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Abstract 
Identification of genetic signatures is the main objective for many computational oncology studies. 

The signature usually consists of numerous genes that are differentially expressed between two clinically 
distinct groups of samples, such as tumor subtypes. Prospectively, many signatures have been found to 
generalize poorly to other datasets and, thus, have rarely been accepted into clinical use. Recognizing 
the limited success of traditionally generated signatures, we developed a systems biology鄄  based 
framework for robust identification of key transcription factors and their genomic regulatory 
neighborhoods. Application of the framework to study the differences between gastrointestinal stromal 
tumor (GIST) and leiomyosarcoma (LMS) resulted in the identification of nine transcription factors (SRF, 
NKX2鄄  5, CCDC6, LEF1, VDR, ZNF250, TRIM63, MAF, and MYC). Functional annotations of the 
obtained neighborhoods identified the biological processes which the key transcription factors regulate 
differently between the tumor types. Analyzing the differences in the expression patterns using our 
approach resulted in a more robust genetic signature and more biological insight into the diseases 
compared to a traditional genetic signature. 
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Introduction 
Genetic diseases are attributed to changes in the 

expression pattern of one or more key genes. In cancer, 
abnormal expression of oncogenes and tumor 
suppressor genes is often caused by focal genetic 
events, including gene mutations and copy number 
changes, as well as epigenetic changes like altered 
promoter methylation [1­3] . Focal events are then followed 
by tumorigenic alterations in transcription programs, 
which further affect downstream gene expression 
patterns. A well known example of this trickle­down effect 
is the MDM2­p53 pathway. When MDM2, an inhibitor of 
the tumor suppressor gene p53, is deactivated by a 
single nucleotide polymorphism, p53 is overexpressed, 

resulting in aberrant expression of hundreds of 
downstream genes [4] . Thus, as gene expression is often 
controlled by hierarchical regulatory networks, 
experiments that measure expression patterns at 
steady­state levels, such as microarray, provide little 
insight into how gene expression is regulated. 

Given the limitations of steady­state experiments, 
many genomic studies are conducted solely to identify 
genes that either are differentially expressed between 
two clinical groups, such as tumors with different clinical 
characteristics  [5­19] , or are correlated with clinical 
parameters like patient survival. The signature genes 
identified in these studies can be used, for example, as 
features in computational classifiers for discriminating 
patients as poor or long survivors, or as responders or 
non­responders to treatment. Nevertheless, although 
signature genes for some tumor subclasses have been 
successfully identified using computational methods, 
most signature gene lists have been found highly 
unstable and unreliable in prospective studies. 
Ill­conceived experiments, lack of clinical validation, 
biased selection of signature molecules, and overly 
positive error estimates for classifiers have been deemed 
downfalls of this approach in practice [20­25] . Further, global 
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gene lists fail to shed light on molecular relationships 
and the biological difference that gene dysregulation 
conveys to the phenotype. An additional significant 
problem is that signature genes are often passive 
bystanders (野passenger genes冶) that do not have a 
major driving function (野driver genes冶) in the disease, 
such as promoting faster relapse or conveying resistance 
to treatment. 

As a result of the shortcomings of gene­level 
analyses, there has been a transition towards 
module­level analysis of gene regulation. Several 
investigators propose that it is imperative to analyze 
smaller, coherent sets of genes instead of global 
signatures [26­32] . The coherence of a gene set can be 
defined without knowing the network topology by such 
parameters as shared biological function, molecule type 
or localization, such as in Gene Ontology  [33] ; or 
topologically, by genetic regulatory connections or other 
physical interactions. Gene regulatory networks include 
signaling pathways, metabolic pathways, and disease 
pathways and are made publicly available in several 
databases  [34,35] . In oncology, pathways have replaced 
genes as primary building blocks after the observations 
that critical pathways, such as the Rb, WNT, PI3K/AKT, 
and p53 pathways [36] , can be activated or deactivated by 
varied and mutually exclusive single gene mutations. 
Although we emphasize the gene set approach, 
information on just one or few dominant genes is 
sometimes sufficient to provide meaningful clinical 
information. There are a number of one­gene oncogenic 
events which define certain expression patterns and, 
thus, cancer subtypes [16,19,37,38] . Indeed, using a mouse 
model, a single oncogenic activation, such as elevated 
expression of PDGFB, suffices to induce brain tumor 
development [39] . 

Gastrointestinal stromal tumor (GIST) and 
leiomyosarcoma (LMS), two soft tissue sarcomas of the 
abdominal cavity, are morphologically remarkably similar, 
yet clinically and biologically very diverse. Clinicians 
primarily achieve correct diagnosis of GIST or LMS using 
histological examination and a number of 
immunohistochemical markers, including KIT, CD34, 
desmin, and smooth muscle actin  [40] . Although some 
characteristic genetic markers of these tumors, such as 
gene mutations, have been known for a few years, the 
upstream causes and downstream effects of these 
signature mutations are not well understood. Of the 
greatest clinical relevance are gain­of­function mutations 
in  or  genes in GIST. These mutations 
allow treatment with targeted therapy in patients with 
GIST but not LMS. Conversely, LMS is effectively 
treated with chemotherapy, whereas the objective 
response rate for GIST is negligible with this regimen [41­44] . 
To complement immunohistochemistry, computational 
classifiers, such as the  gene classifier [45] , 

have been previously devised for these tumors. 
However, like the immunohistochemical markers, the 
features in this genetic classifier have not been 
interpreted biologically, mainly due to the very limited 
knowledge of the marker genes. Although these 
malignancies are now recognized as two different tumor 
types as supported by our recent genomic 
characterization studies  [46,47] , they also share many 
common characteristics, like morphology and anatomical 
sites. 

The unique historical and clinical relationship 
between GIST and LMS makes it interesting to compare 
the differences in their expression patterns. In this study, 
we developed a systems biological approach for 
identifying the genomic difference between tumors in 
more detail than can be attained with a straightforward 
list of signature genes. We applied this approach to 
investigate the key transcriptional regulators and their 
genomic neighborhoods that may cause the clinical 
differences between the two tumor types. The distinctive 
gene regulatory information that the results describe 
should prove more robust and biologically relevant than a 
signature gene list. 

Materials and Methods 

Gene expression measurements of GIST and 
LMS 

We acquired 68 surgical specimens of primary 
tumors at the University of Texas MD Anderson Cancer 
Center under an Institutional Review Board­approved 
protocol with patient consent. Of these tumors, 37 were 
classified as GIST and 31 as LMS based on both 
clinicopathologic evaluation and molecular marker 
studies. Specifically, clinicopathologic observations 
included the site of the primary tumor, the pattern of 
metastatic spreading, and the efficacy of systemic 
therapy; molecular marker studies included 
immunostaining for KIT, CD34, desmin, and smooth 
muscle actin. All specimens were snap­frozen within 20 
min of surgical resection and were verified by 
histopathologic examination to be composed of a 
minimum of 90% neoplastic cells. The gene expression 
profiles of these samples were measured with whole 
human genome oligo arrays with 44 000 60­mer probes 
(Agilent Technologies, Palo Alto, CA, USA) according to 
manufacturer爷s protocol. Arrays were scanned with 
Agilent爷s dual laser­based scanner and intensity values 
were read and processed with Agilent爷s Feature 
Extraction software version 8.0 with default parameters. 
The intensity values were quantile normalized in Matlab 
version R2009b (The MathWorks, Natick, MA, USA). All 
the data analysis was implemented in Matlab. The gene 
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expression data are publicly available at http://www.cs. 
tut.fi/sgn/csb/GISTLMS/. 

Finding master regulators 

To gain confidence towards the generalization 
properties of the identified master regulators, we created 
100 resampled [48] sets of data, each excluding a randomly 
chosen 15% of the total samples. We computed the 
differentially expressed genes for each of the sample 
sets by first applying the two­sided Wilcoxon rank sum 
test to compute a  value for differential expression for 
each gene. To correct for multiple comparisons, we 
computed false discovery rates (FDR) based on the 
value distribution [49] . We used a  value of 0.005 as the 
threshold of significance. 

Promoter analysis was applied to predict which 
transcription factors can regulate each gene by binding 
to its promoter region. To identify those promoters with 
binding sites corresponding to binding motifs obtained 
from the Biobase Transfac database release 2009.3 
(BIOBASE GmbH, Wolfenbuettel, Germany), we used 
the MotifLocator algorithm [50] with a first order background 
model [51] . Significant  value for binding was estimated 
from randomly permuted promoter sequences. For 
promoter scanning, the DNA sequence 1 kb upstream 
from the transcription start site of each differentially 
expressed gene were downloaded from UCSC Genome 
Browser hg19 genome build. 

For each gene, we determined a set of transcription 
factors whose binding sites lie up to 1 kb upstream of 
the gene爷s transcription start site (  < 0.001). Using 
these data, we tested which transcription factor binding 
motifs occur more often than expected at random at the 
upstream regions of differentially expressed genes. We 
used a hypergeometric distribution with a  value 
threshold of 0.05 to test for statistical significance. We 
repeated the process of finding the enriched transcription 
factor binding motifs for each of the 100 resampled sets 
to obtain the most frequently identified binding motifs and 
the corresponding transcription factors, which we termed 
the 野master regulators冶. 
Constructing genomic neighborhoods 

Construction of a genomic neighborhood around a 
master regulator began downstream with the inclusion of 
the predicted targets using Ingenuity Pathway Analysis 
(IPA) software (Ingenuity Systems, http://www.ingenuity. 
com). Regulatory relationships were then established 
between the master regulator and its predicted targets in 
IPA. A  value cutoff of 0.005 was set to identify 
molecules whose expression was differently regulated 
between the sample sets. The connections to molecules 
that were not differentially expressed were 

consequentially removed from the network. Taking 
advantage of the global molecular network developed 
from information contained in Ingenuity爷s Knowledge 
Base, known targets of the master regulator were 
included in the network, whereas the non­differentially 
expressed molecules were excluded. 

Genomic neighborhoods were then algorithmically 
generated based on the connectivity of the master 
regulator and its targets. Further downstream, we added 
the molecules that are established targets for genes 
regulated by the master regulator excluding those that 
are not differentially expressed. We continued adding 
differentially expressed target genes hierarchically until 
there were no more target genes to add or we reached a 
major hub, such as an extensively studied transcription 
factor that plays a role in many different biological 
processes and regulates numerous genes under varying 
conditions. The rationale for excluding the downstream 
targets of central transcription factors was to limit the 
size of the neighborhood. We then proceeded similarly 
upstream from the master regulator by adding the 
differentially expressed known regulators of the master 
regulator until we reached the desired depth of the 
regulatory pathway. A cartoon presentation of 
neighborhood generation is shown in Figure 1. 

Rather than analyzing the biological functions of all 
the differentially expressed genes simultaneously, we 
applied enrichment analysis to identify the most 
significant cancer­critical functions for each genomic 
neighborhood and master regulator. Molecules that were 
associated with pathways in Ingenuity爷s Knowledge 
Base were considered for the analysis. Right­tailed 
Fisher爷s exact test was used to calculate a  value to 
determine the statistical significance for each biological 
function. A  value threshold of 0.05 was chosen as 
significance level for functional enrichments. All steps in 
the analysis are schematically summarized in Figure 2. 

ChIP鄄  sequencing validation 

To show the regulatory potential of the most 
prominent master regulator, SRF, in inducing expression 
differences in the established markers as well as its 
neighborhood molecules, we validated some of the SRF 
protein­DNA interactions using publicly available 
ChIP­seq data [52] . In addition to a library from ChIPs 
against SRF, we used a negative control library of 
reversed cross­links and no immunoprecipitation 
(RX­noIP) as a reference. Both data were measured 
from a human Jurkat cell line and sequenced using the 
Solexa platform. We re­aligned the sequenced reads 
against the most recent human genome build (hg19) 
using Bowtie algorithm [53] . The sequence alignment of 
SRF and RX­noIP libraries yielded 8.6 and 17.3 million 
mapped tags, respectively. Regions of significantly high 
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read density (野peaks冶) were identified by MACS [54]  and 
QuEST [52]  software and smoothed read density profiles 
were illustrated in Integrative Genomic Browser (http: 
//www.bioviz.org/igb/). 

Results 

Promoter enrichment analysis revealed nine 
transcription factors that distinguish GIST from 
LMS 

Promoter analysis for 261 transcription factors 

identified 433 binding motifs that were located up to 1 kb 
from the transcription start sites of genes throughout the 
genome (  < 0.001). The total number of genes which 
harbor a particular binding motif in their promoter 
sequence ranged from 3 to 5951 genes per motif. 
Iteratively leveraging the promoter analysis data and the 
GIST and LMS gene expression data, we found 74 
different transcription factor binding motifs that were 
enriched in at least 1 of the 100 resampled sets of 
differentially expressed genes. The motifs corresponded 
to 58 differentially expressed (Wilcoxon rank sum;  < 
0.05) transcription factors. The use of resampling 

Figure 1. Cartoon illustration of creating genomic neighborhoods. First, the mAdd known targets to complete the downstream signaling networkaster regulator 
(MR) is added along with its predicted target genes (green arrows). Second, known targets of the master regulator are added. Third, to complete the downstream 
signaling network, genes are hierarchically added according to regulatory relationships. Fourth, direct and indirect regulators of the master regulator are added. Non- 
differentially expressed genes (red) are removed after each step. 

Add master regulator and predicted targets Add known targets of master regulator 

1 2 

3 4 

MR MR 

Add known targets to complete the downstream signaling network Add known upstream regulators 

Predicted connection 
Known connection 
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methodology in uncovering the enriched binding motifs 
revealed that most of the 58 transcription factors would 
probably not generalize well in other data sets because 
their binding motifs were enriched in only small portion of 
the resampled sample sets. Only 9 transcription factors 
had an enriched binding motif in more than 30% of the 
resampled sets (Table 1). We held the enrichment 
frequency (a measure of robustness) in greater 
importance than the  value for differential expression 
and other statistical or biological parameters. 

Serum response factor (SRF) was the only factor 
with an enriched motif in every signature (100/100 
enrichment frequency). In fact, SRF had 6 different 
robust SRF­binding motifs, whereas the other 
transcription factors only had one robust motif with the 
exception of MYC (Figure 3). The next most robust 
binding motifs corresponded to 2 transcription factors, 
NK2 transcription factor­related locus 5 (NKX2­5) and 
coiled­coil domain containing 6 (CCDC6), which had an 
enriched motif in over 90% of the resampled gene sets 

(99/100 and 91/100 enrichment frequency, respectively). 
Six transcription factors [lymphoid enhancer­binding 
factor 1 (LEF1), vitamin D receptor (VDR), zinc finger 
protein 350 (ZNF350), tripartite motif­containing 63 
(TRIM63), v­maf musculoaponeurotic fibrosarcoma 
oncogene homolog (MAF), and v­myc myelocytomatosis 
viral oncogene homolog (MYC)] fell between 30% and 
50% in motif enrichment frequency. We termed these 9 
genes the master regulators. The remaining 49 
transcription factors with enrichmen t frequency below 
30% were regarded as not robust enough and, thus, 
were excluded from subsequent analyses. The 
correlation between the expressions of 4 master 
regulators, SRF, CCDC6, MAF, and NKX2­5, and their 
predicted targets is shown in Figure 4. We clearly 
observed an expression­prom oting effect for the 3 first 
master regulators and an inhibitory effect for NKX2­5, 
particularly in the samples where NKX2­5 was highly 
expressed (far right in Figure 4D). 

Figure 2. Schematic of constructing genomic neighborhoods. First, resampled gene expression data are organized into two clinically relevant groups. Second, 
a set of differentially expressed genes between the two groups is computed. Third, promoters of the signature genes are scanned for transcription factor 
binding motifs. Fourth, significantly enriched motifs for the signature gene set are computed. This procedure is repeated 100 times for resampled data. Fifth, 
the most frequently enriched transcription factors are used further in the pathway analysis. Sixth, genomic neighborhoods are constructed around the most 
important transcription factors and the neighborhoods are subsequently used for computing functional enrichments in them. 
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Key transcription factors control genes with 
distinct biological functions 

To further investigate the roles of the 9 master 
regulators in creating the clinical differences between 
GIST and LMS, their genomic neighborhoods were 
constructed as described in Methods. The sizes of the 

resulting gene regulatory networks varied from 10 genes 
in the VDR neighborhood to 159 genes in the SRF 
neighborhood. We went on to associate biological 
processes to the neighborhoods using IPA gene 
annotations and enrichment analysis to the respective 
genes. The top 5 processes for each genomic 
neighborhood are listed in Table 1. Invariably, common 

Figure 3. Robust transcription factor binding motifs. The motifs are indicated by the name of the corresponding transcription factor with a running number 
in the case that has more than one motif per factor. The left side indicates the number of differentially expressed genes that have the binding motif in their 
promoter region. The right side shows the percentage of resampled signatures where the motif was enriched as a measure of robustness. 

Differentially expressed genes Motif robustness 
SRF 1 
SRF 2 
SRF 3 
NKX2鄄  5 
SRF 4 
SRF 5 
CCDC6 
SRF 6 
LEF1 
VDR 
ZNF350 
TRIM63 
MAF 
MYC 1 
MYC 2 

70 60 50 40 30 20 10 0 0 20 40 60 80 100 

Symbol 
SRF 

NKX2鄄  5 

CCDC6 

LEF1 

VDR 

ZNF350 

TRIM63 

MAF 

MYC 

Gene name 
Serum response factor 

NK2 transcription factor related, 
locus 5 

Coiled鄄  coil domain containing 6 

Lymphoid enhancer鄄  binding factor 1 

Vitamin D receptor 

Zinc finger protein 350 

Tripartite motif鄄  containing 63 

V鄄  maf musculo鄄  aponeurotic 
fibrosarcoma oncogene 

V鄄  myc myelo鄄  cytomatosis viral 
oncogene 

Frequency a 

100/100 

99/100 

91/100 

44/100 

41/100 

38/100 

36/100 

33/100 

32/100 

P value b 

< 0.001 

< 0.001 

< 0.001 

0.002 

0.016 

0.032 

0.003 

0.001 

0.020 

Size c 

159

24

38

85

10

50

72

64 

115 

Major biological functions 
Cell movement; cell death; cell growth and proliferation; cell 
development; cell morphology 
Cell morphology; cell growth and proliferation; cell death; cell 
development; carbohydrate metabolism 
Cell movement; cell鄄  to鄄  cell signaling and interaction; cell 
morphology; cell assembly and organization; cell development 
Cell movement; cell cycle; cell death; cell growth and 
proliferation; gene expression 
Cell growth and proliferation; cell development; cell cycle; 
protein synthesis; cellular compromise 
Cell death; cell morphology; cell development; cell鄄  to鄄  cell 
signaling and interaction; cell assembly and organization 
Cell cycle; cell growth and proliferation; cell death; gene 
expression; cell development 
Cell cycle; cell death; cell growth and proliferation; cell 
development; DNA replication, recombination, and repair 
Cell death; cell cycle; cell growth and proliferation; cell 
development; cell morphology 

a Frequency of significant enrichments of the top binding motif in 100 resampled sample sets; b P value for differential expression; c number of genes in the 
genomic neighborhood. 
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Figure 4. Correlation between master regulator expression and predicted target gene expression. The most strongly expressed predicted target genes of 4 master 
regulators (SRF, MAF, CCDC6 and NKX2鄄  5) are sorted based on their normalized expression. Red color implies high expression and blue color low expression 
values. A general enhancing effect is clearly seen for the first 3 regulators whereas NKX2鄄  5 seems to inhibit most of its targets. 
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cancer­related processes, such as cell cycle, cell death 
and cell proliferation, appeared on the top of each list. To 
further establish the functional differences and similarities 
in neighborhoods of the 9 master regulators, and to 
relate those to the set of 2330 differentially expressed 
genes between GIST and LMS (  < 0.005) in the 
entire cohort, we systematically compared their 
functional enrichment scores in several categories. An 
illustration in Figure 5 shows negative log­transformed 
enrichment  values in 18 broad biological processes 
that were relevant for all the gene sets. 

We observed that the broadest terms, genetic 
disorder and cancer, were the most enriched for the set 
of all differentially expressed genes. This was expected 
because the global signature is a composition of all the 
cancer­related processes that are different between GIST 
and LMS, and therefore, the only unifying functional 
themes must be very broad. Among the more 
specialized terms, there was a large variation of 
enrichment scores between the neighborhoods. Some 
neighborhoods greatly exceeded the score of the global 
gene signature in many categories. Since the network 
genes are functionally coherent subsets of all 
differentially expressed genes, we expected them to gain 

a much higher score in specialized categories and 
possibly a lower score in broad categories. Overall, the 
highest significance scores in most categories were 
given to the SRF, LEF1, and CCDC6 neighborhoods. 
The diversity of SRF爷s cellular functions was also seen 
as a significant enrichment in most functional categories 
(Figure 5). 

We provided schematics of the genomic 
neighborhoods of SRF (Figure 6A) and ZNF350 (Figure 
6B). In Figure 6A, we highlighted three partially 
overlapping biological processes to which the SRF 
neighborhood is very significantly associated: cancer, 
muscle development, and cellular movement. To show 
the link from SRF to three generally cancer­related 
signaling pathways, we included PTEN, VEGF and ATM 
signaling, which are also more strictly defined than most 
processes and, therefore, contain fewer genes in 
general. For ZNF350 (Figure 6B), we highlighted the 
genes that are associated with cancer, cell death, and 
integrin signaling. 

Experimental identification of binding sites by 
ChIP­seq experiments validated 28 differentially 
expressed predicted targets of SRF, such as a 
computational marker PRUNE2. In addition to validating 
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Figure 5. Functional enrichment analysis for genomic neighborhoods. Enrichment scores of genes in 9 neighborhoods are compared against the global 
signature (all differentially expressed genes) in 18 categories. Interestingly, the global signature reaches the highest score in the broadest categories: cancer 
and genetic disorder. The neighborhoods score the highest in more specialized categories. 
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Figure 7. ChIP鄄  seq validation of SRF neighborhood. 
The vertical lines represent 30 kb sequence around 
transcription start sites (arrows point to the direction of 
transcription) of 9 predicted or known target genes of 
SRF. Read density profiles from a ChIP鄄  seq experiment 
are shown for each gene. There is a pronounced region of 
high read density (野peak冶) within the promoter showing 
autoregulation of SRF, regulation of actin genes (ACTA2, 
ACTB) and FHL2. SRF has not bound to the promoter of 
myocardin (MYOCD), one of the established targets of 
SRF. Predicted target PRUNE2 also shows a peak at their 
promoter region. 

SRF 

ACTA2 

ACTB 

FHL2 
MYOCD 

PRUNE2 
10 kb 

Figure 6. Graphical representation of the genomic neighborhoods of SRF and ZNF350. Genes are represented as nodes, and the biological relationship between 
two nodes is represented as an edge. All edges are either between the master regulator and its predicted targets or supported by at least one reference from the 
literature, a textbook, or canonical information stored in the Ingenuity Pathways Knowledge Base. Nodes are displayed using various shapes that represent the 
functional class of the gene product. In panel A for SRF, colored boxes encircle genes that are annotated to biological processes (cancer, muscle development, and 
cell movement) or signaling pathway (PTEN signaling, VEGF signaling, and ATM signaling). All genes shown here are differentially expressed between GIST and LMS 
(q < 0.001). Regulatory connections are shown by dotted arrows pointing the direction of regulation. MKL1 is the only upstream molecule known to regulate SRF, 
which, in turn, regulates the expression of several marker genes, including the computational marker PRUNE2 and MYOCD, which regulates immunohistochemical 
marker smooth muscle actin. In panel B for ZNF350, colored boxes encircle genes that are annotated to cancer, cell death, or integrin signaling. Notably, ZNF350 is 
predicted to bind to the promoter of muscle鄄  specific immunohistochemical marker of LMS, desmin (DES). 
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some of the predictions, several canonical SRF targets, 
such as actin genes and FHL2, also showed pronounced 
peaks in ChIP­seq data. SRF autoregulation by binding 
to its own promoter and binding to the co­activator MKL1 
were clearly observed. However, there were no SRF 
binding events detected in the promoter of another 
co­activator, myocardin (Figure 7). 

Discussion 
In this study, we developed a methodology for 

studying the global gene expression differences between 
two groups of samples in a biologically relevant context. 
Our method is a resampling­based computational 
approach that couples gene expression data with 
promoter scanning, database information, and gene set 
enrichment analysis to find the most robust and 

biologically relevant transcription factors, the master 
regulators. A difference between the master regulators 
and common marker genes is that markers are usually 
designed to be optimal for classification purposes, 
whereas the master regulators are likely more 
biologically relevant. Nevertheless, the master regulators 
may also be used as a more robust genetic signature, 
although tumor classification was not included in the 
scope of this study. The paramount importance of the 
master regulators is that they can control most of the 
difference in gene regulation patterns that are observed 
in the disease phenotypes through their extensive 
regulatory connections. Despite their biological 
relevance, the regulators themselves do not always 
appear on top of the list of the most differentially 
expressed genes, which makes it hard to identify them 
with conventional methods. 

In addition to identifying the key transcription factors, 
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our approach results in ma rked improvement in the 
interpretability of the global genetic signature. Only 
recently have enrichment analyses become the most 
common analysis for interpreting the biological theme of 
gene lists. In contrast to individually studying the top 
genes, enrichment analysis finds statistically significant 
over­ or under­representations of gene categories. 
Although this is a marked improvement to single gene 
analysis, applying it directly to the gene list has 
drawbacks of its own. Mainly, the differentially expressed 
genes are usually a product of numerous aberrant 
pathways. Therefore, the signature genes rarely have 
any real unified biological themes. The presented work 
extends the standard enrichment analysis workflow 
towards systems biology by refining the signature and 
integrating additional information. Linking transcription 
factors to their differentially expressed up­ and 
down­stream genes results in gene regulatory networks 
that are functionally coherent subsets of the global 
genetic signature. 

Genomic neighborhoods have several advantages 
over the use of a global genetic signature. First, 
enrichment analysis now gives us information not only 
about the functional difference between the samples but 
also on the function of the neighborhood. Second, it 
extends the knowledge on the functional role of the 
master regulator, even if information on the gene itself is 
scarce or unavailable. Third, the network topology 
contains direct information on the biochemical 
mechanism, which might lead to a differential clinical 
property in the phenotype. On the other hand, drawbacks 
include the difficulty of predicting transcription factor 
binding in mammals, lack of knowledge of gene 
functionality and regulation, and the inability to measure 
post­transcriptional regulation. Additionally, the selected 
significance threshold has an effect on the final network 
and even the master regulator itself. While computing 
enrichments alleviates this problem, the method could 
benefit from inclusion of probabilistic features making 
strict thresholds unnecessary. Even accounting for these 
obstacles, we believe that other investigators will benefit 
from using our methodology in their research. 

We demonstrated our approach by using it to 
investigate the biological differences in two soft tissue 
sarcomas, GIST and LMS. We uncovered 9 transcription 
factors that were robust and differentially expressed 
between the tumors. The most prominent regulator SRF 
is a widely expressed transcription factor that participates 
in many global and tissue­specific processes like muscle 
cell differentiation and growth factor­induced cell 
proliferation, but it has also been linked to human 
diseases like heart disease and cancer  [55] . Previous 
studies have also shown that overexpression of SRF 
co­factor myocardin (MYOCD) leads to increased 
migration ability in LMS [56] . This is well in accordance with 

our observation that the SRF neighborhood is strongly 
associated with cellular movement. The second 
transcription factor, LEF1, is a mediator of Wnt signaling 
through which it plays a role in tissue specification and 
apoptosis  [57,58] . This is reflected by high enrichment 
scores in the cell cycle, cell death, and tissue 
development categories in our study. The remarkably 
high enrichment of the LEF1 neighborhood in the cellular 
movement category is also a noteworthy finding. There is 
less evidence on the functional role of ubiquitously 
expressed CCDC6, but it has been linked to papillary 
thyroid carcinomas through fusion to RET 
proto­oncogene  [59] . Also worth noting is the strong 
association of the MYC neighborhood with cell death, 
growth, and proliferation, as could be expected as per its 
well­known biological effects as an oncogene  [60] . One 
concern is that many genes in human genome do not 
have any functional annotations. This fact affects 
particularly smaller gene sets which may contain only a 
few annotated genes and also likely induces a bias 
towards finding only the known functions for 
neighborhoods around extensively studied transcription 
factors such as MYC. The lack of knowledge on 
regulatory interactions is also one probable cause for the 
consistently lower significance scores of neighborhoods 
of NKX2­5, VDR, MAF, TRIM63, ZNF350. 

Although SRF and ZNF350 have not been 
associated with processes like cellular movement, cell 
death, and integrin signaling before, they have the 
potential to regulate the processes and signaling 
pathways through their extensive regulatory connections. 
Therefore, we associated SRF and ZNF350 with these 
cellular functions through our analysis and proposed the 
relevant regulatory relationships in detail. Similarly, we 
proposed several new associations for all 9 master 
regulators through functional enrichment analysis of their 
genomic neighborhoods. The 9 master regulators may 
directly or indirectly explain the differential regulation of 
many computational and immunohistochemical markers 
used to differentiate the clinical groups. For example, an 
immunohistochemical marker for LMS, desmin, is 
predicted to be directly regulated by ZNF350. Another 
example of direct regulation is SRF爷s predicted target 
PRUNE2, which has been used as a computational 
marker in an earlier 2­gene classifi er differentiating 
between GIST and LMS [45] . In addition, SRF is known to 
regulate its own muscle­specific co­activator MYOCD, 
which, together with SRF, forms a complex that is a 
master regulator of smooth muscle gene expression 
pattern [61] . One of the genes in this pattern is smooth 
muscle actin, which is another common 
immunohistochemical marker used in diagnosing LMS. 
Cell type­specific regulation for SRF has been shown 
before [62]  and probably accounts for many of the targets 
without visible peaks. 
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Uncovering SRF as an extremely robust master 
regulator differentiating between GIST and LMS is the 
most important finding of this work. Differential activation 
of SRF co­activators has been suggested as one way of 
directing SRF regulation to subsets of target genes in a 
tissue­specific manner. The only known co­factors that 
were differentially expressed in our data are NKX2­5, 
MYOCD, and MKL1. While MKL1 is ubiquitously 
expressed, MYOCD is required for the expression of 
smooth muscle specific genes [63] . Association to muscle 
development, on the other hand, may be explained by 
the cell lineage­specific expression rather than by the 
difference in tumor biology as leiomyosarcomas are 
tumors of the smooth muscle. Thus, they likely have a 
more smooth muscle cell­specific expression pattern 
than GISTs, which are thought to arise from interstitial 
cells of Cajal [64] . Having matching control samples would 
likely remove cell type­specific findings, but it is often 
very difficult to obtain such a sample for various practical 
reasons, such as the limited availability of healthy tissue. 
Even if some of the transcription factors were unrelated 
to these cancers, uncovering a fundamental regulatory 
program like smooth muscle­specific regulation supports 
our assertion that we can find meaningful gene 
regulatory networks and key factors behind them. 

We showcased here our novel data analysis 
framework in a topical biological setting and provided 
solid hypotheses for further experimental work in this 
field. Particularly, the functional associations of the 9 
master regulators warrant experimental validation in the 
context of GIST and LMS. An in depth investigation into 
these transcription factors may increase our knowledge 
of the functional differences between the tumors. 
Methodologically, genomic neighborhoods could be built 
similarly for studying different biological settings, such as 
tumor versus normal tissue, early stage versus late 
stage tumor, or primary tumor versus metastasis. By 
identifying key transcription factors, application into the 
aforementioned scenarios could help us understand the 
major mechanisms of tumorigenesis, disease 
progression, and metastasis. 

Conclusions 

In conclusion, we developed a framework that 
applies a systems approach to analyze the functional 
differences in gene expression patterns. The approach 
integrates several levels of data such as gene 
expression measurements, transcription factor binding 
site predictions, regulatory network topology, and 
information on gene function. Using a set of expression 
measurements from GIST and LMS, we demonstrated 
the applicability of our approach. Analyzing the 
differences in the expression patterns yielded many 
interesting starting points for future research that can 

potentially lead to better diagnostic methods and deeper 
understanding into biological differences of these tumors. 
Specifically, we uncovered 9 differentially expressed 
transcription factors around which we generated gene 
regulatory networks of differentially expressed genes 
using promoter analysis and literature­based database 
information. These master regulators and their genomic 
neighborhoods may be the epicenter of different clinical 
properties of GIST and LMS. 
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