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Abstract

Induced pluripotent stem cells (iPSCs) are derived from reprogrammed somatic cells by the introduction of defined transcription factors. They
are characterised by a capacity for self-renewal and pluripotency. Human (h)iPSCs are expected to be used extensively for disease modelling,
drug screening and regenerative medicine. Obtaining cardiac tissue from patients with mutations for genetic studies and functional analyses is
a highly invasive procedure. In contrast, disease-specific hiPSCs are derived from the somatic cells of patients with specific genetic mutations
responsible for disease phenotypes. These disease-specific hiPSCs are a better tool for studies of the pathophysiology and cellular responses
to therapeutic agents. This article focuses on the current understanding, limitations and future direction of disease-specific hiPSC-derived

cardiomyocytes for further applications.
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Induced Pluripotent Stem Cells and

Their Potential Applications

Induced pluripotent stem cells (iPSCs) are generated from somatic
cells, such as skin fibroblasts, by ectopic expression of defined
reprogramming factors. Within a few years of the first report of the
generation of mouse iPSCs, several laboratories reportedly reproduced
these cells using other cell types and species using similar
approaches.” This early attention on reproducible methods for the
production of iPSCs from mammalian cells accelerated research into
iPSC technology for clinical applications. iPSCs show unlimited
proliferation capacity and pluripotency, as observed in embryonic stem
cells (ESCs), and thus have significant advantages as a cell source for
producing sufficient numbers of any cell type. In contrast with ESCs,
human (h) iPSCs can be established from differentiated cells without
destroying human embryos, thereby overcoming related ethical issues.
Thus, iPSCs have been extensively investigated worldwide for
applications in disease modelling, drug screening and regenerative
medicine (Figure 1).25

When hiPSCs are derived from patients with a genetic disease caused

by a mutation, such patient-derived iPSCs are called disease-specific
hiPSCs. As disease-specific hiPSCs contain the same genetic information
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as the patient, including mutations corresponding to the altered gene
function,®” disease-specific hiPSCs could potentially be a powerful tool
for modelling human disease. Particularly in cardiovascular research,
obtaining a sufficient number of cardiomyocytes (CMs) from patients is
challenging due to the highly invasive procedures required to extract
them. Further, the low proliferation capacity of CMs limits researchers’
ability to maintain these cells in culture. Being able to generate iPSC-
derived CMs (hiPSC-CMs) from a specific patient overcomes this
problem, and enables identification of typical cellular responses to
pathological stress and therapeutic agents because these cells
potentially reflect the biological responses of an individual patient’s own
CMs (Figure 1).

Recent genetic research has led to the identification of gene mutations
responsible for hereditary heart diseases. Investigations into the
pathophysiology of those inherited diseases often use animal models
that partially mirror the disease conditions. However, animal studies are
low throughput, time consuming and relatively expensive. Moreover,
there are interspecies differences between humans and the
experimental animals in terms of molecular and physiological properties
(e.g. ion channel expression profile, heart rate), as well as in the cellular
responses to pathological stress. Therefore, experimental results
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Figure 1: Human Induced Pluripotent Stem Cell
Applications in Cardiovascular Medicine
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obtained from animal models do not perfectly recapitulate the conditions
occurring in humans, and are less reliable for the purpose of
extrapolation. In contrast, disease-specific hiPSCs could be a valuable
tool in research on inherited diseases and for testing therapeutic agents.
hiPSCs are created from somatic cells, which can be easily collected
from accessible patient tissues, such as skin and blood. Owing to their
self-renewal property, hiPSCs could be used to produce a sufficient
number of specific cell types following appropriate differentiation
methods for further experiments in vitro.

Human Induced Pluripotent Stem Cells

for Modelling Inherited Arrhythmias

Advances in cardiovascular research have increased our understanding
of the molecular mechanisms underlying various genetic diseases.
Comprehensive genetic studies have identified causal mutations
responsible for phenotypes of inherited cardiovascular diseases such
as long QT syndrome (LQTS), Brugada syndrome and cardiomyopathies.

LQTS is characterised by a significantly prolonged QT interval
attributable to delayed repolarisation in the ventricular myocardium.
Some types of LQTS cause life-threatening arrhythmias in response to
stimuli such as swimming and sudden loud noise. Genetic studies
have found a number of gene loci responsible for LQTS in families
with a high incidence of the disease. Despite an absence of clinical
symptoms under sedentary conditions in patients with LQTS, once
ventricular tachyarrhythmias are triggered by specific stimuli, patients
with LQTS are prone to exhibit syncope. Sustained arrhythmias
ultimately lead to VF, resulting in sudden cardiac death. Several
studies on patients with LQTS have identified a number of mutations
in genes encoding cardiac ion channels, which are membrane
proteins regulating the generation and propagation of action
potential 819 However, these mutations are not always responsible for
the observed symptoms, even when the patients are exposed to the
stimuli that trigger electrophysiological changes.

Effects of the stimuli or therapeutic agents, as well as the incidence of
cardiac events, vary considerably among individual patients. Therefore,

to address issues related to proarrhythmic mechanisms in individuals
with inherited LQTS, patient-derived hiPSC-CMs with the corresponding
mutation(s) could serve as powerful tools for in vitro experiments.
Previous studies characterising mutations of the alpha-subunit of the
potassium voltage-gated channel subfamily Q member 1 (KCNQT; also
known as K LQT1 and K,7.1) using patient-derived iPSC-CMs revealed
that impaired membrane trafficking of Ks channels and reduced
delayed rectifier potassium channel current (/) cause LQT1.%11.12
Itzhaki et al. introduced reprogramming factors into dermal fibroblasts
obtained from patients with a mutation in the alpha-subunit of
potassium voltage-gated channel subfamily H member 2 (KCNH2;
responsible for /) causing LQT2.'® Spontaneously beating hiPSC-CMs
carrying this mutation were used for functional analysis and exhibited
a prolonged QT interval similar to that in LQTS patients.

Similar studies using hiPSC-CMs derived from a patient with a missense
mutation in KCNH2 also exhibited action potential prolongation, smaller
I, early afterdepolarisations and arrhythmias. These changes were
recovered or exaggerated by pharmacological agents or selective RNA
interference in disease-specific hiPSC-CMs.'3-1¢

Disease-specific hiPSC-CMs from patients and families with Timothy
syndrome (LQT8) that have a mutation located in calcium voltage-gated
channel subunit alpha1 C (CACNA1C; responsible for the L-type calcium
current, /) have been established and assessed for mutation-
associated phenotypes in vitro.'%7.¢ An LQT8 model using patient-
specific hiPSC-CMs reflected cellular electrical abnormalities, including
prolonged action potential duration, delayed afterdepolarisations and
altered Ca?* transients. In contrast, roscoviting, an inhibitor of cyclin-
dependent kinase 5, a key mediator involved in the regulation of Ca,1.2
channels, enhanced /., inactivation, shortened action potential
duration, restored the irregular Ca? transient and decreased the
frequency of abnormal depolarisations in LQT8 hiPSC-CMs."0.17.18

Furthermore, other inherited arrhythmias have been investigated using
disease-specific hiPSC-CMs, including various types of LQTS -
mutations in sodium voltage-gated channel alpha subunit 5 (SCN5A),
potassium inwardly rectifying channel subfamily J member 2 (KCNJ2),
calmodulin 1 (CALM1) or calmodulin 2 (CALMZ2), short QT syndrome
(KCNH2 mutation), Brugada syndrome type 1 (SCN5A mutation) and
catecholaminergic polymorphic ventricular tachycardia (mutations in
ryanodine receptor 2 (RYR2) or calsequestrin 2 [CASQZ2))."%° These
cells recapitulated cellular electrophysiological changes in the heart of
patients. Table 1 summarises the different studies that have used
hiPSC-CMs as models to investigate inherited arrhythmias.

Human Induced Pluripotent Stem Cells for
Modelling of Inherited Cardiomyopathies

In addition to inherited arrhythmias, there are some incidences of
cardiomyopathies in families carrying specific genetic variant(s) that
are responsible for causing the disease. Dilated cardiomyopathy (DCM)
is a major type of cardiomyopathy that is characterised by systolic
dysfunction and dilated cardiac chambers comprised of thin myocardial
walls.* Most cases of DCM without any identifiable cause (e.g. coronary
artery disease, systemic hypertension, viral infection) are diagnosed as
‘idiopathic’ DCM.

Based on family history and clinical findings, including sudden cardiac

death, heart failure and abnormal echocardiography, previous clinical
studies have proposed that familial transmission of idiopathic DCM is
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Table 1: Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Models of Inherited Arrhythmias

Disease Phenotype

Causal Genes
(Mutations)

Cellular Phenotypes in iPSC-CMs

Drug Responses

References

LQT1 LQT with broad-based T wave by reduced /<, KCNQ1 (R190Q) Reduced /ks, APD prolongation, irregular KCNQ1 Isoproterenol-induced EAD was prevented by propranolol  Morettin et al.?
polymorphic ventricular tachycardia, often localisation, increased susceptibility to isoproterenol- (beta-blocker)
triggered by sympathetic activation (e.g. swim induced tachyarrhythmia
exercise, emotions) KCNQT (exon 7 Reduced /s, APD prolongation, drug-induced FPD ML277 (KY channel activator) partially restored /s and APD  Egashira et al.™
deletion) prolongation Ma et al.”?
KCNQ1 (R594Q, R190Q) Reduced /%S activation, APD prolongation, abnormal LUF7346 (hERG modulator) normalised /% and APD Sala et al.’®
subcellular KCNQ1 R190Q localisation Isoproterenal-induced EAD was prevented by propranolol
(beta-blocker)
LQT2 LQT with bifid T wave by reduced /¥, ventricular ~ KCNH2 (A614V) Reduced /X, APD prolongation, EADS, triggered activity EADs were completely blocked by nifedipine (Ca?* blocker), Itzhaki et al.’®
tachyarrhythmias triggered by sudden noise at abolished by pinacidil (<A™ channel agonist), inhibited by
rest; higher incidence in women ranolazine (late N@ inhibitor)
KCNH2 (R176W) Reduced /¥, APD prolongation, EADS Hypersensitivity to arrhythmogenic drugs including sotalol  Lahti et al.*
(beta-blocker)
KCNH2 (G1681A) APD/FPD prolongation EADs were induced by E4031 (hERG blocker), APD Matsa et al.”™
prolongation and EAD were reduced by nicorandil and
PD118057 (hERG activators), isoproterenol-induced EADS
were blocked by nadolol and propranolol (beta-blockers)
KCNH2 (N0O6I) Reduced /¥, APD prolongation LUF7346 (hERG modulator) normalised /% and APD Sala et al.’®
LQT3 LQT with late peaking T wave by enhanced /Nt SCN5A (V240M, R535Q) APD prolongation, delayed /Ne time to peak and N/A Fatima et al.?

lethal events often at rest

inactivation time

SCNSA (V1763M) Enhanced /N4, APD prolongation The cellular phenotype was reversed by mexiletine (Na Ma et al.®
blocker)
SCN5A (R1644H) APD prolongation, EADS, shorter /N inactivation time Sodium current irregularities were rescued by mexiletine  Malan et al.?

and ranolazine (Na" blockers)

SCN5A (F1473C)

MNa irregularities, delayed repolarisation, fatal arrhythmia

Enhanced MNat was reduced by increased pacing and
mexiletine (Nav blocker)

Terrenoire et al.%6

LQT3 (Overlap
syndrome)

LQT accompanied by bradycardia, conduction
disease and/or Brugada syndrome

SCN5A (1795insD)

Decreased N2 density and upstroke velocity, APD
prolongation, increased persistent /N2

N/A

Davis et al.”?

LQT7 (Andersen-
Tawil syndrome)

LQT accompanied by periodic paralysis, skeletal
developmental abnormalities

KCNJ2 (R218W, R67W,

R218Q)

Irregular Ca?* release

Cellular phenotype was improved by flecainide and
pilsicainide (Na" blockers) and KB-R7943 (IN®X inhibitor)

Kuroda et al.?!

LQT8 (Timothy Dysfunction in multiple organs characterised by CACNATC (G1216A) APD prolongation, DADs, abnormal Ca?* transients, Cellular phenotype was rescued by roscovitine Yazawa et al.’®
syndrome) congenital cardiac defects, immune deficiency, irregular and slow contraction (CDKS5 inhibitor)
i i cal ) ) ) : "
autism and LQT with enhanced /% CACNATC (GA06R) Irregular contractions, excessive Ca2* influx, APD Ca?* defects and abnormal channel inactivation were Yazawa et al.10
prolongation, irregular Ca?* transients improved by roscovitine (CDK5 inhibitor) and Song et al.””

LQT14 LQT associated with calmodulin-1 mutation CALM1 (F142L) QT prolongation, higher sensitivity to isoproterenal, QT prolongation was reversed by verapamil Rocchetti et al.?®

enhancing /cat altered rete dependency, defective /°L inactivation (Ca?* blocker)
LQT15 LQT associated with calmodulin-2 mutation CALM (D130G) APD prolongation, altered Ca?* transients, defective /cat N/A Limpitikul et al.22

enhancing /cat inactivation, rescued by mutant gene suppression

CALM2 (N98S) Lower beating rate, APD prolongation, defective /cat N/A Yamamoto et al.?’

inactivation, rescued by gene correction of mutant allele

(Continued)
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observed in 20-50% of patients.*?>-*4 When idiopathic DCM is identified
in two or more family members, it is defined as familial DCM (FDC). FDC
is largely caused by autosomal dominant mutations in key cardiac
genes encoding sarcomere-related proteins, cytoskeletal proteins,
mitochondrial proteins, nuclear membrane proteins and calcium
regulators.*34546 These loss-of-function mutations lead to the abnormal
morphology and function of the heart that is seen in idiopathic DCM.
Moreover, recently developed high-throughput gene analyses have
revealed that inherited DCM is associated with mutations in more than
100 gene loci.*”

Although the pathophysiology of FDC is heterogeneous, the effect of
each individual mutation has been unclear in the context of FDC. To
address this, human CMs are ideal for in vitro functional analysis of
mutations associated with FDC, but, as mentioned earlier, it is difficult
to acquire a renewable source of cardiac cells. Compared with animal
models and non-CMs expressing DCM mutant proteins, hiPSC-CMs are
expected to exhibit responses similar to those observed in native
human myocardium. For example, individual families carry a mutation
that causes an arginine-to-tryptophan substitution at amino acid
position 173 in the cardiac troponin T (CTnT) protein.*® Patient-specific
hiPSCs were produced using minimally invasive procedures from skin
fibroblasts of family members, and hiPSC-CMs were generated and
tested to investigate the mechanisms underlying FDC. The FDC hiPSC-
CMs exhibited reduced Caz influx and contractility, despite normal
electrophysiological properties. These cells also showed the
characteristic patchy structure of myofilaments, which was enhanced
upon noradrenaline stimulation and stretching, leading to systolic
dysfunction.*8

This is consistent with the fact that the tendency towards DCM is
enhanced by increases in inotropic effects and hypertension. These
findings explain the involvement of cTnT dysfunction in the development
of DCM. Thus, FDC hiPSC-CMs recreate, at least in part, the
pathophysiology of FDC in human patients. Other causal gene mutations
responsible  for inherited cardiomyopathies, including DCM,
hypertrophic cardiomyopathy and arrhythmogenic right ventricular
cardiomyopathy/dysplasia, have been reported.*=>’ Table 2 lists
studies that have used hiPSC-CMs as models for investigating inherited
cardiomyopathies.

Although numerous studies have summarised the characteristic
features of familial heart diseases using patient-specific hiPSC-CMs, as
described above, it is still challenging to fully recapitulate the disease
phenotype using iPSC-CM-based disease modelling, primarily because
hiPSC-CMs exhibit immature functions and morphology. For example,
an incomplete ion channel profile (e.g. lack of /,, corresponding to
slower action potential kinetics and a relatively positive diastolic
potential) and subcellular structure (e.g. the absence of or
underdeveloped T-tubule and sarcomere formation) are commonly
observed in hiPSC-CMs.%¢0 The gene expression profile of hiPSC-CMs
also resembles that of foetal CMs and is distinct from that of adult
CMs.%061 The immaturity of hiPSC-CMs in terms of function and gene
expression profile may result in controversial findings, particularly in
the investigation of late-onset cardiac diseases that largely require
adult CM-like cells for disease modelling.

Inan in vitro study using hiPSC-CMs to investigate the pathophysiology

of late-onset Pompe disease, which is characterised by slow progression
of muscle weakness, although patient-specific hiPSC-CMs exhibited

EUROPEAN CARDIOLOGY REVIEW

typical features associated with the disease, such as intracellular
glycogen accumulation and mitochondrial dysfunction, they did not
fully exhibit the autophagic abnormalities that are observed in vivo.6263
This may be overcome by using fully differentiated hiPSC-CMs
assembled along with a complete subcellular system for muscle
contraction, Caz cycling, metabolism and protein recycling. Recent
studies have contributed to the development of protocols for the
maturation of hiPSC-CMs using electrical and/or mechanical
stimulation, a 3D culture system with scaffold materials, coculture with
fibroblasts or CMs in vitro and in vivo and a combination of these
techniques, leading to improvement in contractility, Caz handling and
electrophysiological properties.®*-68

Lack of chamber-specific characteristics is another major concern
regarding the use of hiPSC-CMs for disease modelling. As the structure,
haemodynamic stress, developmental origin and protein expression
profile are quite distinctive among the cardiac chambers,>:¢?70 the
molecular features of individual CMs in each chamber would also differ.
Some inherited arrhythmias and cardiomyopathies have chamber-
specific characteristics. Clinical phenotypes of Brugada syndrome and
ARVC/D likely originate from the right ventricular outflow tract.
However, disease models based on hiPSC-CMs may not fully
recapitulate the characteristic features of any specific region of the
heart.

A differentiated  hiPSC-CM  cluster  usually — consists  of
electrophysiologically heterogeneous subtypes including ventricular-,
atrial- and nodal-like myocytes. The ventricular-like hiPSC-CMs exhibit
properties analogous to those of human ventricular myocytes (e.g.
steep upstroke (Phase 0) and plateau phase (Phase 4) of action
potentials), whereas the nodal-type hiPSC-CMs exhibit slower action
potential kinetics and depolarising diastolic potential.”" This mixed
subtype of hiPSC-CMs leads to a wide range of results rather than
being representative of a specific subtype of CMs. The development of
protocols for subtype-specific and/or chamber-specific differentiation
of hiPSC-CMs will accelerate research to identify the chamber-specific
phenotypes associated with heart diseases. Although some genetic
heart diseases are rare, many of them lead to life-threatening conditions.
Therefore, further intensive research using disease-specific hiPSC-CMs
should be promoted to gain insights into the underlying mechanisms
and to identify potential therapeutic targets of these genetic diseases
in order to develop novel therapeutic approaches for individual patients.

Human Induced Pluripotent Stem Cells

as a Tool for Drug Screening

Currently, the development of new drugs requires multiple processes,
including screening of numerous putative drug compounds based on
chemical structure and in vitro assays of pharmacological activity,
followed by analyses of pharmacokinetics and safety in vitro and in vivo
and, finally, clinical trials in humans. In most cases, these processes take
many years until the candidate compounds are tested in humans.”? Even
though the effectiveness of compounds may be promising in cell culture
and animal experiments, problems identified in clinical trials assessing
the effects of these compounds on the QT interval (known as a thorough
QT/QTc study) following pharmacokinetics examination in humans may
halt the further development of these compounds. However, if human
cardiac cells were widely available, drug testing in human CMs might
provide effective and safe drug candidates rapidly and economically,
because the response to compounds tested using in vitro experiments
with human CMs could resemble that of the human body.
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IPSC Applications in Heart Diseases

Disease-specific hiPSC-derived CMs potentially exhibit similar
physiological characteristics as diseased cells in patients, and may be
a useful tool to predict the benefits and side-effects of drug candidates
in patients. Drug screening using hiPSC-CMs to detect side effects
such as drug-induced QT prolongation and ventricular
tachyarrhythmias could contribute to the early withdrawal of
therapeutic compounds with undesirable cardiac effects before the
initiation of in vivo experiments and clinical trials.”272 Other than the
development of new drugs, the cardiac side effects of some already
marketed drugs, including anti-arrhythmic drugs and non-cardiac
drugs such as antihistamines, antipsychotics and anti-infective drugs,
have been widely recognised. These drugs have the potential to cause
torsade de pointes, in combination with other endogenous and
environmental factors.”® Drug testing using hiPSC-CMs may also be
applicable in this context.

Although hiPSC-CMs share some characteristics with adult human
ventricular myocytes, hiPSC-CMs are commonly known to exhibit the
features of foetal ‘immature’ CMs in terms of their gene expression
profile, structure and electrophysiology, as noted above. hiPSC-CMs
express cardiac-specific genes (e.g. those encoding cTnT, alpha-myosin
heavy chain) and exhibit ion channel activity (e.g. similar /,, /.. and I.,,
current density to that in adult ventricular CMs);2-14.16.71.74-83 however,
morphologically they are more rounded or multiangular in shape and
smaller in size, with disorganised myofibrils and a lack of t-tubules,
which contribute to the slower kinetics of the Caz transient.3876.83-87
These important differences should be considered when using hiPSC-
CMs in drug screening. Further investigations are needed to develop
optimal methods for more efficient differentiation into functional CMs
that exhibit the typical properties of adult CMs.

Gene Editing to Create Disease-Specific

Human Induced Pluripotent Stem Cells
Comprehensive genetic studies have identified causal mutations
responsible for genetic heart diseases. hiPSC-CMs have emerged as a
highly effective tool for modelling such diseases. Although it is
technically possible to induce disease-specific hiPSC-CMs, patient-
derived somatic cells may not be readily available, especially in the
case of rare diseases. In addition, interclonal variation is seen among
hiPSC clones, resulting from different genetic backgrounds associated
with individual cells.

Clustered regularly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated protein (Cas) 9 is a gene-editing technology that
can solve the challenges associated with the genetic variability.8.8?
CRISPR is a DNA sequence found in bacterial genomes; it is thought to
be derived from viruses, is known to protect bacteria from repeated
viral infections and acts as a basic adaptive immune system for
prokaryotes. Cas9 is a DNA-cutting enzyme that recognises CRISPR
sequences and causes site-specific DNA double-strand breaks (Figure
2). Recent advances in CRISPR/Cas9-based gene editing have
markedly improved the efficiency and specificity of the method and
expanded its applications, including knockout, repression and
activation of genes of interest.”®

In phenotypic analysis of monogenic inherited diseases, this technology
is also applicable to either disease-associated mutagenesis in wild-
type hiPSCs or to the correction of pathogenic gene mutations in
disease-specific hiPSCs (Figure 3).8? Analysis of disease-specific hiPSCs
versus wild-type hiPSCs established from healthy donor cells as a
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Figure 2: Principle of Clustered Regularly
Interspaced Short Palindromic Repeat (CRISPR)/
CRISPR-associated (Cas) 9-Based Gene Editing
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Figure 3: Gene Editing in Human Induced
Pluripotent Stem Cell for Cardiac Applications
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control may result in unreliable outcomes due to the different genetic
backgrounds of the disease-specific hiPSCs and control cells. However,
CRISPR/Cas9-based gene editing enables the preparation of an isogenic
control by normalising a disease-relevant mutation in disease-specific
hiPSCs or by inducing the mutation in wild-type hiPSCs so that diseased
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and control cells with the same genetic background are obtained. In
addition, CRISPR/Cas9-based gene editing could allow the production
of isogenic cells with intact and/or corrected variant alleles in non-
coding regions including enhancers that may reveal the role of
mutations in the transcriptional regulation of genes responsible for a
disease phenotype. This method shows promise for the proper
evaluation of the involvement of mutated genes in disease phenotype
following in vitro differentiation (Figure 3).

Polygenic diseases, which differ from monogenic inherited diseases
in that more than one gene is involved in their dysfunction, impose
another limitation on the use of hiPSCs. Polygenic diseases are
thought to be caused by a combination of multiple mutations, each of
which has a small effect, with or without extrinsic factors. Although
gene editing has been used to edit multiple regions of the genome, a
major challenge towards using hiPSCs to investigate polygenic
diseases is identification of the corresponding mutations and
understanding how each mutation contributes to the pathogenesis of
these multifactorial diseases. Moreover, in some cases, environmental
factors may strongly affect disease phenotypes, making experimental
conditions and further analysis more complicated. Comprehensive
reviews are available for detailed information regarding the use of
gene editing in iPSC research.89

Consideration of Human Induced
Pluripotent Stem Cells for Application in

Disease Modelling and Clinical Use

Despite extensive benefits, there are still many unsolved issues
regarding the use of hiPSCs in further applications. One of the major
issues is that the quality of individual hiPSC lines is variable, even when
an hiPSC line is derived from one individual. Classical iPSC
reprogramming methods using retroviral or lentiviral vectors may
cause random insertional mutations in the host genome, resulting in
alteration of subsequent cell phenotypes.??

Recent advances in reprogramming strategies using non-integrating,
virus-free and vector-free methods are overcoming this issue.”%*
However, it is still technically difficult to eliminate the risk of gene
mutations during the reprogramming process because forced
expression of reprogramming factors can induce DNA damage.’® In
fact, protein-coding point mutations acquired during or after
reprogramming were identified in multiple hiPSC lines, some of which
exhibit unpredictable phenotypes.”® Thus, accumulating evidence
regarding the mechanism underlying the reprogramming of iPSCs is
expected to provide insights into how the quality of hiPSC lines may be

stabilised and standardised for use as a cell source for further
experiments and clinical application.

Precise investigations into the pathophysiology of inherited diseases
using patient-derived iPSCs require improved protocols that allow highly
efficient differentiation of hiPSCs into a specific cell type, because the
differentiation efficiency in current experiments remains significantly
lower than what is desired. The characteristic variability of cells
differentiated from disease-specific hiPSCs is a considerable hurdle that
research into pathophysiology must overcome. Epigenetic modifications
are presumably one of the causes of phenotype variability. Optimised
sortingmethods to collect only adesired cell type from the heterogeneous
cell population need to be developed. Current research efforts are
advancing cardiac differentiation protocols to generate spontaneously
beating CM-like cell clusters, but the clusters of differentiated cells that
are heterogeneous also contain other mesodermal derivatives, such as
smooth muscle cells and endothelial cells, as well as undifferentiated
cells, which may increase the risk of tumourigenesis.

Pathophysiological studies using disease-specific hiPSCs allow us to
determine the cellular characteristics of a disease, but do not recreate
the function of the whole organ within the body. Although complex
bioengineering approaches, such as organoid formation and 3D culture
systems, are available,?”-%8 it is difficult to use these methods in the
heart because CMs in the heart are predominantly situated in a highly
organised structure comprising vessels, nerves, mesenchymal cells,
extracellular matrix and myocytes. In addition, CMs are continuously
exposed to dynamically changing neuroendocrine factors and
mechanical stresses. Therefore, it should be considered that studies
using disease-specific hiPSC-CMs fundamentally provide simplified
information regarding the pathophysiology in patients with a familial
disease. Nevertheless, the experimental data from these cells may
reveal responses that mirror actual phenomena in human patients, and
are thus valuable for gaining an understanding of the inherited disease.

Conclusion

Disease-specific hiPSC-CMs, which carry the same genomic information
as patients with inherited diseases, can undoubtedly be of use in
research to address the pathophysiology of monogenic inherited
diseases, the drug responsiveness of patients for personalised
medicine and drug development by providing a cell source for screening
compounds and drug safety testing. A combination of disease-specific
hiPSC-CMs and gene-editing technologies may further advance our
understanding of genetic diseases and drug development in
cardiovascular medicine. ®
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