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Abstract
Thyroid cancer is a common endocrine malignancy; however, surgery remains its primary treatment option. A novel targeted drug for
the development and application of targeted therapy in thyroid cancer treatment remain underexplored.
We obtained RNA sequence data of thyroid cancer from The Cancer Genome Atlas database and identified differentially expressed

genes (DEGs). Then, we constructed co-expression network with DEGs and combined it with differentially methylation analysis to
screen the key genes in thyroid cancer. PockDrug-Server, an online tool, was applied to predict the druggability of the key genes.
Finally, we constructed protein-protein interaction (PPI) network to observe potential targeted drugs for thyroid cancer.
We identified 3 genes correlated with altered DNAmethylation level and oncogenesis of thyroid cancer. According to the druggable

analysis and PPI network, we predicted TRAF2 and NCK-interacting protein kinase (TNIK) sever as the drug targeted for thyroid
cancer. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that genes in
protein-protein interaction network of TNIK enriched in mitogen-activated protein kinase signaling pathway. For drug repositioning,
we identified a targeted drug of genes in PPI network.
Our study provides a bioinformatics method for screening drug targets and provides a theoretical basis for thyroid cancer targeted

therapy.

Abbreviations: BP = biological process, BRAF = serine/threonine-protein kinase B-raf, CC = cellular component, DAVID =
Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, DMGs = differentially
methylated genes, FDR = false discovery rate, GO = gene ontology, HER2 = human epidermal growth factor 2, HEY2 = hairy/
enhancer-of-split related with YRPW motif protein 2, HSD17B4 = hydroxysteroid dehydrogenase type 4, KEGG = Kyoto
Encyclopedia of Genes and Genomes, LRP4 = low-density lipoprotein receptor-related protein 4, MAP2K3 = dual specificity
mitogen-activated protein kinase kinase 3, MAP2K6 = dual specificity mitogen-activated protein kinase kinase 6, MAP3K1 =
mitogen-activated protein kinase kinase kinase 1, MAP3K5 = mitogen-activated protein kinase kinase kinase 5, MAPK = mitogen-
activated protein kinase, MF = molecular function, MGMT = O6-methylguanine-DNA methyltransferase, PPI = protein-protein
interaction, PTC = papillary thyroid cancer, RASSF1A = Ras association domain family 1 isoform A, STE20 = Sterile 20, STRING =
Search Tool for the Retrieval of Interacting Genes, TCGA = The Cancer Genome Atlas, TNF = tumor necrosis factor, TNFRSF1A =
tumor necrosis factor receptor superfamily member 1A, TNIK = TRAF2 and NCK-interacting protein kinase, TRADD = tumor
necrosis factor receptor type 1-associated DEATH domain protein, TRAF2= TNF receptor-associated factor 2, WGCNA=weighted
gene co-expression network analysis.
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1. Introduction
Thyroid cancer is a common endocrine malignant tumor, which
has gained widespread concern because of its fastest-growing. In
the past few years, the morbidity and mortality of thyroid cancer
have increased at a rate of more than 3% in the United States.[1]
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In China, the morbidity has increased from ∼3.21/1,000,000 to
9.61/1,000,000 in the past decade.[2] Despite great advancements
have achieved in thyroidectomy, radioiodine therapy, and
thyroid-stimulating hormone inhibition therapy, they still have
not changed the increasing trend of morbidity and mortality per
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year. Recently, many patients can benefit from targeted drugs
with the development of personalized therapy[3]; however, few
targeted drugs have been approved for the treatment of thyroid
cancer. Therefore, it is essential to explore novel drug targets for
thyroid cancer treatment.
Epigenetic changes are regarded as significant contributors to

tumor progression.[4] DNA methylation is 1 of the most
important epigenetic modifications and leads to the development
and progression of thyroid cancer by altering the genic status. Ras
association domain family 1 isoform A (RASSF1A) methylation
is the potential molecular marker to characterize the histopathol-
ogy of papillary thyroid cancer (PTC).[5] While DNAmethylation
level of genes could be used to differentiate non-malignant tumors
from thyroid cancer.[6] Additionally, DNA methylation also
serves as a cancer therapeutic target. Hegi et al determined that
O6-methylguanine-DNA methyltransferase (MGMT) methyla-
tion is sensitive to temozolomide in patients with glioblasto-
mas.[7] Fujii et al demonstrated that patients with human
epidermal growth factor 2 (HER2)-positive breast cancer with
hydroxysteroid dehydrogenase type 4 (HSD17B4) methylation
are sensitive to trastuzumab combined with chemotherapy.[8]

However, there are few studies on the relationship between DNA
methylation and thyroid cancerous therapy.
Drug research and design are very complex and require a

substantial amount of time and capital. Thus, shortening the time
is required and reducing the cost for drug development is
imperative. Drug repositioning can be used to confirm the new
use of approved drugs and greatly reduces the time and cost for
drug development, using the construction of protein-protein
interaction (PPI) network.[9] PPI network allows researchers to
determine potential drugs for diseases through their interactions
with known drug targets or proteins with indirect effects.[10] In
recent years, an increasing number of studies have focused on
drug repositioning. Wang et al used weighted gene co-expression
network analysis (WGCNA) and constructed a PPI network to
detect 3 drug targets and 15 candidate drugs for melanoma
treatment.[11] Islam et al identified 238 gene signatures as
therapeutic targets using a PPI network and 37 novel drugs as
potential anticancer drugs for low-grade glioma.[12]

In the current study, we aimed to predict the drug target to
improve target therapy of thyroid cancer. We analyzed the
differentially expressed genes (DEGs) and obtained expression
data from The Cancer Genome Atlas (TCGA) database. Then
WGCNA and differentially methylation analysis were used to
identify the key genes associated with thyroid cancer. Then, a
drug target with druggable protein pockets was identified. Based
on the drug repositioning, we constructed PPI network and
predict potential drugs by approved drug targets in PPI network.
Finally, we annotated the genes in the PPI network.
2. Materials and methods

2.1. Data and sources

The RNA sequencing data and DNAmethylation data of thyroid
cancer were downloaded from TCGA database (https://portal.
gdc.cancer.gov). The RNA sequencing data included 510 thyroid
cancerous samples and 58 normal samples, DNA methylation
data included 507 thyroid cancerous samples and 56 normal
samples. DEGs were calculated by “edgeR” package in R
language.[13] The cut-off criteria were set as jlog2 Fold Changej>
1 and False discovery rate (FDR) <0.05.
2

Ethical approval or patient consent was not required because
the data for the present research were obtained from a public
database, and the data were available without personal
identifiers.
2.2. Weighted gene co-expression network analysis

The “WGCNA” R package was used to construct a co-
expression network to identify the hub genes in thyroid
cancer.[14] First, the DEGs and the Pearson correlation coefficient
were used to confirm the most correlated genes and exclude
weakly correlated genes. We calculated the soft thresholding
power (b) using network topology analysis and converted the
adjacency to the topological overlap matrix.[14] Second, a gene
dendrogram was constructed using hierarchical clustering. We
used a dynamic tree-cut algorithm to separate the branches of the
gene dendrogram from modules of co-expressed genes into
different colors[14]; deepsplit=2 and minimal module size=30.
Third, we estimated the similarity of the modules and merged the
genes with high co-expression. We selected 0.25 as the threshold
for the dissimilarity between the modules and merged highly co-
expressed modules. Then, the module-traits relationship was
constructed by measuring the relevance between the module
eigengenes and thyroid cancer.[14] The correlations indicated the
gene significance and module membership with P value <0.05.
2.3. Identify differentially methylated gene

The differentially methylated genes (DMGs) between thyroid
cancerous and normal samples were analyzed with t test (FDR<
0.05 and the absolute MTBeta-MNBeta >.3; MTBeta, MNBeta:
b means of tumor samples and normal samples). Methylation
levels were calculated as follows: we used the b value to estimate
the methylation level of a given CpG probe.
2.4. PockDrug druggability and PPI analysis

PockDrug-Server (http://pockdrug.rpbs.univ-paris-diderot.fr/) is
a robust pocket druggability prediction server with references
pocket boundary uncertainties to query the druggable of protein
pockets.[15] Therefore, we used PockDrug-Server to predict drug
targets with druggable protein pockets in the overlapped genes
between hub genes and DMGs. A druggability probability of
more than 0.5 was considered a druggable pocket.
For drug repositioning, we used the Search Tool for the

Retrieval of Interacting Genes (STRING) database to construct a
PPI network of drug targets with druggable protein pockets.
STRING database (http://string-db.org/) is used to calculate
protein-protein association for many organisms and can uncover
direct and indirect relationships. The 0interaction score should be
>0.7. The data were visualized by Cytoscape with version
3.3.0.[16,17] Drug information were obtained from Drugbank
(https://go.drugbank.com/).
2.5. Functional enrichment analysis

Functional enrichment analysis was performed using the
Database for Annotation, Visualization, and Integrated Discov-
ery (DAVID) version 6.8 (https://david.ncifcrf.gov/), a web-
accessible program that integrates functional genomic annota-
tions with intuitive graphical summaries.[18] The annotated genes
carries out gene ontology (GO) analysis, elucidating biological

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://pockdrug.rpbs.univ-paris-diderot.fr/
http://string-db.org/
https://go.drugbank.com/
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process (BP), molecular function (MF), and cellular component
(CC).[18] Kyoto Encyclopedia of Genes and Genomes (KEGG,
version 90.0; www.kegg.jp) is a common online resource for
interpreting biological systems from molecular-level data.[19]

Thus, DAVID was used to annotate genes in the PPI network and
GO and KEGG enrichment analyses were performed to elucidate
enrichment of the genes. P< .05 was considered statistically
significant for all tests.
3. Results

3.1. WGCNA analysis and module significance calculation

The top 5000 DEGs of thyroid cancer were obtained from the
TCGA database, which was used to construct the co-expression
network. b=3 (R2=0.9) was set as the soft-threshold to
construct the co-expression module (Fig. 1). Ten modules were
identified and shown in different colors in dendrogram (Fig. 2A).
The eigengene dendrogram and adjacency heatmap were
provided in Figure 2C. Then, we calculated the correlation
between module eigengenes and the clinical trait of thyroid
cancer. As shown in Figure 2B, the red (r=0.51; P=3e�38) and
blue module (r=0.51; P=5e�39) were positively correlated with
the occurrence of thyroid tumor, while the green module
(r=�.53; P=2e�24) was negatively correlated with the
occurrence of thyroid tumor. According to the correlation
between module membership and gene significance (Fig. 2D), the
red module had a high correlation (cor=0.73; P=9.7e�26).
Thus, red module was selected for further analysis.

3.2. DMGs in the red module

DNA methylation data of thyroid cancer was obtained from
TCGA database. Methylated genes identified by t test and FDR<
0.05 were regarded as differentially methylation. We identified
445 DMGs. Meanwhile, intersection analysis between DMGs
and hub genes in the red module found 3 genes, Hairy/enhancer-
Figure 1. Determination of the soft-threshold power of the network topology. Ana
Analysis of the mean connectivity for various soft-threshold powers in the right.
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of-split related with YRPWmotif protein 2 (HEY2), TRAF2 and
NCK-interacting protein kinase (TNIK), and Low-density
lipoprotein receptor-related protein 4 (LRP4) as candidates to
be further analyzed for druggability (Fig. 3A). The heatmap of
these 3 genes shown in Figure 3B. These 3 genes were
hypomethylated in thyroid cancer samples.

3.3. Pocket druggability prediction of HEY2, TNIK, and
LRP4 proteins

Druggability is the capacity of a protein to bind to drug-like
molecules with high affinity.[20] Therefore, it is necessary to assess
druggability as the first step of drug target discovery. In our study,
we used the PockDrug-Server to predict the pocket druggability
of HEY2, TNIK, and LRP4 proteins, and only TNIK had 8
protein pockets (P0–P7; Fig. 4). The protein pockets with an
average druggability probability >.5 were considered as
druggable pockets. Table 1 showed the parameters of the 8
protein pockets, and the result indicated that P0 (0.9, P= .01), P2
(0.82, P=0.05), P3 (0.86, P=0.0), and P6 (0.92, P=0.02) had
the highest probability of druggability, and among them, P6 had
the highest druggability probability score. Therefore, we chose
TNIK as a possible drug target for thyroid cancer.

3.4. PPI of TNIK and targeted drug analysis

We constructed a PPI network for TNIK using Cytoscape, which
consisted of 11 nodes and 39 edges from the STRING database
and found that 10 proteins interacted with TNIK (Fig. 5). To
determine the biological functions of genes in the PPI network, we
performed GO and KEGG pathway enrichment analysis. The
genes enriched in the regulation of protein phosphorylation,
regulation of mitogen-activated protein kinase (MAPK) cascade,
b-catenin/transcription factor 7-like 2 complex, kinase binding,
and protein phosphatase binding (Fig. 6). According to KEGG
analysis, genes enriched in the MAPK, tumor necrosis factor
lysis of the scale-free fit index for various soft-threshold powers (b) on the left.

http://www.kegg.jp/
http://www.md-journal.com


Figure 2. Gene enrichment and modules identified byWGCNA. (A) Clustering dendrograms of screened genes. Different cluster modules are in different colors. (B)
Heatmap of correlation between ME and TC samples. Each row represents a module eigengene, each column represents TC and normal thyroid sample, and each
cell contains the corresponding correlation and P value. The matrices are color-coded by correlation according to the color legend. (C) Dendrogram tree and
adjacency heatmap of the eigengenes. (D) Scatter plot of the module membership and gene significance in the red module. ME=module eigengenes, TC= thyroid
cancer, WGCNA=weighted gene co-expression network analysis,
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(TNF) signaling pathways, and amyotrophic lateral sclerosis,
among other pathways (Table 2). According to drug reposition-
ing, we searched the targeted drug of proteins in PPI network, and
found binimetinib targeted Mitogen-activated protein kinase
kinase kinase 1 (MAP3K1). Based on this, we speculated that
binimetinib might serve as a targeted drug for thyroid cancer in
the future.

4. Discussion

Thyroid cancer is a common endocrine malignancy; however,
there are few targeted therapeutic drugs currently available. In
this study, we screened genes based on mRNA profiles and DNA
methylation level of thyroid cancer in TCGA, and used the
PockDrug-Server in combination with the PPI network to identify
genes that could target thyroid cancerous treatment. Ten co-
expression modules were structured based on the top 5000 DEGs
between thyroid cancerous and normal samples by WGCNA,
and the red module was determined to have the greatest
correlation with thyroid carcinogenesis. Based on interactions
4

with the hub genes and DMGs, we screened 3 genes, HEY2,
TNIK, andLRP4. Our heatmap results showed that these 3 genes
were hypomethylated in thyroid cancer. DNA hypomethylation
is associated with neoplastic progression.[21] Therefore, HEY2,
TNIK, and LRP4 may play important physiological roles in the
occurrence of thyroid cancer. HEY2 is the downstream target of
the Notch signaling pathway and the activated Notch signaling
pathway inhibits the progression of medullary thyroid can-
cer.[22]LRP4 is up-regulated in PTC and activated phosphatidy-
linositol-3 kinases/serine/threonine-protein kinases-mediated
mesenchymal transition promotes PTC metastasis.[23]

We used PockDrug-Server to analyze and confirm the
druggability of protein (HEY2, TNIK, and LRP4) pocket.
Protein pocket druggability predicted the affinity of protein
pockets to bind drug-like molecules, and was a major criterion in
the identification phase of drug target discovery.[24] PockDrug-
Server is a new bioinformatics online tool for efficiently
measuring the druggability of holo-like and apoprotein pock-
ets.[15] Compared with other prediction tools for druggability, it
synthesizes different pocket estimation methods to provide



Figure 3. Screening of 3 genes from the intersection of DMGs and the redmodule. (A) Venn diagram between DMGs and hub genes in the redmodule showing the
overlapping of 3 genes, HEY2, TNIK, and LRP4. (B) Heatmap of DNA methylation in HEY2, TNIK, and LRP4 between TC and normal thyroid samples. DMGs=
differentially methylated genes, HEY2=hairy/enhancer-of-split related with YRPW motif protein 2, LRP4= low-density lipoprotein receptor-related protein 4, TC=
thyroid cancer, TNIK=TRAF2 and NCK-interacting protein kinase.
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consistent druggability results.[15] Several studies have shown
that PockDrug-Server is a widely used online predictive tool.
Hamza et al ascertained p53 Ser121 and Val122 mutations as
drug targets using PockDrug-Server.[25] Trigueiro-Louro et al
used PockDrug-Server to predict 3 druggable pockets and 8 new
potential hot spot residues in the effector domain of Non-
structural 1.[26] In addition, PockDrug-Server was used to predict
Figure 4. The protein pocket of TNIK. P0–P7 represent different protein
pockets in TNIK. TNIK=TRAF2 and NCK-interacting protein kinase.

5

the physicochemical properties of binding pockets of off-targets
for gefitinib.[27] Our result has shown that only TNIK had 4
druggable protein pockets (Table 1). The score of these 4
druggable protein pockets were all more than 0.8, indicating that
they have greatly strong drug binding ability. Consequently,
TNIK was predicted as a drug target for thyroid cancer.
TNIK is a member of the Sterile 20 (STE20) serine/threonine

protein kinase family and severs as a driver oncogene.[28,29]TNIK
was an important activator ofWnt signaling pathway to promote
tumor progression and invasion in terminal colorectal cancer.[30]

Moreover, increasing expression of TNIK was the biomarker of
poor prognosis in patients with pancreatic, and hepatocellular
carcinomas.[31,32] Recently, various classes of small-molecule
TNIK inhibitors have developed including NCB-0846 and KY-
05009. Some studies have reported that NCB-0846 has high
inhibition against TNIK to block Wnt signaling pathway and
achieves the purpose to anti-tumor on colorectal cancerous
cells.[33] While KY-05009 is also a small-molecule of TNIK
inhibitor, it suppresses the Transforming growth factor-b1-
induced activation of Wnt signaling pathway and epithelial-
mesenchymal transition process in lung adenocarcinoma cells.[34]

However, the potential of these small-molecule TNIK inhibitors
has remained unexplored. Thus, it remains to explore drugs
targeted to TNIK. In our study, based on the drug repositioning,
we constructed the PPI network for TNIK and predicted the
underlying targeted drug for thyroid cancer.
Ten protein interacted with TNIK was in the PPI network.

KEGG pathway enrichment indicated that most genes were
concentrated in the MAPK and the TNF signaling pathways. The
MAPK and TNF signaling pathways are common pathogenic
signaling networks that influence cellular proliferation, differen-
tiation, development, inflammatory responses, and apoptosis.[35]

Some small inhibitors of MAPKs signaling pathway effectors can
affect the growth of thyroid cancerous cells. Of these 10 genes,
TNF, tumor necrosis factor receptor superfamily member 1A
(TNFRSF1A), tumor necrosis factor receptor-associated factor 2

http://www.md-journal.com


Table 1

Parameters of the 8 protein pockets in TNIK.

Pockets Vol. Hull.∗ Hydroph. Kyte∗ Polar Res.∗ Aromatic Res.∗ Otyr atom Nb. Res.∗ Drugg Prob∗ Standard deviation

P0 2418.61 0.22 0.47 0.13 0.01 32 0.9 0.01
P1 388.61 �1.61 0.64 0.09 0.0 11.0 0.05 0.01
P2 444.17 0.04 0.57 0.14 0.03 14.0 0.82 0.05
P3 1161.44 0.22 0.37 0.11 0.0 19.0 0.86 0.0
P4 459.98 �0.46 0.54 0.08 0.0 13.0 0.44 0.04
P5 582.49 �0.54 0.57 0.07 0.0 14.0 0.4 0.04
P6 372.2 0.4 0.4 0.2 0.0 10.0 0.92 0.02
P7 491.79 �1.94 0.89 0.22 0.0 9.0 0.04 0.01

Vol. Hull.∗=Volume Hull; Hydroph. Kyte∗=Hydrophobic Kyte; Polar Res.∗=Polar Residues Proportion; Aromatic Res.∗=Aromatic Residues Proportion (F, Y, H, W); Nb. Res.∗=Number of pocket residues;
Drugg Prob∗=Druggability Probability.
The bold values in Table 1 represent the druggability protein pockets in TNIK.
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(TRAF2), and tumor necrosis factor receptor type 1-associated
DEATH domain protein (TRADD) are key effector molecules in
the TNF signaling pathway. TRAF2 is able to suppress cell death
induced by TNFa, and as death receptors or the target of anti-
cancer drugs.[36]MAP3K1, dual specificity mitogen-activated
protein kinase kinase 6 (MAP2K6), dual specificity mitogen-
activated protein kinase kinase 3 (MAP2K3), and mitogen-
activated protein kinase kinase kinase 5 (MAP3K5) are the
effectors of the MAPK signaling pathway.[37]MAP3K1 is a
Figure 5. PPI network map of TNIK to identify targeted drug genes. TNIK=TRAF
TRAF2 and NCK-interacting protein kinase.

6

member of the MAP3K family and the STE superfamily and
induces multiple signaling pathways including Wnt/b-catenin
signaling pathway and nuclear factor-kappa B pathway to
regulate cell suvival and apoptosis.[38] While mutation and copy
number loss ofMAP3K1were observed in ovarian, prostate, and
breast cancer.[38]

In recent years, targeted therapy has become an attractive
strategy for cancer therapy. However, surgery is still preferred for
thyroid cancerous treatment. As drug research is a long complex
2 and NCK-interacting protein kinase. PPI=protein-protein interaction, TNIK=



Figure 6. GO enrichment of the genes in the PPI, including BP, MF, and CC. BP=biological process, CC=cellular component, GO=gene ontology, MF=
molecular function, PPI=protein-protein interaction.
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process that requires a great deal of investment, targeted
therapies for thyroid cancer have remained underexplored. Drug
repositioning is a good selection step to overcome the limitations
of traditional methods. It can find novel uses for existing drugs
through PPI network to reduce the costs and risks of drug
development.[39] In our study, based on the PPI network of TNIK,
we identified the targeted drugs searching DrugBank and found
that binimetinib targeted MAP3K1 which is a potent and
selective oral Mitogen-activated protein kinase 1/2 inhibitor. The
Table 2

KEGG pathway analysis for genes in PPI.

Pathway ID Term description

hsa04010 MAPK signaling pathway
hsa04668 TNF signaling pathway
hsa05014 ALS
hsa04071 Sphingolipid signaling pathway
hsa04210 Apoptosis
hsa04622 RIG-I-like receptor signaling pathway
hsa04920 Adipocytokine signaling pathway
hsa04064 NF-kappa bsignaling pathway
hsa04664 Fc epsilon RI signaling pathway
hsa04912 GnRH signaling pathway
hsa04657 IL-17 signaling pathway
hsa05216 Thyroid cancer

ALS= amyotrophic lateral, MAPK=mitogen-activated protein kinase, TNF= tumor necrosis factor.

7

US Food and Drug Administration approved binimetinib
combined with encorafenib for patients with unresectable or
metastatic melanoma with Serine/threonine-protein kinase B-
rafV600E(BRAFV600E) or BRAFV600K mutation on June 27, 2018.
Clinical studies on binimetinib are currently underway for the
treatment of thyroid cancer with BRAFV600E mutation
(NCT04061980). Therefore, binimetinib is likely to have
potential effects in the treatment of thyroid cancer and we hope
that the drug would achieve good results in clinical trials.
Observed gene count P value

8 2.03E�11
7 5.84E�12
5 1.99E�09
5 8.38E�08
5 1.30E�07
4 6.48E�07
4 6.48E�07
4 1.64E�06
3 3.35E�05
3 6.69E�05
3 7.26E�05
2 0.0007

http://www.md-journal.com


Yang et al. Medicine (2021) 100:16 Medicine
Owing to the restriction of information collection regarding
detailed interaction dynamics and PPI network, the prediction
results are not comprehensive. Clinical trials on binimetinib for
thyroid cancerous treatment are being performed but its efficacy
and safety still require experimentation for verification. Our
predicted results provide a theoretical basis for future targeted
therapy of thyroid cancer.
5. Conclusion

In conclusion, with WGCNA and druggability analysis for genes
in thyroid cancer, we revealed that TNIK could serve as a
potential drug target for the treatment of thyroid cancer. Further
studies that explore novel methods to screen targeted genes with
druggability and potential drug targets for thyroid cancer are
imperative. We hope these findings will contribute to the research
on new-targeted therapeutic drugs for thyroid cancer.
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