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Induced Pluripotent Stem Cells and 
Their Potential Applications
Induced pluripotent stem cells (iPSCs) are generated from somatic 

cells, such as skin fibroblasts, by ectopic expression of defined 

reprogramming factors. Within a few years of the first report of the 

generation of mouse iPSCs, several laboratories reportedly reproduced 

these cells using other cell types and species using similar 

approaches.1–4 This early attention on reproducible methods for the 

production of iPSCs from mammalian cells accelerated research into 

iPSC technology for clinical applications. iPSCs show unlimited 

proliferation capacity and pluripotency, as observed in embryonic stem 

cells (ESCs), and thus have significant advantages as a cell source for 

producing sufficient numbers of any cell type. In contrast with ESCs, 

human (h) iPSCs can be established from differentiated cells without 

destroying human embryos, thereby overcoming related ethical issues. 

Thus, iPSCs have been extensively investigated worldwide for 

applications in disease modelling, drug screening and regenerative 

medicine (Figure 1).2,5

When hiPSCs are derived from patients with a genetic disease caused 

by a mutation, such patient-derived iPSCs are called disease-specific 

hiPSCs. As disease-specific hiPSCs contain the same genetic information 

as the patient, including mutations corresponding to the altered gene 

function,6,7 disease-specific hiPSCs could potentially be a powerful tool 

for modelling human disease. Particularly in cardiovascular research, 

obtaining a sufficient number of cardiomyocytes (CMs) from patients is 

challenging due to the highly invasive procedures required to extract 

them. Further, the low proliferation capacity of CMs limits researchers’ 

ability to maintain these cells in culture. Being able to generate iPSC-

derived CMs (hiPSC-CMs) from a specific patient overcomes this 

problem, and enables identification of typical cellular responses to 

pathological stress and therapeutic agents because these cells 

potentially reflect the biological responses of an individual patient’s own 

CMs (Figure 1). 

Recent genetic research has led to the identification of gene mutations 

responsible for hereditary heart diseases. Investigations into the 

pathophysiology of those inherited diseases often use animal models 

that partially mirror the disease conditions. However, animal studies are 

low throughput, time consuming and relatively expensive. Moreover, 

there are interspecies differences between humans and the 

experimental animals in terms of molecular and physiological properties 

(e.g. ion channel expression profile, heart rate), as well as in the cellular 

responses to pathological stress. Therefore, experimental results 
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obtained from animal models do not perfectly recapitulate the conditions 

occurring in humans, and are less reliable for the purpose of 

extrapolation. In contrast, disease-specific hiPSCs could be a valuable 

tool in research on inherited diseases and for testing therapeutic agents. 

hiPSCs are created from somatic cells, which can be easily collected 

from accessible patient tissues, such as skin and blood. Owing to their 

self-renewal property, hiPSCs could be used to produce a sufficient 

number of specific cell types following appropriate differentiation 

methods for further experiments in vitro.

Human Induced Pluripotent Stem Cells 
for Modelling Inherited Arrhythmias
Advances in cardiovascular research have increased our understanding 

of the molecular mechanisms underlying various genetic diseases. 

Comprehensive genetic studies have identified causal mutations 

responsible for phenotypes of inherited cardiovascular diseases such 

as long QT syndrome (LQTS), Brugada syndrome and cardiomyopathies. 

LQTS is characterised by a significantly prolonged QT interval 

attributable to delayed repolarisation in the ventricular myocardium. 

Some types of LQTS cause life-threatening arrhythmias in response to 

stimuli such as swimming and sudden loud noise. Genetic studies 

have found a number of gene loci responsible for LQTS in families 

with a high incidence of the disease. Despite an absence of clinical 

symptoms under sedentary conditions in patients with LQTS, once 

ventricular tachyarrhythmias are triggered by specific stimuli, patients 

with LQTS are prone to exhibit syncope. Sustained arrhythmias 

ultimately lead to VF, resulting in sudden cardiac death. Several 

studies on patients with LQTS have identified a number of mutations 

in genes encoding cardiac ion channels, which are membrane 

proteins regulating the generation and propagation of action 

potential.8–10 However, these mutations are not always responsible for 

the observed symptoms, even when the patients are exposed to the 

stimuli that trigger electrophysiological changes. 

Effects of the stimuli or therapeutic agents, as well as the incidence of 

cardiac events, vary considerably among individual patients. Therefore, 

to address issues related to proarrhythmic mechanisms in individuals 

with inherited LQTS, patient-derived hiPSC-CMs with the corresponding 

mutation(s) could serve as powerful tools for in vitro experiments. 

Previous studies characterising mutations of the alpha-subunit of the 

potassium voltage-gated channel subfamily Q member 1 (KCNQ1; also 

known as KVLQT1 and KV7.1) using patient-derived iPSC-CMs revealed 

that impaired membrane trafficking of Ks channels and reduced 

delayed rectifier potassium channel current (IKr) cause LQT1.9,11,12 

Itzhaki et al. introduced reprogramming factors into dermal fibroblasts 

obtained from patients with a mutation in the alpha-subunit of 

potassium voltage-gated channel subfamily H member 2 (KCNH2; 

responsible for IKr) causing LQT2.13 Spontaneously beating hiPSC-CMs 

carrying this mutation were used for functional analysis and exhibited 

a prolonged QT interval similar to that in LQTS patients. 

Similar studies using hiPSC-CMs derived from a patient with a missense 

mutation in KCNH2 also exhibited action potential prolongation, smaller 

IKr, early afterdepolarisations and arrhythmias. These changes were 

recovered or exaggerated by pharmacological agents or selective RNA 

interference in disease-specific hiPSC-CMs.13–16 

Disease-specific hiPSC-CMs from patients and families with Timothy 

syndrome (LQT8) that have a mutation located in calcium voltage-gated 

channel subunit alpha1 C (CACNA1C; responsible for the L-type calcium 

current, ICa,L) have been established and assessed for mutation-

associated phenotypes in vitro.10,17,18 An LQT8 model using patient-

specific hiPSC-CMs reflected cellular electrical abnormalities, including 

prolonged action potential duration, delayed afterdepolarisations and 

altered Ca2+ transients. In contrast, roscovitine, an inhibitor of cyclin-

dependent kinase 5, a key mediator involved in the regulation of CaV1.2 

channels, enhanced ICa,L inactivation, shortened action potential 

duration, restored the irregular Ca2+ transient and decreased the 

frequency of abnormal depolarisations in LQT8 hiPSC-CMs.10,17,18 

Furthermore, other inherited arrhythmias have been investigated using 

disease-specific hiPSC-CMs, including various types of LQTS – 

mutations in sodium voltage-gated channel alpha subunit 5 (SCN5A), 

potassium inwardly rectifying channel subfamily J member 2 (KCNJ2), 

calmodulin 1 (CALM1) or calmodulin 2 (CALM2), short QT syndrome 

(KCNH2 mutation), Brugada syndrome type 1 (SCN5A mutation) and 

catecholaminergic polymorphic ventricular tachycardia (mutations in 

ryanodine receptor 2 (RYR2) or calsequestrin 2 [CASQ2]).19–40 These 

cells recapitulated cellular electrophysiological changes in the heart of 

patients. Table 1 summarises the different studies that have used 

hiPSC-CMs as models to investigate inherited arrhythmias.

Human Induced Pluripotent Stem Cells for 
Modelling of Inherited Cardiomyopathies
In addition to inherited arrhythmias, there are some incidences of 

cardiomyopathies in families carrying specific genetic variant(s) that 

are responsible for causing the disease. Dilated cardiomyopathy (DCM) 

is a major type of cardiomyopathy that is characterised by systolic 

dysfunction and dilated cardiac chambers comprised of thin myocardial 

walls.41 Most cases of DCM without any identifiable cause (e.g. coronary 

artery disease, systemic hypertension, viral infection) are diagnosed as 

‘idiopathic’ DCM. 

Based on family history and clinical findings, including sudden cardiac 

death, heart failure and abnormal echocardiography, previous clinical 

studies have proposed that familial transmission of idiopathic DCM is 

Figure 1: Human Induced Pluripotent Stem Cell 
Applications in Cardiovascular Medicine
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observed in 20–50% of patients.42–44 When idiopathic DCM is identified 

in two or more family members, it is defined as familial DCM (FDC). FDC 

is largely caused by autosomal dominant mutations in key cardiac 

genes encoding sarcomere-related proteins, cytoskeletal proteins, 

mitochondrial proteins, nuclear membrane proteins and calcium 

regulators.43,45,46 These loss-of-function mutations lead to the abnormal 

morphology and function of the heart that is seen in idiopathic DCM. 

Moreover, recently developed high-throughput gene analyses have 

revealed that inherited DCM is associated with mutations in more than 

100 gene loci.47 

Although the pathophysiology of FDC is heterogeneous, the effect of 

each individual mutation has been unclear in the context of FDC. To 

address this, human CMs are ideal for in vitro functional analysis of 

mutations associated with FDC, but, as mentioned earlier, it is difficult 

to acquire a renewable source of cardiac cells. Compared with animal 

models and non-CMs expressing DCM mutant proteins, hiPSC-CMs are 

expected to exhibit responses similar to those observed in native 

human myocardium. For example, individual families carry a mutation 

that causes an arginine-to-tryptophan substitution at amino acid 

position 173 in the cardiac troponin T (cTnT) protein.48 Patient-specific 

hiPSCs were produced using minimally invasive procedures from skin 

fibroblasts of family members, and hiPSC-CMs were generated and 

tested to investigate the mechanisms underlying FDC. The FDC hiPSC-

CMs exhibited reduced Ca2+ influx and contractility, despite normal 

electrophysiological properties. These cells also showed the 

characteristic patchy structure of myofilaments, which was enhanced 

upon noradrenaline stimulation and stretching, leading to systolic 

dysfunction.48 

This is consistent with the fact that the tendency towards DCM is 

enhanced by increases in inotropic effects and hypertension. These 

findings explain the involvement of cTnT dysfunction in the development 

of DCM. Thus, FDC hiPSC-CMs recreate, at least in part, the 

pathophysiology of FDC in human patients. Other causal gene mutations 

responsible for inherited cardiomyopathies, including DCM, 

hypertrophic cardiomyopathy and arrhythmogenic right ventricular 

cardiomyopathy/dysplasia, have been reported.49–57 Table 2 lists 

studies that have used hiPSC-CMs as models for investigating inherited 

cardiomyopathies.

Although numerous studies have summarised the characteristic 

features of familial heart diseases using patient-specific hiPSC-CMs, as 

described above, it is still challenging to fully recapitulate the disease 

phenotype using iPSC-CM-based disease modelling, primarily because 

hiPSC-CMs exhibit immature functions and morphology. For example, 

an incomplete ion channel profile (e.g. lack of IK1, corresponding to 

slower action potential kinetics and a relatively positive diastolic 

potential) and subcellular structure (e.g. the absence of or 

underdeveloped T-tubule and sarcomere formation) are commonly 

observed in hiPSC-CMs.58–60 The gene expression profile of hiPSC-CMs 

also resembles that of foetal CMs and is distinct from that of adult 

CMs.60,61 The immaturity of hiPSC-CMs in terms of function and gene 

expression profile may result in controversial findings, particularly in 

the investigation of late-onset cardiac diseases that largely require 

adult CM-like cells for disease modelling. 

In an in vitro study using hiPSC-CMs to investigate the pathophysiology 

of late-onset Pompe disease, which is characterised by slow progression 

of muscle weakness, although patient-specific hiPSC-CMs exhibited 

typical features associated with the disease, such as intracellular 

glycogen accumulation and mitochondrial dysfunction, they did not 

fully exhibit the autophagic abnormalities that are observed in vivo.62,63 

This may be overcome by using fully differentiated hiPSC-CMs 

assembled along with a complete subcellular system for muscle 

contraction, Ca2+ cycling, metabolism and protein recycling. Recent 

studies have contributed to the development of protocols for the 

maturation of hiPSC-CMs using electrical and/or mechanical 

stimulation, a 3D culture system with scaffold materials, coculture with 

fibroblasts or CMs in vitro and in vivo and a combination of these 

techniques, leading to improvement in contractility, Ca2+ handling and 

electrophysiological properties.64–68

Lack of chamber-specific characteristics is another major concern 

regarding the use of hiPSC-CMs for disease modelling. As the structure, 

haemodynamic stress, developmental origin and protein expression 

profile are quite distinctive among the cardiac chambers,59,69,70 the 

molecular features of individual CMs in each chamber would also differ. 

Some inherited arrhythmias and cardiomyopathies have chamber-

specific characteristics. Clinical phenotypes of Brugada syndrome and 

ARVC/D likely originate from the right ventricular outflow tract. 

However, disease models based on hiPSC-CMs may not fully 

recapitulate the characteristic features of any specific region of the 

heart. 

A differentiated hiPSC-CM cluster usually consists of 

electrophysiologically heterogeneous subtypes including ventricular-, 

atrial- and nodal-like myocytes. The ventricular-like hiPSC-CMs exhibit 

properties analogous to those of human ventricular myocytes (e.g. 

steep upstroke (Phase 0) and plateau phase (Phase 4) of action 

potentials), whereas the nodal-type hiPSC-CMs exhibit slower action 

potential kinetics and depolarising diastolic potential.71 This mixed 

subtype of hiPSC-CMs leads to a wide range of results rather than 

being representative of a specific subtype of CMs. The development of 

protocols for subtype-specific and/or chamber-specific differentiation 

of hiPSC-CMs will accelerate research to identify the chamber-specific 

phenotypes associated with heart diseases. Although some genetic 

heart diseases are rare, many of them lead to life-threatening conditions. 

Therefore, further intensive research using disease-specific hiPSC-CMs 

should be promoted to gain insights into the underlying mechanisms 

and to identify potential therapeutic targets of these genetic diseases 

in order to develop novel therapeutic approaches for individual patients.

Human Induced Pluripotent Stem Cells  
as a Tool for Drug Screening
Currently, the development of new drugs requires multiple processes, 

including screening of numerous putative drug compounds based on 

chemical structure and in vitro assays of pharmacological activity, 

followed by analyses of pharmacokinetics and safety in vitro and in vivo 

and, finally, clinical trials in humans. In most cases, these processes take 

many years until the candidate compounds are tested in humans.72 Even 

though the effectiveness of compounds may be promising in cell culture 

and animal experiments, problems identified in clinical trials assessing 

the effects of these compounds on the QT interval (known as a thorough 

QT/QTc study) following pharmacokinetics examination in humans may 

halt the further development of these compounds. However, if human 

cardiac cells were widely available, drug testing in human CMs might 

provide effective and safe drug candidates rapidly and economically, 

because the response to compounds tested using in vitro experiments 

with human CMs could resemble that of the human body. 
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Disease-specific hiPSC-derived CMs potentially exhibit similar 

physiological characteristics as diseased cells in patients, and may be 

a useful tool to predict the benefits and side-effects of drug candidates 

in patients. Drug screening using hiPSC-CMs to detect side effects 

such as drug-induced QT prolongation and ventricular 

tachyarrhythmias could contribute to the early withdrawal of 

therapeutic compounds with undesirable cardiac effects before the 

initiation of in vivo experiments and clinical trials.72,73 Other than the 

development of new drugs, the cardiac side effects of some already 

marketed drugs, including anti-arrhythmic drugs and non-cardiac 

drugs such as antihistamines, antipsychotics and anti-infective drugs, 

have been widely recognised. These drugs have the potential to cause 

torsade de pointes, in combination with other endogenous and 

environmental factors.73 Drug testing using hiPSC-CMs may also be 

applicable in this context.

Although hiPSC-CMs share some characteristics with adult human 

ventricular myocytes, hiPSC-CMs are commonly known to exhibit the 

features of foetal ‘immature’ CMs in terms of their gene expression 

profile, structure and electrophysiology, as noted above. hiPSC-CMs 

express cardiac-specific genes (e.g. those encoding cTnT, alpha-myosin 

heavy chain) and exhibit ion channel activity (e.g. similar INa, IKr and ICa,L 

current density to that in adult ventricular CMs);12–14,16,71,74–83 however, 

morphologically they are more rounded or multiangular in shape and 

smaller in size, with disorganised myofibrils and a lack of t-tubules, 

which contribute to the slower kinetics of the Ca2+ transient.38,76,83–87 

These important differences should be considered when using hiPSC-

CMs in drug screening. Further investigations are needed to develop 

optimal methods for more efficient differentiation into functional CMs 

that exhibit the typical properties of adult CMs.

Gene Editing to Create Disease-Specific 
Human Induced Pluripotent Stem Cells
Comprehensive genetic studies have identified causal mutations 

responsible for genetic heart diseases. hiPSC-CMs have emerged as a 

highly effective tool for modelling such diseases. Although it is 

technically possible to induce disease-specific hiPSC-CMs, patient-

derived somatic cells may not be readily available, especially in the 

case of rare diseases. In addition, interclonal variation is seen among 

hiPSC clones, resulting from different genetic backgrounds associated 

with individual cells. 

Clustered regularly interspaced short palindromic repeat (CRISPR)/

CRISPR-associated protein (Cas) 9 is a gene-editing technology that 

can solve the challenges associated with the genetic variability.88,89 

CRISPR is a DNA sequence found in bacterial genomes; it is thought to 

be derived from viruses, is known to protect bacteria from repeated 

viral infections and acts as a basic adaptive immune system for 

prokaryotes. Cas9 is a DNA-cutting enzyme that recognises CRISPR 

sequences and causes site-specific DNA double-strand breaks (Figure 

2). Recent advances in CRISPR/Cas9-based gene editing have 

markedly improved the efficiency and specificity of the method and 

expanded its applications, including knockout, repression and 

activation of genes of interest.90 

In phenotypic analysis of monogenic inherited diseases, this technology 

is also applicable to either disease-associated mutagenesis in wild-

type hiPSCs or to the correction of pathogenic gene mutations in 

disease-specific hiPSCs (Figure 3).89 Analysis of disease-specific hiPSCs 

versus wild-type hiPSCs established from healthy donor cells as a 

control may result in unreliable outcomes due to the different genetic 

backgrounds of the disease-specific hiPSCs and control cells. However, 

CRISPR/Cas9-based gene editing enables the preparation of an isogenic 

control by normalising a disease-relevant mutation in disease-specific 

hiPSCs or by inducing the mutation in wild-type hiPSCs so that diseased 

Figure 2: Principle of Clustered Regularly 
Interspaced Short Palindromic Repeat (CRISPR)/
CRISPR-associated (Cas) 9-Based Gene Editing
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Figure 3: Gene Editing in Human Induced 
Pluripotent Stem Cell for Cardiac Applications
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and control cells with the same genetic background are obtained. In 

addition, CRISPR/Cas9-based gene editing could allow the production 

of isogenic cells with intact and/or corrected variant alleles in non-

coding regions including enhancers that may reveal the role of 

mutations in the transcriptional regulation of genes responsible for a 

disease phenotype. This method shows promise for the proper 

evaluation of the involvement of mutated genes in disease phenotype 

following in vitro differentiation (Figure 3).

Polygenic diseases, which differ from monogenic inherited diseases 

in that more than one gene is involved in their dysfunction, impose 

another limitation on the use of hiPSCs. Polygenic diseases are 

thought to be caused by a combination of multiple mutations, each of 

which has a small effect, with or without extrinsic factors. Although 

gene editing has been used to edit multiple regions of the genome, a 

major challenge towards using hiPSCs to investigate polygenic 

diseases is identification of the corresponding mutations and 

understanding how each mutation contributes to the pathogenesis of 

these multifactorial diseases. Moreover, in some cases, environmental 

factors may strongly affect disease phenotypes, making experimental 

conditions and further analysis more complicated. Comprehensive 

reviews are available for detailed information regarding the use of 

gene editing in iPSC research.89,91 

Consideration of Human Induced 
Pluripotent Stem Cells for Application in 
Disease Modelling and Clinical Use
Despite extensive benefits, there are still many unsolved issues 

regarding the use of hiPSCs in further applications. One of the major 

issues is that the quality of individual hiPSC lines is variable, even when 

an hiPSC line is derived from one individual. Classical iPSC 

reprogramming methods using retroviral or lentiviral vectors may 

cause random insertional mutations in the host genome, resulting in 

alteration of subsequent cell phenotypes.92 

Recent advances in reprogramming strategies using non-integrating, 

virus-free and vector-free methods are overcoming this issue.93,94 

However, it is still technically difficult to eliminate the risk of gene 

mutations during the reprogramming process because forced 

expression of reprogramming factors can induce DNA damage.95 In 

fact, protein-coding point mutations acquired during or after 

reprogramming were identified in multiple hiPSC lines, some of which 

exhibit unpredictable phenotypes.96 Thus, accumulating evidence 

regarding the mechanism underlying the reprogramming of iPSCs is 

expected to provide insights into how the quality of hiPSC lines may be 

stabilised and standardised for use as a cell source for further 

experiments and clinical application.

Precise investigations into the pathophysiology of inherited diseases 

using patient-derived iPSCs require improved protocols that allow highly 

efficient differentiation of hiPSCs into a specific cell type, because the 

differentiation efficiency in current experiments remains significantly 

lower than what is desired. The characteristic variability of cells 

differentiated from disease-specific hiPSCs is a considerable hurdle that 

research into pathophysiology must overcome. Epigenetic modifications 

are presumably one of the causes of phenotype variability. Optimised 

sorting methods to collect only a desired cell type from the heterogeneous 

cell population need to be developed. Current research efforts are 

advancing cardiac differentiation protocols to generate spontaneously 

beating CM-like cell clusters, but the clusters of differentiated cells that 

are heterogeneous also contain other mesodermal derivatives, such as 

smooth muscle cells and endothelial cells, as well as undifferentiated 

cells, which may increase the risk of tumourigenesis.

Pathophysiological studies using disease-specific hiPSCs allow us to 

determine the cellular characteristics of a disease, but do not recreate 

the function of the whole organ within the body. Although complex 

bioengineering approaches, such as organoid formation and 3D culture 

systems, are available,97,98 it is difficult to use these methods in the 

heart because CMs in the heart are predominantly situated in a highly 

organised structure comprising vessels, nerves, mesenchymal cells, 

extracellular matrix and myocytes. In addition, CMs are continuously 

exposed to dynamically changing neuroendocrine factors and 

mechanical stresses. Therefore, it should be considered that studies 

using disease-specific hiPSC-CMs fundamentally provide simplified 

information regarding the pathophysiology in patients with a familial 

disease. Nevertheless, the experimental data from these cells may 

reveal responses that mirror actual phenomena in human patients, and 

are thus valuable for gaining an understanding of the inherited disease.

Conclusion
Disease-specific hiPSC-CMs, which carry the same genomic information 

as patients with inherited diseases, can undoubtedly be of use in 

research to address the pathophysiology of monogenic inherited 

diseases, the drug responsiveness of patients for personalised 

medicine and drug development by providing a cell source for screening 

compounds and drug safety testing. A combination of disease-specific 

hiPSC-CMs and gene-editing technologies may further advance our 

understanding of genetic diseases and drug development in 

cardiovascular medicine. 
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