methodological quality of published studies.
The remainder of this article proceeds as follows. We

first provide terminology and describe a DTR using a
simple two-stage example, selected modelling and esti-
mation approaches for DTR-based decision rules, and
the necessary conditions for causal inference. We follow
by describing the methods and results of the scoping re-
view to explore the context, methods, and reporting of
studies which have modelled DTRs using observational
data. We follow with a summary of the results, and

general discussion and concluding summary of the key
concepts.

Dynamic treatment regimens
Concept and notation
A simple two-stage, two-treatment scenario that can be
formalised using DTRs can be described by the following
notation:

O1→A1→O2→A2→Y

where Ok describes the set of prognostic factors available
for treatment decision, Ak, and the terminal outcome, Y,
and k ∈ K = {1, 2} indexes the first and second treatment
stages. The accumulated history, Hk, includes all covari-
ates and treatments preceding Ak. Therefore, in our sim-
ple example, H1 =O1 and H2 = {O1, A1,O2}. We follow
standard convention and denote random variables and
their observed values using upper- and lower-case let-
ters, respectively. DTR models define decision rules dk
as functions that map a patient’s history (Hk) to a certain
course of action (Ak): dk(Hk)→ Ak. Note that a DTR can
be generalised to more than two stages and treatments,
multiple covariates with different data types, and differ-
ent outcome types [1]. In Fig. 1, we present a decision
tree depicting many possible realised DTRs, where each
Ok and Ak are binary variables.

Fig. 1 A decision tree containing several possible dynamic treatment regimens (DTRs). Shown are binary covariates (O1, O2), binary treatments
(A1, A2), and a terminal outcome (Y) that is a function of patient history. The decisions that map the accumulated patient history to a treatment
are represented as the functions d1(.) and d2(.)
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The same two-stage scenario presented in Fig. 1 may
also be described using a causal diagram or directed
acyclic graph (DAG) (see Fig. 2). Causal diagrams are a
graphical and intuitive way of encoding the causal as-
sumptions that are made when considering how to ana-
lyse a problem [14, 17, 18].

Modelling dynamic treatment regimens
A suboptimal approach to estimating the value of the
dynamic treatment decisions in the example two-stage
scenario might be to specify an ‘all-at-once’ regression
model for the outcome Y as a function of all the covari-
ates, treatments, and various interactions among them,
and to find the treatments a1 and a2 that optimise the
expected value of Y (perhaps conditional on values of o1
and o2) [8]. As appealingly simple as the ‘all-at-once’ ap-
proach may seem, it may result in poor treatment deci-
sions because the causal effects of treatment are
improperly estimated for the following reasons:

▪ The effect of A1 on Y can be decomposed into direct
and indirect effects. If O2 is a ‘child’ of A1 (i.e., the
value of O2 is influenced by A1), including O2 (a
treatment-outcome confounder) as a model covariate
blocks the indirect effect of A1 on Y, as seen in Fig. 3,
attenuating the estimated treatment effect of A1. In the
language of causal inference, we say that O2 mediates
the effect of A1 on Y.
▪ Even if O2 were not a mediator of A1, or treatment
(A2)-outcome (Y) confounder, including O2 as a model
covariate could induce collider stratification bias in the
presence of unmeasured covariate (O2)-outcome
confounders (Y) as seen in Fig. 4.

Because standard regression methods fail to account
for the complexities inherent in DTRs, more sophisti-
cated statistical methods are required. The exact meth-
odology employed often depends on, and is tailored to,
the clinical question of interest. The typical approach is
to specify and estimate either a dynamic conditional
model or a dynamic marginal structural model (MSM).
A dynamic conditional model defines the average effects

of treatments conditional on patient history as target pa-
rameters for estimation. The estimated effects can there-
fore be considered to be personalised in that it is defined
only for patients who have the same histories. To account
for the effect mediation and biases depicted in Figs. 3 and
4, dynamic conditional models typically specify the treat-
ment effects on a stage-by-stage basis. Estimating the
treatment effects in dynamic conditional models often
proceeds using Q-learning [19, 20], the parametric G-
formula [1, 14, 21], or G-estimation [3, 22].
A dynamic MSM defines the average treatment effects

of following different regimens as the target parameters
for estimation. Key to this approach is identifying that
many individuals will have histories that are, at least in
part, compatible with several regimens. Approaches that
use dynamic MSMs rely on creating, for each candidate
regimen, replicates of the original data where individuals
are artificially censored if they no longer follow the can-
didate regimen and aim to estimate the treatment effect
of the candidate regimen while balancing prognostic fac-
tors among the treatment groups using inverse probabil-
ity weighting (IPW) [1, 4, 14, 23, 24].
Although estimation methods such as Q-learning or

IPW typically use relatively simple generalised linear
models (for example linear and logistic regression), other
estimation methods using the parametric G-formula or
G-estimation may require complex estimating equations
and/or large sets of models. In all cases, estimation per-
formance can be sensitive to model misspecification,
particularly when using the parametric G-formula which
tends to use many interrelated models [1]. Although bias
can be minimised through the use of ‘doubly-robust’ es-
timators—which produce unbiased estimates if at least
one of the treatment or outcome submodels is correctly
specified—there are efficiency gains to be made when
both submodels are correctly specified [1]. Therefore,
principled model selection, evaluation, and sensitivity
analysis methods are highly recommended to mitigate
the risk of model misspecification. Furthermore, as with
most longitudinal data, missingness is often an add-
itional source of bias, and principled approaches to han-
dle missing data should also be used.

Causal assumptions
Several conditions must be met for the estimated DTR
effects to have a causal interpretation [1, 14]. This is true

Fig. 2 A dynamic treatment regimen (DTR) causal diagram.
Covariates (O1, O2), treatments (A1, A2), and the outcome (Y) are each
represented by a node with causal relationships shown as directed
edges (arrows). Note that the edges are directional and it not
possible for a node to cycle back to itself along the graph’s edges,
hence it is a directed acyclic graph
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whether using data from studies with a SMART design
or observational data. Broadly, the key necessary condi-
tions for causal inference can be summarised as ex-
changeability, consistency, and positivity. These
conditions require that there are no unmeasured con-
founders (exchangeability), well-defined treatments
(consistency), and that the probability of receiving each
treatment regimen of interest is greater than zero for
each patient included in the analysis (positivity). A
complete and rigorous description of these assumptions
is beyond the scope of this review, however Hernán and
Robins [14] provide an accessible explanation of these
conditions, and Chakraborty and Moodie [1] formalise
each condition in the context of DTRs.

Methods
Protocol
The review protocol was developed by RKM and JAS in
consultation with the co-authors. The original version of
the protocol, along with the changes to the protocol, is
available as an additional file (see Additional file 1).

Eligibility criteria
To be included in the review, studies must have used
statistical methods to estimate the value of DTR decision

rules from observational data, either as a demonstration
of the methodology or to provide real-world evidence to
support specific treatment policies. Statistical methods
were defined in this context as any method that fits a
parametric, semi-parametric, or non-parametric statis-
tical model to data using methods such as maximum
likelihood estimation or estimating equations. This def-
inition was broad enough to encompass most conceiv-
able data analytical methods, including methods that are
traditionally less aligned with biostatistical and epi-
demiological fields (for example, methods using artificial
intelligence). Observational data were defined as any
non-simulated data where the treatments of interest
were not randomly allocated. No restriction was placed
on study time period, publication type, statistical
method, outcome types, sample size, country of origin,
or participant characteristics.
Studies were excluded from this review if they met any

of the following criteria:

▪ only analysed data from experimental studies where
the treatment/s were randomised (including SMART
designs and other randomised trials),
▪ analysed simulated data or provided theoretical
discussion only,

Fig. 3 Causal diagram demonstrating effect mediation. Note: a Indirect effects of A1→ Y (dashed) mediated by conditioning on O2 (boxed). b
Direct effect of A1→ Y (dotted) is not affected

Fig. 4 Causal diagram demonstrating collider stratification bias. Note: a O2 does not mediate O1, and unmeasured confounders (U) and O1 are
unrelated. b conditioning on O2 (boxed) may induce collider stratification bias (dashed) between A1 and U

Mahar et al. BMC Medical Research Methodology           (2021) 21:39 Page 5 of 13



▪ provided a commentary, review, opinion, protocol, or
description only,
▪ either the abstract or full-text were not available,
▪ analysed data from non-human subjects only,
▪ studies were not available in the English language, or
▪ did not use statistical methods to evaluate a DTR
using observational data, for example provided only a
graphical or textual description of the data.

Information sources
To identify potentially relevant studies the electronic
bibliographic database PubMed was searched on 8 Octo-
ber 2020. The reference lists of the included articles
identified from the PubMed database were manually
screened to identify additional relevant studies. Grey lit-
erature, unindexed journals, and trial registries were not
searched.

Search strategy
The search strategy was developed by RM and JAS, with
input from all co-authors, and in consultation with the
University of Melbourne Library. The electronic
PubMed search strategy is described in Table 1.

Selection of sources of evidence
RKM performed the search of the PubMed database,
screened the titles and abstracts returned by the search,
and reviewed the full text of all potentially eligible stud-
ies that satisfied the selection criteria for eligibility.
Excluded studies were categorised by primary reason for
exclusion. Titles and abstracts from each bibliography
item of the included PubMed articles were also screened
(not including books/book chapters, clinical guidelines,
in proceedings, manuals/technical reports, software,
posters, in press/submitted, theses, trial registries, or
working papers), and all studies that satisfied the selec-
tion criteria for eligibility were included in the data
synthesis.

Data items
The data extracted from each article included refer-
ence details, study characteristics, data type, statistical
methods, and whether the study was primarily
intended to inform statistical or clinical practice (as
defined below, see Table 2). The data extraction items
were initially piloted by RKM and JAS for a subset of
six articles and refined in consultation with the co-
authors. Note that a methodological study typically
aims to extend an existing method, present a novel
method, or demonstrate the application of an existing
method in a novel way. These studies typically involve
a precise mathematical description of the method
under investigation, demonstration of the statistical
properties of the method either analytically or using
computer simulation, and often include a highly sty-
lised application of the method with real-world data.
In contrast, a clinical study applying a statistical
method to investigate a clinical research question typ-
ically involves collecting real-world data (either pro-
spectively or retrospectivity), applying a validated
statistical method to the data to address the clinical
research question, and interpreting the results in a
way that they might be used to inform either clinical
practice or future clinical research. Although the
boundary between clinical and methodological studies
is at times unclear, in general, the category a study
belongs to can be clearly identified by its aims, jour-
nal, mathematical density, and tone of the discussion.

Data extraction
Data on the fields listed in Table 1 were extracted using
a standardised form (in Microsoft Excel) for each article
by RKM and confirmed by a second reviewer (JAS or
MM) for approximately 10% of the included articles.
Any differences in extracted data fields were resolved by
consensus between RKM and the second reviewer.

Table 1 PubMed search terms

Search Term Number Search Term

1 dynamic treatment*[tiab]

2 adaptive treatment*[tiab]

3 dynamic intervention*[tiab]

4 adaptive intervention*[tiab]

5 treatment policy [tiab] OR treatment policies [tiab]

6 adapt*[tiab] OR dynamic*[tiab] OR regime*[tiab]

7 register [tiab] OR registry [tiab] OR registries [tiab] OR observational [tiab] OR cohort [tiab]
OR non-experimental*[tiab] OR real-world [tiab] OR database [tiab] OR electronic health
record*[tiab] OR electronic medical record*[tiab] OR non-randomised [tiab] OR panel [tiab]
OR cross-sectional [tiab] OR longitudinal [tiab] OR case series [tiab])

8 (1 OR 2 OR 3 OR 4 OR (5 AND 6)) AND 7

Note: [tiab] indicates that the search was within article titles and abstracts only
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Synthesis of results
The extracted data was explored using narrative synthe-
sis and summarised using descriptive statistics. Studies
were compared between subgroups defined by the pri-
mary focus of the study (clinical vs methodological). All
data management and analysis was performed using the
R programming language [25].

Results
The initial search returned 209 studies. Of these, 156
(75%) were excluded following screening of titles and ab-
stracts. Upon reviewing the full-texts for eligibility, 37
studies were included from the PubMed database and a
further 26 studies were identified from the PubMed art-
icle reference lists. In total, 63 studies were included in
the data synthesis [3, 4, 6–9, 24, 26–81]. The flow chart
of study selection is presented in Fig. 5. A summary of
the data synthesis is provided in Table 3, and the ex-
tracted data for each study are provided in an additional
file (see Additional file 2). Of the seven included studies
which were reviewed by a second author, there was dis-
agreement on a single data item that was resolved by
consensus.
The estimation of optimal DTRs using observational

data is a recent development and has been most concen-
trated in in the area of HIV/AIDS (27, 43%), followed by
cancer (8, 13%), and diabetes (6, 10%). All but three of
the included studies were published after 2005, with all
but nine in the last decade and almost half (25, 45%) in
the last 5 years.

Outcome types, participant numbers, and funding
sources varied considerably between the included stud-
ies. Time-to-event outcomes were most commonly in-
vestigated (36, 57%). The median number of participants
was 3882 with an interquartile range (IQR) between
1420 and 23,602, and the total range between 133 and
218,217. Studies were funded mostly through public
sources (51, 81%), with some studies acknowledging
non-profit sources (6, 10%). Ten (16%) studies did not
report on funding sources.
All of the common statistical approaches that we have

described were implemented, yet there was a lack of
transparency regarding some of the specific methodo-
logical approaches used across many studies. IPW-
related methods were the most commonly used (26,
41%), followed by parametric G-formula related methods
(16, 25%), Q-learning related methods (10, 16%), G-
estimation (4, 6%), targeted maximum likelihood/mini-
mum loss-based estimation (4, 6%), regret regression (3,
5%), and other less common approaches (10, 16%). Many
studies did not clearly and explicitly describe the
methods that they employed for either missing data (32,
51%), model evaluation (30, 48%), model selection (34,
54%), or model sensitivity (38, 60%), and only eight stud-
ies described all four methodological approaches. The
studies that published statistical software code relevant
to their analyses (21, 33%) provided it for either R (18,
29%) or SAS (3, 5%) only.
Eighteen (29%) studies had a clear primary focus of

informing clinical practice. The remaining 45 (71%) of

Table 2 Data extraction items

Data Definitiona

Complete reference Title, publication source, authorship, year published

Clinical area Disease or medical condition studied, e.g., HIV/AIDS, cancer.

Outcome type Type of primary outcome, e.g., binary, continuous, time-to-event.

Participants Number of study participants included in the model (largest number if multiple analyses were performed).

Funding source/s What direct funding sources were acknowledged? E.g., public, non-profit, industry-sponsored, not funded, not reported.

Statistical method/s The statistical method/s used to estimate the value of the dynamic treatment regimen/s decision rules, e.g., inverse probability
weighting, parametric G-formula, Q-learning.

Clinical focus Was the main discussion and methodology of the study focused on directly informing clinical practice, or developing and
evaluating a statistical method to answer a medical question?

Missing data Were methods used to account for missing data included, e.g., multiple imputation, last observation carried forward, complete
case analysis. Note: applies only to original data, not augmented data?

Model evaluation Were methods used to evaluate the estimated model included, e.g., cross-validation, Bayesian information criterion,
residual analysis?

Covariate selection Was the approach for selecting the covariates stated, e.g., stepwise selection, convenience, subject matter expertise, causal
directed acyclic graph, or analogous method?

Sensitivity analysis Was model sensitivity assessed and how this was performed included, e.g., alternative model specification, truncated inverse
probability weights?

Software included If any analysis software code was included, what language was it written in, e.g., R, SAS, Python, Stata?
aIf multiple models evaluated, definitions relate to dynamic treatment regimen models only
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studies used observational data only to illustrate the
application of statistical methodology [40, 79]. The me-
dian sample size of clinical studies was 9793 participants
(IQR: 3084, 39,887), considerably higher than that of
methodological studies (median: 2604, IQR: 710, 13,
039). Compared to methodological studies, clinical stud-
ies were likely to focus on HIV/AIDS (12, 67% vs 15,
33%), time-to-event outcomes (13, 72% vs 23, 51%), and
statistical models that used IPW (9, 50% vs 17, 38%) or
the parametric G-formula (8, 44% vs 8, 18%). Although
methodological and clinical studies described missing
data and model evaluation methods in approximately
equal proportions, a much greater proportion of clinical
studies described their methods for model selection (15,
83% vs 19, 42%) and sensitivity analysis (15, 83% vs 23,
51%). Only one clinical study included statistical com-
puting code used for analysis.

Discussion
This review provided a summary of how DTRs can be
modelled and an overview of how observational data
have been used to estimate optimal DTRs. There was
substantial variation in the scope, intent, complexity,
quality, and statistical methodology between the 63 in-
cluded studies.

DTR models are often necessary when formalising de-
cisions about how best to treat chronic or progressive
conditions to properly account for time-varying treat-
ment confounding and mediation. A number of different
statistical approaches can be used—including IPW, Q-
learning, the parametric G-formula, G-estimation, or
targeted maximum likelihood/minimum-loss based esti-
mation—depending on the DTR model used and the
nature of the research question. Almost all clinical stud-
ies used either IPW or the parametric G-formula
methods, possibly because these methods are relatively
well-established, less complex, and suited to simpler de-
cision problems such as those encountered in HIV/AIDS
treatment. Unsurprisingly, the included methodological
studies were more diverse in the methods that they used
and tended to detail model selection and sensitivity ana-
lyses less often. Encouragingly, this review found that
many included studies often dealt with clinically relevant
but complicated time-to-event outcomes.
Evaluation of dynamic treatment regimens was first

described in 1987 by Robins [21], but most of the studies
included in this review were published in the last 10 to
15 years, perhaps because both the methodology has ma-
tured and formal causal inference methods in epidemi-
ology have become more established. Two-thirds of the
clinical studies and one-third of methodological studies

Fig. 5 Search strategy flowchart. Note: DTR dynamic treatment regimen
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Table 3 Descriptive summary of the characteristics of the included studies

Clinical focus

Characteristic No Yes Overall

Publications (n) 45 18 63

Year published (%)

1995 to 1999 1 (2) 0 (0) 1 (2)

2000 to 2004 2 (4) 0 (0) 2 (3)

2005 to 2009 6 (13) 3 (17) 9 (14)

2010 to 2014 12 (27) 6 (33) 18 (29)

2015 to 2019 18 (40) 7 (39) 25 (40)

2020 6 (13) 2 (11) 8 (13)

Clinical area (%)

Cancer 7 (16) 1 (6) 8 (13)

Diabetes 6 (13) 0 (0) 6 (10)

HIV/AIDS 15 (33) 12 (67) 27 (43)

Other 14 (31) 5 (28) 19 (30)

Thrombosis 3 (7) 0 (0) 3 (5)

Outcome type (%)

Binary 4 (9) 3 (17) 7 (11)

Categorical 1 (2) 0 (0) 1 (2)

Continuous 17 (38) 2 (11) 19 (30)

Time-to-event 23 (51) 13 (72) 36 (57)

Participants (median [IQR]) 2604 [710, 13,039] 9793 [3084, 39,887] 3882 [1420, 23,602]

Funding source/s (%)

Non-profit 4 (9) 2 (11) 6 (10)

Not reported 9 (20) 1 (6) 10 (16)

Public 35 (78) 16 (89) 51 (81)

Statistical method/s (%)

G-estimation 4 (9) 0 (0) 4 (6)

Inverse probability weighting 17 (38) 9 (50) 26 (41)

Other 9 (20) 1 (6) 10 (16)

Parametric G-formula 8 (18) 8 (44) 16 (25)

Q-learning 9 (20) 1 (6) 10 (16)

Regret regression 3 (7) 0 (0) 3 (5)

TMLE 4 (9) 0 (0) 4 (6)

Missing data addressed (%) 24 (53) 8 (44) 32 (51)

Model evaluation included (%) 22 (49) 8 (44) 30 (48)

Model selection included (%) 19 (42) 15 (83) 34 (54)

Sensitivity analysis included (%) 23 (51) 15 (83) 38 (60)

Software included (%)

No 25 (56) 17 (94) 42 (67)

R 18 (40) 0 (0) 18 (29)

SAS 2 (4) 1 (6) 3 (5)

Abbreviations: AIDS Acquired immune deficiency syndrome, HIV Human immunodeficiency virus, IQR Inter-quartile range, TMLE Targeted maximum likelihood
(minimum loss-based) estimation. Note that each study could have multiple funding sources and statistical methods. Percentages are rounded and taken with
respect to number of publications in each column
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focused on HIV/AIDS, most likely because of the
chronic and progressive nature of HIV infection and
AIDS for which treatments are often dynamically, if in-
formally, adapted to patient history.
Compared to randomised controlled trials, using ob-

servational data to estimate DTRs may allow researchers
to both take advantage of the economics of using exist-
ing data and also evaluate a wider range of treatments.
Despite this, the majority of included studies did not
have a clinical focus. Of the clinical studies, most fo-
cused on HIV/AIDS, and analysed large datasets using
either IPW or parametric G-formula methods to answer
relatively simple questions. This result provides insight
into the type and scale of resources, and research ques-
tions, that may give rise to feasible observational DTR
studies.
The majority of studies were methodological investi-

gations and typically included a simplified real-world
application only. Many of the included methodological
articles involved methods and results that were based
on complex estimating equations and/or Monte Carlo
simulations which, although no doubt critical for the
advancement of the DTR methodology, may be diffi-
cult for clinical readers to interpret. It is likely that
user-friendly software would make implementing the
complex methods easier for clinicians and methodolo-
gists alike. Although almost half of the methodo-
logical studies included some form of statistical
software code related to their methods, which may
encourage the application of complex DTR methods,
in general this software is not readily usable by non-
experts. Furthermore, many studies did not describe
the real-world applications or include details of the
statistical methods and corresponding assumptions in
detail, which may limit how the DTR methods and
results are translated in practice.
We posit that the limited number of clinically rele-

vant examples of optimised DTRs using observational
data is because of the need to satisfy three conditions
necessary for estimating causal treatment effects: ex-
changeability, positivity, and consistency. These condi-
tions, required for valid causal inference, cannot be
verified from the data alone and require judgement
on biological plausibility.
To meet the exchangeability condition, explicit causal

relationships must be considered by content experts to
identify confounders and the confounder data must be
available. Developing a causal model requires both clin-
ical expertise and statistical knowledge to codify such
expertise using the causal inference framework. Al-
though the use of DAGs can streamline this process, it
still requires substantial investment in learning and col-
laboration by both content experts and data analysts,
particularly if multiple plausible causal models are

developed to assess sensitivity of conclusions. Even when
it is feasible to fully develop a plausible set of causal
models it is not guaranteed that confounder information
will be available, particularly when working with retro-
spectively collected data or electronic health records,
which are often designed around clinical practice rather
than for research purposes. It is worth noting that fewer
than 50% of studies did not describe the model selection
process in any way.
To ensure causal effects can be estimated, the positiv-

ity condition must be met. This requires that all
regimens of interest are followed by at least some (and,
in practical terms, many) patients for each potential
combination of predictors and outcomes. Large clinical
databases, and questions about non-rare medical condi-
tions, are likely to be required for there to be sufficient
numbers such that the positivity condition holds. We
note that many of the clinical studies that we identified
in this review used either very large EHR databases or
data from large multinational collaborations, and fo-
cused on a relatively prevalent medical condition. Even
with large clinical databases, structural factors such as
clinical, regulatory, or reimbursement guidelines may
completely prevent treatment sequences of interest (not
to mention relevant patient histories) from being
observed.
The consistency condition requires that treatments,

and therefore potential outcomes under treatments, are
sufficiently well-defined, which may be a difficult
condition to meet for conditions where there are many
different treatment modalities. A related point is that in
clinical areas with rapid and continual treatment
innovation the clinical paradigm may change so rapidly
that DTRs modelled using data from observational co-
hort studies or EHRs, with patient treatment histories
over a long time period, are less relevant to informing
clinical practice. For example, management of many
cancers often involves several consecutive lines of treat-
ment following disease progression and determining the
optimal sequence of treatments is an open area of re-
search in modern oncology. But new cancer treatments
and changing clinical paradigms often dramatically
change the treatment landscape, which results in sub-
stantial variation in clinical practice. Over time, treat-
ments become less well-defined, and it becomes difficult
to satisfy the consistency condition.
Although we are satisfied that our scoping review pro-

vides a representative sample of the literature there are
some limitations worth noting. Our exclusive focus on
the PubMed database excludes any studies not indexed
therein. We made this choice early on in the design
process on the basis of our broad aims, the ‘scoping’ na-
ture of our review, and also to simplify the review and
make it as reproducible and transparent as possible. We
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note that searching the reference lists of the included
PubMed articles served as a practical workaround of the
limitation arising from using a single database. Further,
the search strategy included only common phrases, and
their variants, to capture both DTRs and observational
data. There may be variants that we have missed, or
there may be ad hoc implementations that use entirely
different naming conventions or combinations thereof,
although we note that the nomenclature concerning dy-
namic treatment regimens is relatively well-established
in the literature.

Conclusions
Using observational data to model DTRs is a modern
and methodologically principled approach to evaluating
dynamic treatment decisions. There is great potential in
using DTR models with existing observational data to
support dynamic treatment decisions that improve pa-
tient outcomes, particularly where the relevant clinical
trial is not feasible. Yet the use of observational DTR
studies to inform clinical practice has been relatively
limited, primarily because the underlying conditions that
are necessary for causal inference are difficult to satisfy.
Developing new methods that enable these conditions to
be satisfied may more broadly enable additional and
more diverse observational DTR studies. Our review
suggests that the currently available methods are most
likely to find feasible applications for relatively simple
dynamic clinical decisions, either for simple treatment
sequences or ‘when to treat’ type questions, where there
are numerous and rich clinical data, where treatments
can be well-defined, in clinical areas with slowly evolving
treatment paradigms, and where content experts and
data analysts work in tight partnership.
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