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eZilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California,
Los Angeles, CA, USA

Handling Associate Editor: Michelle Mielke

Accepted 9 February 2018

Abstract. Immune mechanisms may be important in the pathogenesis of Alzheimer’s disease (AD). Yet, studies comparing
cerebrospinal fluid (CSF) and plasma immune marker levels of healthy and demented individuals have yielded conflicting
results. We analyzed CSF from 101 members of the parental history-positive PREVENT-AD cohort of healthy aging adults,
and 237 participants without dementia from the initial cohort of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1).
Following recent practice, we used the biomarkers total-tau and amyloid-�1-42 to allocate participants from each study into
four stages of AD pathogenesis: Stage 0 (no abnormality), Stage 1 (reduced amyloid-�1-42), Stage 2 (reduced amyloid-�1-42

and increased total-tau), or “Suspected Non-Alzheimer Pathology” (elevated total-tau only). Investigating the PREVENT-
AD participants’ CSF assay results for 19 immune/inflammatory markers, we found six that showed a distinct bi-directional
relationship with pathogenetic stage. Relative to Stage 0, these were diminished at Stage 1 but strongly increased at Stage
2. Among the ADNI participants (90 healthy controls and 147 with mild cognitive impairment), we found that 23 of 83
available CSF markers also showed this distinct pattern. These results support recent observations that immune activation
may become apparent only after the onset of both amyloid and tau pathologies. Unexpectedly, they also suggest that immune
marker activity may diminish along with earliest appearance of amyloid-� plaque pathology. These findings may explain
discordant results from past studies, and suggest the importance of characterizing the extent of AD pathology when comparing
clinical groups.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disorder characterized by extracellular amyloid-�
(A�) plaques, intracellular tau neurofibrillary tan-
gles, and widespread synapse loss. A decades-long
period of pathogenetic change precedes the appear-
ance of dementia [1–3]. Immune mechanisms are
thought to be important in this process [4]. In the
early 1990s, McGeer et al. [5] observed that co-
existence of AD and rheumatoid arthritis (RA) was
rare in autopsy data. These investigators had earlier
observed that inflammatory processes were vigorous
in the vicinity of AD lesions [6]. Because RA is often
treated with anti-inflammatory drugs, they suggested
that the latter might explain the low prevalence of
AD changes in RA patients. Ensuing epidemiologi-
cal studies identified an inverse relationship between
the use of non-steroidal anti-inflammatory drugs and
incidence of AD (for review, see [4]). More recently,
genetic studies have identified immune/inflammatory
pathways as modifiers of AD dementia risk [7–10].
Inflammatory changes are therefore thought to
be a response to appearance of AD pathology,
increasing linearly with disease progression. It is
widely assumed that such inflammatory activity is
harmful.

In fact, this last notion has not been verified in
vivo by measures in plasma or cerebrospinal fluid
(CSF) [11]. Instead, investigations in fully penetrant
autosomal dominant familial AD suggest that signif-
icant increases in immune signaling may occur only
after the appearance of both A� and tau pathologies
[12]. Similarly, other studies of the association of sin-
gle CSF immune markers and AD pathology have
suggested that the former decline concurrently with
reduction in A�1-42 concentration that typifies early
AD pathogenesis [13–15]. Here we describe multi-
analyte investigations of the association between AD
pathogenesis, as revealed by CSF biomarkers, and
several immune/inflammatory proteins. We report
initial observations in the high-risk PREVENT-
AD cohort of healthy older persons, followed by
analyses of CSF from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI-1). Our objective was
to determine whether variations in AD pathologi-
cal “stage” [16, 17] related to CSF immune and
other protein levels, and whether such varied asso-
ciation could explain conflicting results from past
studies.

METHODS

Participants

PREVENT-AD participants (Table 1) were 101
cognitively intact volunteers with a parental or
multiple-sibling history of “sporadic” AD [18]. They
scored an education-adjusted ≥23/30 on the Montreal
Cognitive Assessment [19], and had little if any dif-
ficulty with subsequent cognitive testing. Most were
60 years of age or older, but persons aged 55–59 years
were eligible if their age was within 15 years of their
youngest-affected relative’s onset. Each participant
and study partner provided written informed consent.
All procedures were approved by the McGill Univer-
sity Faculty of Medicine Institutional Review Board.
All research complied with ethical principles of the
Declaration of Helsinki.

ADNI-1 data were downloaded in February 2016
from http://adni.loni.usc.edu. ADNI was launched in
2003 as a public-private partnership led by Princi-
pal Investigator Michael W. Weiner. Its primary goal
has been to test whether serial magnetic resonance
imaging, positron emission tomography (PET), and
various clinical, biological and neuropsychological
markers can be combined to measure progression
of MCI and early AD. Given our interest in analy-
ses of ADNI participants before onset of dementia,
we limited analyses to 237 ADNI-1 participants with
available CSF data from the healthy control (n = 90)
and MCI groups (n = 147), the latter to enrich for
persons with likely A� or tau pathology (Table 1).

Cerebrospinal fluid measurements

Lumbar punctures (LPs) in PREVENT-AD vol-
unteers were performed following an overnight fast
using the Sprotte 24-gauge atraumatic needle. Sam-
ples of 20–30 mL were aliquoted (500 �L) into
propylene cryotubes and stored at –80°C. We used
procedures from the BIOMARK-APD consortium of
the EU Joint Program in Neurodegenerative Diseases,
to measure CSF concentrations of the AD biomarkers
A�1-42, total-tau (t-tau) and P181-tau (P-tau) using
the Innotest enzyme-linked immunosorbent assay
kit (Fujirebio, Ghent, Belgium). CSF apolipoprotein
E (apoE) levels were assayed using the Milliplex
APOMAG-62k human apolipoprotein cardiovascu-
lar disease multiplex kit (EMD-Millipore, Billerica,
MA, USA).

http://adni.loni.usc.edu
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Table 1
PREVENT-AD and ADNI demographics

PREVENT-AD ADNI-1
All participants Stage 0 Stage 1 Stage 2 SNAP All participants Stage 0 Stage 1 Stage 2 SNAP

Sample 101‡ 51 12 9 10 237 78 71 79 9
Age Mean (sd) 62.90 (5.56) 62.80 (5.31) 60.91 (5.52) 63.99 (4.39) 64.52 (8.66) 75.26 (6.68) 75.24 (6.71) 75.48 (6.09) 74.77 (7.40) 77.89 (4.04)
% Male 30.69 35.29 25 55.56 30 61.60 64.10 61.97 62.03 33.33
% APOE4-positive 36.63 31.37 50 88.89 20 42.19 10.26 52.11 68.35 11.11
Clinical Diagnostic

Category (HC: MCI)
101: 0 51: 0 12: 0 9: 0 10: 0 90: 147 49: 29 23: 48 11: 68 7: 2

Education (y) Mean (sd) 14.88 (2.93) 15.00 (2.89) 14.92 (2.35) 13.67 (3.32) 15.1 (1.59) 15.83 (2.94) 15.82 (2.76) 15.76 (3.15) 15.73 (2.94) 17.33 (2.79)
CSF A�1-42 (pg/mL)

Mean (sd)∗∗
1062.91 (280.65) 1161.58 (158.54) 705.02 (115.67) 611.35 (85.68) 1422.15 (113.63) 178.50 (56.06) 244.41 (24.71) 146.44 (22.31) 133.95 (21.90) 251.20 (28.32)

CSF t-tau (pg/mL)
Mean (sd)∗∗

273.09 (129.97) 221.94 (56.14) 177.59 (73.16) 522.45 (162.64) 435.48 (90.79) 92.17 (49.85) 58.08 (15.30) 67.47 (17.38) 146.15 (47.97) 108.58 (12.95)

CSF P-tau (pg/mL)
Mean (sd)∗∗

46.83 (18.00) 40.25 (10.37) 32.70 (10.71) 75.47 (19.89) 72.29 (11.45) 31.91 (15.94) 20.14 (7.20) 27.20 (13.00) 47.83 (11.95) 31.33 (8.92)

pg/mL, picograms per milliliter; sd, standard deviation; %APOE, proportion of APOE ε4 carriers; SNAP, Suspected Non-Alzheimer Pathology; HC, healthy controls; MCI, mild cognitive
impairment; ∗∗ADNI and PREVENT-AD used different assays to measure AD biomarkers. ‡ To enhance contrast, 19 individuals within ± 5% of inter-stage thresholds were not assigned to a stage,
except as noted in text. See text also for definition of the several stages.
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To characterize immune/inflammatory status, we
attempted to assay CSF concentrations of 45
cytokines and chemokines using a combination
of the Milliplex HCYTMAG60PMX29BK xMap
kit (EMD-Millipore; Supplementary Methods) and
the Mesoscale V-plex neuro-inflammation panel-1
(Mesoscale Discovery, Rockville, MD). Detailed pro-
cedures for the latter have been described elsewhere
[20]. We excluded measures that fell outside the
useful assay range. We also excluded markers with
excessive assay variation, as measured by a mean
coefficient of variation exceeding 15%. We then per-
formed an outlier analysis to identify and remove
from consideration assay values above the third or
below the first quartile ± 1.5 times the interquartile
distance [21]. After applying these QC restrictions,
there remained 10 markers (out of 21 initially) that
were assayed using both Mesoscale and Luminex
technologies. We compared the two techniques’
agreement and range of values for each analyte. When
necessary, we chose the marker assay with more
quality-control acceptable readings or without ceil-
ing or floor effects. We excluded analytes having ≤50
quality-control-acceptable readings from at least one
assay technique. Nineteen immune marker assays met
these standards.

The ADNI investigators had measured CSF A�1-42
and t-tau concentrations using Research Use Only
INNOBIA AlzBio3 immunoassay reagents (Fujire-
bio) on an xMap Luminex platform (http://adni.loni.
usc.edu/methods/biomarker-analysis/). CSF levels of
83 other proteins had been assayed via a multiplex
x-Map kit from Rules Based Medicine (MyriadRBM,
Austin, TX). Rigorous quality control standards
excluded markers with >10% missing data. Results
were then normalized using boxcox transformation,
etc. (for details, see http://adni.loni.usc.edu/wp-cont
ent/uploads/2012/01/2011Dec28-Biomarkers-Consor
tium-Data-Primer-FINAL1.pdf.)

Pathological staging of participants

Following recent convention [16, 17], we used
CSF biomarker data to characterize extent of AD
pathology in both PREVENT-AD and ADNI. Dis-
ease progress was classified as Stage 0 (normal
CSF A�1-42 and t-tau), Stage 1 (low A�1-42, low t-
tau), Stage 2 (low A�1-42 and elevated t-tau), and
Suspected Non-Alzheimer Pathology (SNAP, high
t-tau only). Very few PREVENT-AD participants
met the typical “below-normal amyloid” threshold

of 550 pg/mL. However, that threshold is intended
to discriminate healthy controls from subjects with
AD dementia, and may be too stringent for identi-
fication of persons with early A� pathology [22].
Given recent evidence that increasing amyloid burden
(reflected by decreasing CSF amyloid concentration)
portends poorer clinical outcomes even before typi-
cal thresholds are crossed [23–25], we chose a more
sensitive cut-off value for A�1-42 abnormality at the
25th percentile value or <870 pg/mL. Similarly, we
specified a t-tau abnormality threshold at the 75th
percentile, or >335 pg/mL (Fig. 1A). Since ADNI
analyses, which used different assay methods, had
included individuals with MCI we adopted the rec-
ommended A� and tau thresholds of <192 pg/mL and
>93 pg/ml (Fig. 1B) [26]. Because our PREVENT-
AD thresholds were somewhat arbitrary, and because
we wished if possible to increase contrasts between
stages, we decided a priori to exclude data from 19
PREVENT-AD individuals whose marker concen-
trations were within ± 5% of either the A� or tau
threshold.

APOE genotyping

In PREVENT-AD, APOE genotype was deter-
mined using the PyroMark Q96 pyrosequencer
(Qiagen, Toronto, ON, Canada). DNA was amplified
using RT-PCR with primers rs429358 amplification
forward 5’-ACGGCTGTCCAAGGAGCT G-3’, rs42
9358 amplification reverse biotinylated 5′-CACCTC
GCCGCGGTACTG-3′, rs429358 sequencing 5′-
CGGACATGGAGGACG-3′, rs7412 amplification
forward 5′-CTCCGCGATGCCGATGAC-3′, rs7412
amplification reverse biotinylated 5′-CCCCGGCC
TGGTACACTG-3′ and rs7412 sequencing 5′-CGA
TGACCTGCAGAAG-3′. In ADNI, APOE geno-
types had been determined using DNA extracted by
Cogenics (Beckman-Coulter, Pasadena, CA) [27].

Statistical analyses

In PREVENT-AD, we used multiple linear regres-
sion to examine the association of standardized
(z-score) concentrations of the 19 immune mark-
ers or apoE with pathological stage. To examine
agreement of our results with prior studies, we
assessed association of these same marker scores
with the individual CSF AD biomarkers A�1-42,
t-tau, P181-tau, and the t-tau/A�1-42 ratio. To meet
model assumptions, we log-transformed P-tau and

http://adni.loni.usc.edu/methods/biomarker-analysis/
http://adni.loni.usc.edu/methods/biomarker-analysis/
http://adni.loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
http://adni.loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf


P.-F. Meyer et al. / Bi-directional Association of CSF Immune Markers and AD Pathology 581

Fig. 1. CSF markers and pathological staging of Alzheimer’s disease. A) 101 healthy PREVENT-AD participants were classified as Stage 0,
1, 2, or SNAP based on A�1-42 (869.75 pg/mL) and t-tau (334.6 pg/mL) thresholds. Among them, to enhance contrasts, 19 (black) having CSF
A� and t-tau levels within ± 5% of inter-stage thresholds were removed a priori from consideration. B) ADNI healthy-control (green) and
MCI (blue) participants were similarly classified using the project’s recommended thresholds for A�1-42 (192 pg/mL) and t-tau (93 pg/mL).
C, D) Linear models, adjusted for participants’ age, gender, APOEε4 carrier status and (for ADNI only) clinical diagnostic category, were
used to assess CSF protein marker level differences by stage. CSF marker data were standardized using z-scores. The � coefficients for stage
differences from these models are represented. In PREVENT-AD (C), six CSF markers were associated bi-directionally with pathological
stage. Five were lower (∗) in Stage 1 versus Stage 0, and two were greater (+) in Stage 2 versus Stage 0 (p ≤ 0.05 uncorrected). In ADNI (D),
23 CSF markers were either increased (#) or decreased (∗) at Stage 1 and at Stage 2 (+ or –) vs. Stage 0. All 23 were significantly different
at Stage 2 versus Stage 1 (pFDR ≤ 0.05).

t-tau, and used boxcox transformation to normalize
the t-tau/A� ratio. Models were adjusted for par-
ticipant age, gender, and APOE ε4 carrier status.
p-values were corrected, as elsewhere, for multiple
comparisons using the false discovery rate (FDR)
method [28] specifying two-sided α = 0.05. Analyses
relied on Matlab (Mathworks Inc.; Natick, Mas-
sachusetts), SPSS24 (IBM Corp.; Armonk, NY) or
R v3.2.2.

We then tested the robustness of our PREVENT-
AD findings in the ADNI-1 cohort. To deal with
the multiple available ADNI protein markers, we
used Bayes factor analysis, employing Matlab’s
CGBayesNets [29], to identify and remove molecular

species unlikely to be associated with pathological
stage. The Bayes’ Factor is the ratio of posterior
likelihoods of the data being associated with vs. inde-
pendent of pathological stage [30]. We kept only
individual markers with a (logarithmic) Bayes’ Fac-
tor >0, thus providing any evidence in favor of an
association between marker levels and pathological
stage. Multiple linear regression models then identi-
fied markers that differed by stage after adjustment
for participant age, gender, APOE ε4 carrier status
and clinical diagnostic group. As in PREVENT-AD,
we also used regression models to assess association
of these markers with A�1-42, t-tau, P181-tau, and the
t-tau/A�1-42 ratio.
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RESULTS

Demographic characteristics

Demographic characteristics of both the
PREVENT-AD and ADNI-1 participants are
summarized in Table 1. Whereas PREVENT-AD
included 70% women, ADNI-1 had a majority of
men. ADNI participants were also more than a decade
older on average. The table indicates the two groups’
distributions by pathological stage. As expected,
ADNI included larger proportions of persons at
Stages 1 or 2.

PREVENT-AD immune marker concentrations
and pathological stage

After categorizing PREVENT-AD participants by
pathological stage, FDR-adjusted models revealed
only trend-level differences in the 20 analyzed mark-
ers when comparing Stage 0 versus Stage 1 or
Stage 2. Inference here was limited, however, by
the small number of individuals at Stages 1 and 2.
Omitting FDR adjustment, we observed a consis-
tent bi-directional pattern of association between six
marker scores and pathological stage, with reduced
concentrations at Stage 1 and/or increased levels at
Stage 2 (Table 2, Fig. 1C). Because a post hoc power
analysis indicated that we had less than the desired
90% power to observe a statistically significant effect
for IL-12p40, however, results with this latter marker
should be interpreted cautiously. As well, IL-15, IL-8,
ICAM-1, and VCAM-1 showed significant elevation
at Stage 2 vs. Stage 1 (Fig. 1C). Despite the small
size of the SNAP sample, this group showed elevation
after FDR adjustment in all of the above-mentioned
markers as well as granulocyte colony-stimulating
factor (GCSF), interferon gamma-induced protein 10
(IP-10), and IL-16 (Supplementary Table 1).

PREVENT-AD immune marker concentrations
and AD biomarkers

In corroborative analyses, we found that apoE and
seven of the 19 CSF immune markers in PREVENT-
AD increased with t-tau/A�1-42 ratio (pFDR ≤ 0.05,
Supplementary Table 2). Levels of these markers
increased especially with t-tau and P-tau. Interest-
ingly, four markers (apoE, IL-15, IL-8, and IL-12p70)
also increased with A� concentration, suggesting
reduced plaque burden [31, 32]. Although unex-
pected, this association between increasing levels of

immune markers and A� has noted before [12–15].
It provides one possible explanation for the bi-
directional pattern in Fig. 1C.

ADNI protein marker concentrations,
pathological stage, and AD biomarkers

Given the limited size of the PREVENT-AD sam-
ple, we wished to verify whether this bi-phasic pattern
generalized to other proteins assayed in CSF. Thus,
we pursued similar analyses in ADNI-1, including
participants with MCI. Bayes factor analysis reduced
the 83 ADNI CSF protein markers to 38 with any like-
lihood of association to pathological stage (Fig. 2).
Multiple linear regression modeling then showed that
23 of these differed significantly between Stage 0
and Stage 1 or Stage 2 (pFDR ≤ 0.05; Fig. 1D,
Supplementary Table 3). Marker results by stage
again revealed bi-directional patterns, with all but two
markers showing reduction at Stage 1 and/or increase
at Stage 2. Exceptions were Cystatin-C and fibroblast
growth factor-4 (FGF-4), which showed the oppo-
site pattern. Importantly, all remaining markers were
increased at Stage 2 vs. Stage 1. As in PREVENT-
AD, all but three of these (IL-3, tissue inhibitor of
metalloproteinase-1, and FGF-4) correlated overall
with t-tau/A�1-42 ratio (Supplementary Table 4).

Only three markers (apoE, VCAM-1, and vascu-
lar endothelial growth factor [VEGF]) were common
to analyses of the PREVENT-AD and ADNI sam-
ples. In both groups, VCAM-1 and apoE correlated
well with t-tau/A�1-42 ratio (Fig. 3) and showed sim-
ilar patterns of association with pathological stages,
although results were less robust in PREVENT-AD.
These associations failed to generalize for VEGF
(Supplementary Tables 1 and 3). APOE carrier status
and clinical diagnostic group did not contribute in our
models, as illustrated in Table 3 and Fig. 2.

DISCUSSION

Immune processes are important in the pathogen-
esis of AD [4]. For example, activated microglia and
astrocytes co-localize with amyloid plaques in the
brains of AD animal models and individuals with
dementia [6].

In the high-risk but cognitively unimpaired
PREVENT-AD cohort, we observed a distinct bi-
directional relationship between six immune marker
levels and pathological stage, an approximate indi-
cator of disease progression. This non-linear pattern
appeared despite a direct overall correlation between



P.-F. Meyer et al. / Bi-directional Association of CSF Immune Markers and AD Pathology 583

Table 2
PREVENT-AD and ADNI cerebrospinal fluid markers associated with Alzheimer’s disease pathological stages

PREVENT-AD ADNI

IL-12p40 AXL Receptor Tyrosine Kinase Chromogranin A
IL-12p70 CD40 antigen Cystatin-C
IL-8 IL-3 Fibroblast Growth Factor 4
IL-15 Macrophage Colony Stimulating Factor-1 Matrix Metalloproteinase-3
Soluble Vascular Cell Adhesion

Molecule-1 (sVCAM-1)
Heparin-Binding EGF-Like Growth Factor Osteopontin

Soluble Intercellular Cell Adhesion
Molecule-1 (sICAM-1)

Hepatocyte Growth Factor Tissue Inhibitor of Metalloproteinases-1

Transforming Growth Factor α Tumor Necrosis Factor Receptor-2
Vascular Endothelial Growth Factor Vascular Cell Adhesion Molecule-1
Heart Fatty Acid Binding Protein Apolipoprotein-E
Lectin like Oxidized LDL-Receptor-1 Clusterin (Apolipoprotein J)
Angiotensin Converting Enzyme Trefoil Factor-3
Tissue Factor

Fig. 2. Bayes factor analysis identifies 38 ADNI CSF markers potentially associated with pathological stage. Shown is a matrix representation
of linear regression models predicting association of 38 CSF marker levels with pathological stage with adjustment for age, gender, clinical
diagnostic category, and APOE status. T -values for each association are reported. For categorical variables, the results are shown as
comparisons against a reference. For gender, the reference category is male; for APOE it is non-carriage of ε4; for diagnosis (Dx), healthy
control; and for pathological stage, Stage 0 (no abnormality).

four of these markers with t-tau/A�1-42 ratio. In a
corroborative analysis of the ADNI-1 participants
(90 HCs and 147 with MCI) having CSF mea-
surements for 83 proteins, we identified a similar
pattern of change with advancing AD pathology. As
described previously by others [12–15], CSF immune
marker levels increased overall with advancing AD

pathology in both cohorts. However, an important
refinement of this trend suggested that such marker
levels increased strongly only after appearance of
tau abnormality. Indeed, a number of CSF proteins,
including immune markers, appeared to decrease
with decline in A�1-42 (i.e., with increasing plaque
burden).



584 P.-F. Meyer et al. / Bi-directional Association of CSF Immune Markers and AD Pathology

Fig. 3. Markers common to both cohorts show similar association with AD pathology. Adjusted response plots show the association of
apolipoprotein E level, VEGF and VCAM-1 with t-tau/A�1-42 ratio. R2 values are given for the fully adjusted model, and p-values are
reported for the given CSF marker in this model.

Table 3
Coefficients of fully adjusted linear regression models evaluating the association of CSF markers with pathological stage

Age (y) Gender APOE ε4 Clinical Pathological
carrier status Diagnostic Group Stage

PREVENT-AD
apoE �: 0.00 p: 0.29 �: 0.08 p: 0.71 �: –0.08 p: 0.74 �: 0.32 p: 0.002
VCAM-1 �: 0.00 p: 0.20 �: 0.15 p: 0.58 �: –0.28 p: 0.29 �: 0.40 p: 0.002
VEGF �: 0.00 p: 0.23 �: –0.27 p: 0.29 �: –0.16 p: 0.56 �: 0.03 p: 0.77
ADNI
apoE �: 0.01 p: 0.22 �: –0.39 p: 0.002 �: –0.47 p: 0.0006 �: –0.22 p: 0.10 �: 0.38 p: 5.38E-7
VCAM-1 �: 0.04 p: 5.37E-6 �: –0.68 p: 7.08E-8 �: –0.20 p: 0.12 �: –0.06 p: 0.63 �: 0.24 p: 7.19E-4
VEGF �: 0.03 p: 1.39E-3 �: –0.47 p: 3.26E-4 �: –0.16 p: 0.24 �: –0.28 p: 0.04 �: 0.29 p: 1.54E-4

PREVENT-AD: Increased CSF immune activity
with advancing AD pathology

Studies in the PREVENT-AD cohort are of par-
ticular interest because they focus on changes in
the pre-symptomatic or very early-symptomatic evo-
lution of AD pathology. This characteristic of the
sample enabled us to examine closely the stages of

transition between absence of AD-related changes
through early evidence of tau pathology. In find-
ings similar to those of others [20], increases in
the t-tau/A�1-42 ratio were accompanied by higher
concentrations of IL-15, MCP-1, ICAM-1, and
VCAM-1. Observations in this cohort that immune
markers tended to increase only after the appearance
of tau abnormality are consistent also with recent
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observations in autosomal dominant AD [12]. Fur-
thermore, the pattern is reminiscent of that observed
for YKL-40 in pre-clinical “sporadic” AD [14].

ADNI: Bi-directional pattern of association
between CSF proteins and pathological stage

Studies in the ADNI sample provided comple-
mentary evidence to PREVENT-AD. While ADNI
included healthy individuals, these were on average
a decade older. In addition, ADNI considered individ-
uals with more severe cognitive symptoms who were
accordingly more likely to have advanced pathology.
This feature provided a notable opportunity to verify
the bi-directional pattern observed in PREVENT-
AD. Some 25% of the markers analyzed showed
the expected pattern. Interestingly, again most of
these proteins also showed a correlation with the t-
tau/A�1-42 ratio.

These results suggest that, independent of clini-
cal diagnosis, there exists a moderate early decrease
in CSF immune markers that is not captured by
t-tau/A�1-42 ratio. This pattern appears primarily
related to decreasing CSF A�1-42. Because, in both
samples, CSF t-tau accounts for more variance in
the ratio than does A�1-42, this effect may ordinar-
ily be hidden by the stronger—opposite– association
with tau.

Nature of markers showing the bi-directional
pattern

PREVENT-AD markers that exhibit a bi-
directional pattern of association with stage are
readily recognized as markers of neuro-immune pro-
cesses. The IL-12/23 signaling pathway is thought
to be important in AD, as its regulation may mitigate
pathological and cognitive expression of disease in
mice [33]. Both IL-12 and IL-23 promote immune
responses by stimulating T-cells [34]. IL-12 does so
by inducing production of interferon-γ while IL-23
favors the production of IL-17 [35]. It is unclear,
however, whether IL-12 levels are elevated in AD
[36–38]. IL-8 plays an important role in the chemo-
taxis of neutrophils [39, 40] which have been recently
identified as possible actors in the immune response
to AD pathology [41]. IL-8 is a useful marker
of intrathecal inflammation and is produced by a
variety of activated innate immune cells [42]. Again,
however, it is unclear whether it is upregulated in AD
[11, 43]. IL-15 is a general stimulator of immunity as
it activates natural killer, CD8, and T-cells [44, 45].

Its levels have been reported as being lower in plasma
of AD patients [46] but higher in the CSF of AD vs.
other, non-inflammatory neurological disorders [47].

ICAM and VCAM are cell adhesion molecules.
While they play roles in the vascular system, they are
also important in immune responses. For instance,
endothelial cell VCAM-1 expression is induced by
cytokines, promoting adhesion of lymphocytes [48].
In inflammatory reactions, production of VCAM-
1 by endothelial cells was initially believed to
limit inflammation [49]. Recent work however, sug-
gests that this peptide may play an active role in
blood-brain barrier (BBB) disruption [50]. In the
immune-activated brain, VCAM is also produced
by activated astrocytes [51]. ICAM-1, produced by
fibroblast and endothelial cells, is potentiated by IL-
1 signaling [52]. ICAM-1 is involved in leukocyte
recruitment and migration through the BBB [53]. In
all, therefore, these markers appear closely related to
the potentiation of innate immunity through recruit-
ment of immune cells via chemotactic signaling or
BBB disruption.

Although they are individually different, ADNI
markers showing the same bi-directional relation
to pathological stage appear to have overlapping
mechanisms of action (Fig. 4). For instance, AXL
receptor tyrosine kinase [54, 55], IL-3 [56], CD40
antigen [57], Macrophage colony stimulating fac-
tor [58], Lectin-like oxidized LDL receptor [59],
and Chromogranin-A [60] among others have been
implicated in activation and recruitment of immune
cells in CNS inflammatory processes. Similarly, other
markers such as VEGF [61], VCAM-1 and the
Matrix-Metalloproteinase 3 [62] are associated with
vascular function but may facilitate the entrance of
immune cells into the CNS through either chemo-
taxis or BBB breakdown. All of this suggests that
several immune and vascular changes may occur con-
currently with the appearance of AD pathology, as
suggested previously [3].

It is unclear why most of these markers remain
unchanged or are diminished with appearance of
early amyloid pathology. Speculative explanations
include a lack of inflammatory response to initial
AD pathology [12, 13, 15]. However, animal work
has shown that A� plaques are surrounded by acti-
vated microglia with associated cytokine production
(reviewed by [4]). An interesting observation in both
cohorts is that, despite their small numbers, partici-
pants with ‘SNAP’ have even higher immune marker
levels than the Stage 2 group. This observation is
relatively weak in PREVENT-AD, where it reaches
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Fig. 4. Overlapping theoretical biological pathways of identified ADNI and PREVENT-AD proteins.

statistical significance only for IL12-P70 (p = 0.001),
but is stronger in ADNI where it holds for 17/23
proteins (data not shown, all p < 0.05). These find-
ings raise the possibility that A� plaques initially
buffer or diminish the normal brain immune response
to insult. Additional studies, including longitudinal
observations will be necessary to evaluate this idea.

Strengths and limitations

A clear limitation in PREVENT-AD is its small
numbers of individuals at pathological Stages 1 and,
especially, 2. Another caveat is that only VCAM-
1 remained significantly reduced at Stage 1 or
increased at Stage 2 when we included the 19
participants with AD biomarkers in the ± 5% “no
man’s land” around inter-stage thresholds. Even so,
an association with stage for the remaining four
immune markers remained evident at a trend level
of P < 0.1 (unadjusted). Furthermore, the differences
in PREVENT-AD and ADNI assays for measure-
ment of CSF AD and protein markers pose some
difficulty for the interpretation of these results. In
all, three markers assayed in both cohorts showed

similar results, thereby supporting our conclusions.
At the very least, therefore, studies of immune mech-
anisms in AD should consider stage and extent of
pathological change beyond clinical diagnosis.
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