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Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous
system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate
immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis.
Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-
derived MФs, enter into the CNS following alterations in CNS homeostasis that induce
inflammatory responses in MS. Although the neuroprotective and anti-inflammatory
actions of monocyte-derived MФs and resident MФs are required to maintain CNS
tolerance, they can release inflammatory cytokines and reactivate primed T cells during
neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs
have been found and associated with demyelination and axonal loss. Thus, according to
the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target.
Also, due to their different origin, location, and turnover, other strategies may require to
target the various myeloid cell populations. Here we review the role of distinct subsets of
MФs in the pathogenesis of MS and different therapeutic agents that target these cells.

Keywords: multiple sclerosis, macrophages, microglia, therapeutic agents, neuroinflammation
INTRODUCTION

Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system
(CNS). Neurodegeneration (loss of myelin and axons) in MS is caused by an immune response to
self-antigens, interrupting signal transmission (1). MS patients exhibit various clinical symptoms
related to the site of lesions and associated with the invasion of inflammatory cells across the blood–
brain barrier (BBB). In most patients, the disease begins with a single episode, known as a clinically
isolated syndrome (CIS), which might be developed in the future or not (2). Patients with at least
two relapses are classified as relapsing-remitting multiple sclerosis (RRMS) that makes up >70% of
the MS population. Primary progressive multiple sclerosis (PPMS) is another phenotype that occurs
in approximately 10%–15% of individuals, and PPMS patients have no remission after the onset of
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disease (3, 4). Within 10–20 years after the disease onset, 60%–
70% of RRMS patients develop secondary progressive MS
(SPMS) symptoms by steady progression with or without
periods of remission (5).

Although the cause of MS is unknown, genetic, epigenetic,
and environmental factors have been introduced as the possible
risk factors of the disease. Individuals with an inherited HLA-
DRB1*15:01 allele and its associated haplotypes (DQB1*06:02,
DQA1*01:02, DRB1*15:0, DRB5*01:01) are more likely to
develop MS (6). Also, based on genome-wide association
studies (GWAS), HLA locus has related with disease
susceptibility in 20%–30% of MS patients (7), while some
alleles are associated with resistance to MS. Accordingly,
studies have found that HLA-DRB1*01:01, HLA-DRB1*09,
HLA-DRB1*11, HLA-DRB1*12, and HLA-DRB1*16 alleles play
a role in protection against MS (8, 9). Besides, other non-HLA
genes such as interleukin (IL)-2RA, IL-7RA, CD58, signal
transducer and activator of transcription (STAT)3, interferon
regulator factor (IRF)8, and tumor necrosis factor receptor
superfamily member 1A (TNFRSF1A) are involved in
susceptibility to MS (10).

Environmental risk factors such as low vitamin D levels,
smoking, obesity, stress, infections, and immunization have
been considered as risk factors for MS development (11).

Experimental autoimmune encephalomyelitis (EAE) is an
animal model for MS that is used in experimental studies.
Many aspects of the MS pathophysiology, such as
inflammation, immune surveillance, immune-mediated tissue
injury, and roles of immune cells, have been revealed by using
EAE models (12). Also, studies have shown that there is a
correlation between EAE and MS therapeutic success. For
example, licensed drugs such as disease-modifying therapies
(DMTs), interferon (IFN)-beta, glatiramer acetate, and the
anti-very late antigen (VLA)-4 antibody (natalizumab), have
shown therapeutic efficacy in both MS and EAE (13–18).
Therefore, EAE as an appropriate model has contributed to
our scientific knowledge of neuroinflammation.

Besides the vital role of T cells, other immune cells, including
B cells, innate immune cells, and macrophages (MФs), also play a
critical role in MS pathogenesis (19, 20). MФs are innate immune
phagocytes that detect pathogen-associated molecular pattern
(PAMP) and damage-associated molecular pattern (DAMP)
molecules. These molecules are expressed by pathogens and
apoptotic cells, respectively. MФs also present antigens to T
lymphocytes as an antigen-presenting cell (APC) in adaptive
immunity. According to in vitro features, MФs are divided into
M1 and M2 phenotypes. This nomenclature primarily represents
the state of MФ’s activation and is used to facilitate the
description of the inflammatory status; otherwise, their
phenotype should be seen as plastic manner (21). In vitro
exposure of monocytes and MФs to Th1 cytokines,
lipopolysaccharide (LPS), and granulocyte-macrophage colony-
stimulating factor (GM-CSF) induces their polarization to
inflammatory M1 phenotype. These cells produce high levels
of pro-inflammatory cytokines, including TNF-a, IL-6, IL-1b,
and inducible nitric oxide synthase (iNOS) (22, 23). M1 MФs are
Frontiers in Immunology | www.frontiersin.org 2
the first line of defense against intracellular pathogens and
control tumor growth. Also, M1 MФs probably play a role in
tissue destruction and autoimmune disorders (24). On the
contrary, in vitro differentiation of monocyte to M2 MФs is
induced in the presence of Th2 cytokines and other
immunomodulatory agents, including macrophage colony-
stimulating factor (M-CSF), IL-10, transforming growth factor
(TGF)-b, and vitamin D3 (25, 26). Recently, M2 MФs have been
classified into four subgroups including M2a, M2b, M2c, and
M2d. Generally, the M2 phenotype has anti-inflammatory
characteristics and plays a role in the immune response against
parasitic infections, allergic reactions, tissue regeneration, and
tumor growth (27).

Recent studies have indicated that MФs possess distinct
metabolic characteristics that correlate with their functional
state, known as metabolic reprogramming. In the context of
metabolic reprogramming, M1 MФs express iNOS enzyme to
produce nitric oxide (NO) from arginine, present enhanced
glycolytic metabolism, pentose phosphate pathway (PPP), fatty
acid synthesis (FAS), and impaired Krebs [or tricarboxylic acid
(TCA)] cycle and mitochondrial oxidative phosphorylation
(OXPHOS). On the other hand, M2 MФs hydrolyze arginine
to ornithine and urea by Arg-1 and are characterized by
enhanced OXPHOS, FAS, glutamine metabolism, and
decreased PPP. It is noteworthy that the different intracellular
metabolic pathways regulate the polarization and function of M1
and M2 MФs (28–30). For example, in the M1 MФs, NO and
NO-derived reactive nitrogen species inactivate the
mitochondrial electron transport chain (ETC) and prevent
repolarization to the M2 phenotype. On the contrary,
ornithine can further participate in downstream pathways of
polyamine and proline synthesis, which have a role in cell
proliferation and tissue repair in M2 (31, 32). Also, based on
studies, glycolysis may promote the immune function of M1
MФs by increasing the secretion of inflammatory cytokines and
enhancing phagocytic activity (33).

Several subsets of MФs are present in the CNS. The resident
MФs in the parenchyma are known as microglia. Also, non-
parenchymal MФs are located in the choroid plexus, perivascular
space, and meninges. These cells have a critical role in the
maintenance of CNS homeostasis (34–36). The other types of
MФs in the CNS are the monocyte-derived MФs entering the
CNS following alteration in CNS homeostasis. This phenomenon
is a physiologic mechanism to protect the CNS, resolve
abnormalities, and restore homeostasis. Besides the
neuroprotective and anti-inflammatory actions of monocyte-
derived MФs and resident MФs, they can promote
neuroinflammation by secretion of inflammatory cytokines and
reactivation of primed T cells (37). In EAE, activation of
microglia/MФs leads to disease progression (38). Also, in the
CNS of MS patients, elevated myeloid cells and activated MФs
have been found and associated with demyelination and axonal
los s (39 , 40) . Accord ing to the ro l e o f MФ s in
neuroinflammation, they have attracted attention as a
therapeutic target. Also, due to their dissimilar origin, location,
and turnover, different strategies may require to target the
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various myeloid cell populations. As shown in multiple studies,
direct targeting of myeloid cells has been shown to be effective in
some other inflammatory diseases such as psoriasis, Crohn’s
disease, and ulcerative colitis by targeting IL-12 and/or IL-23 (41,
42). Although MФs and their function in neuroinflammation
have been described in detail in previous studies, their direct/
indirect targeting by therapeutic agents has been less discussed.
Here, we review the role of distinct subsets of MФs in the
pathogenesis of MS and the impact of different therapeutic
agents on these cells.
THE ROLE OF MICROGLIAL CELLS IN
MULTIPLE SCLEROSIS PATHOGENESIS

Microglia are known as one type of glial cells and mononuclear
phagocytes. These tissue resident cells are located in the brain
and spinal cord. The number and location of these cells vary in
different species, and human microglia dominate in white matter
compared to gray matter (43). Microglia are developed from
erythromyeloid progenitors (EMPs) in the yolk sac during
primitive hematopoiesis (44), and their differentiation is
regulated by some transcription factors such as IRF8, PU-1,
and Runx-1 (45). Colony-stimulating factor 1 receptor (CSFR1)
signaling is necessary for the survival of microglia, and its
ligands, CSF1 and CD34, are produced in normal CNS (46).

Like MФs, these immune cells recognize infections, toxins, and
injuries (47) and have a role in maintaining homeostasis in the
adult CNS (48). Microglia use a specific signature called sensome
in the homeostatic condition that scans changes in the CNS. So,
they are the first cells that respond to damages in the CNS.
Sensomes can recognize microorganisms and endogenous
ligands. Some of the sensomes are specific integrins, purinergic
receptors, and cluster differentiation (CD) markers, including
P2ry12, Tumor Microenvironment of Metastasis 119
(TMEM119), Gpr34, CD33, CXCR4, and CX3CR1 (49). Studies
in transgenic animals have shown that the interaction between
CX3CR1 on microglia and MФs with fractalkine (CX3CL1) on
neurons leads to the communication between immune and neural
systems (50–53). Although microglia phenotype is considered
resting or quiescent in stable and normal CNS, they have many
functions (47, 54). Resting microglia influence surrounding cells
through producing some neurotrophic factors such as insulin-like
growth factor-1 (IGF-1), brain-derived neurotrophic factor
(BDNF), TGF-b, and nerve growth factor (NGF) (55, 56). In
addition, microglia participate in myelin debris removal and
modulate neural activity and synaptic organization (57, 58).
Moreover, they are involved in oligodendrocyte progenitor cell
(OPC) maintenance in the CNS (59, 60) and partake in brain
development through clearance of neuronal apoptotic bodies (61,
62). Advanced technologies such as single-cell RNA sequencing
(scRNA-seq) and genetic fate mapping have improved the
distinguishing of microglia subtype, function, and differentiation
ways from MФs (63).

Jordão et al. (64) have used single-cell sequencing and found
that in the homeostatic state, the microglia of EAE mice are
Frontiers in Immunology | www.frontiersin.org 3
distinguished into two subtypes, hMG1 and hMG2, and during
inflammation, four populations [disease-associated microglia 1–
4 (daMG)] have been observed. Furthermore, the gene profile of
daMG demonstrates that they have more potential in chemokine
production and subsequently disease progression compared to
homeostatic parenchymal microglia (hMG) (64).

Microglia morphology in this situation is known as ramified.
On the other hand, they have a long cytoplasmic protrusion for
monitoring any changes in the CNS (47). This morphology is
similar to the morphology of Langerhans cells in the skin (65).
Due to their plasticity, microglia alter their phenotype under
different conditions and environmental factors (66–68). They
activate in response to the unstable state of the CNS (trauma,
ischemia, or any threat in the CNS) and change their phenotype
(69, 70). Like other innate immune cells, microglia recognize
PAMPs and DAMPs through their pathogen recognition
receptors (PRRs) (71–73). In this state, the morphology of
activated microglia is known as amoeboid, which refers to cell
mobility (74, 75). In addition, these cells are highly potent
phagocytic cells that phagocytose dead cells and myelin
debris (76).

Microglia, similar to MФs, show inflammatory and anti-
inflammatory (alternatively) phenotypes in in vitro studies
(77), and M2 phenotype microglia have subgroups including
M2a, M2b, and M2c (78, 79). However, scRNA-seq and mass
cytometry findings show that microglia phenotype and gene
expression patterns are associated with age and regional
differences (80).

According to previous findings, microglia’s role in MS
pathogenesis is still unclear (76). Singh et al. (81) have shown
that microglial nodules, which are the clusters of activated
microglia, are present in the white matter of MS patients in the
vicinity of plaques. They participate in response to axon
degeneration and stressed oligodendrocytes (81, 82). Microglia
and recruited MФs display a pro-inflammatory phenotype (M1
microglia) in the early MS and EAE disease stages. According to
this phenotype, they have many functions, including oxidative
injury, antigen-presenting, and T cell stimulating (76, 83). MФs
and dendritic cells have more antigen presentation capacity to T
cells than microglia in the early phases of EAE, but during
inflammation, microglia express major histocompatibility
complex (MHC)-II and costimulatory molecules that can
stimulate T cells, so they act like an APC. Despite this ability,
new MHC-II gene deletion experiments in microglia indicate
that this population has no critical roles in EAE onset and
progression (80, 84).

Furthermore, oxidative damage, which is mediated by
reactive oxygen species (ROS), induces demyelination (85, 86).
Many studies have indicated that innate immune-mediated
oxidative injury (by activated microglia and other immune
cells) has been proposed as an essential process underlying the
progression of MS (87, 88).

Following scRNA-seq, Mendiola et al . (87) have
demonstrated that in EAE, microglia are divided into five
clusters according to the expression of genes involved in
oxidative stress and Ag presentation. For example, cytochrome
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b-245 beta chain (Cybb), which encodes the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase subunit,
histocompatibility 2, class II antigen, and beta1 (H2-Ab1) gene
that participate in MHC-II expression are microglial clusters
during oxidative stress and Ag presentation. Also, the ability of
different clusters of microglia varies in oxidative damage and
antigen presenting. So, the MgV cluster is more involved in the
oxidative injury, while the MgIII cluster is enriched for Ag
presentation (87).

Activation of microglia also induces the expression of
different transcription factors such as nuclear factor (NF)-kB,
Frontiers in Immunology | www.frontiersin.org 4
Janus kinase (JAK)/STAT, c-Jun N-terminal kinase (JNK),
extracellular signal-regulated kinase (ERK)1/2, and p38.
Moreover, different cytokines, including IL-6, IL-8, IL-12, IL-
23, IL-1b, and TNF, are produced after microglia activation (89,
90). In addition, the induction of chemokines such as CCL2,
CCL3, and CCL4 also is induced by activated microglia, which
can facilitate leukocyte recruitment in the early phase of EAE
(91) (Figure 1).

Oxidative processes and pro-inflammatory cytokines result in
injury to oligodendrocytes (76). Heppner et al. (92) have shown
that microglia paralysis of transgenic mice ameliorates
FIGURE 1 | Roles of M1/M2 microglia and the effect of different drugs on these cells in multiple sclerosis. (A) In the early stage of EAE and MS, M1 MG have
different roles in the promotion of inflammation through cytokine/chemokine release, and ROS and NO production leads to demyelination. Suppression of M1 MG
and their functions can be useful in MS control. For example, galectin-1 decreases the production of CCL2, TQ reduces IL-6, Que decreases the release of NO, and
FTY-720 suppresses MG activation and switches M1 to M2 phenotype. (B) M2 MG have anti-inflammatory functions and promote remyelination via cytokines release
and phagocytosis of myelin debris. 1) IL-4 promotes oligodendrogenesis, and activin-A helps differentiation of oligodendrocytes. 2) IVM interacts with P2X4R and
enhances phagocytosis and remyelination. 3) rHIgM22 and rIFN-b promote phagocytosis and myelin uptake. 4) M-CSF increases the expression of TREM2 mRNA,
diminishes demyelination, and improves the organization of myelin sheaths through polarization of M1 MG to M2 MG. 5) Progesterone therapy increases marker
expression of M2 phenotype (CD206). CCL, chemokine (C-C motif) ligand; CD40, cluster of differentiation 40; CD86, cluster of differentiation 86; CD163, cluster of
differentiation 163; CD206, cluster of differentiation 206; EAE, experimental autoimmune encephalomyelitis; FTY720, fingolimod; IL, interleukin; IVM, ivermectin; M-
CSF, macrophage colony-stimulating factor; MG, microglia; MHC-II, major histocompatibility complex class II; NO, nitric oxide; P2X4R, P2X4 receptor; Que,
quetiapine; rHIgM22, recombinant human IgM; rIFN-b, recombinant interferon-beta; ROS, reactive oxygen species; TQ, thymoquinone; TREM-2, triggering receptors
on myeloid cells-2.
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inflammation in the CNS and improves clinical symptoms of the
disease. Also, Bhasin et al. (93) have demonstrated that microglia
inhibition at the onset of EAE attenuates disease signs and
decreases EAE progression.

Autophagy is a conserved homeostatic pathway in eukaryotic
cells, which has recently become evident in neurodegenerative
disorders (94). There is a consideration that autophagy is
associated with the regulation of inflammation in microglia
during neuroinflammation (95). Many studies revealed that
following autophagy induction in inflammatory microglia, the
expression of inflammatory genes is suppressed and anti-
inflammatory phenotype is promoted (96–98). In EAE mice,
induction of autophagy leads to inflammasome inhibition and
attenuation of symptoms (99). Also, Atg5 knockdown in
microglia leads to more neuroinflammation in cell culture (98,
100). Moreover, ATG is involved in remyelination and debris
cleaning in microglia (101, 102).

The ratio of M1/M2 is an essential factor in the relapse of
EAE, and M1 microglia is more than M2 in the early phase of
repair. Environmental changes can shift phenotype; however,
underlying mechanisms responsible for this switch are unknown
(83, 103, 104). M2 microglia play an essential role in the
recruitment and differentiation of oligodendrocyte progenitor
cells (OPCs) through the clearance of myelin debris. An in vitro
study has shown that M2 cell medium inhibits OPC apoptosis
even in the absence of serum and growth factors. Also, evaluation
of myelin basic protein (MBP) and myelin oligodendrocyte
glycoprotein (MOG) reveals that M2 microglia promote
oligodendrocyte differentiation (103, 105). M2-produced anti-
inflammatory cytokines (IL-4, IL-10, and IL-13) and substances
such as activin-A are involved in differentiation of
oligodendrocyte during remyelination (103, 104, 106, 107)
(Figure 1). Also, Miron et al. (103) have indicated that
blocking antibodies against M2 cell-derived activin-A
diminishes oligodendrocyte differentiation.

Furthermore, anti-inflammatory cytokines such as IL-4
promote oligodendrogenesis ; thus, it is helpful for
remyelination (108). In contrast, the protective function of
TNF as a pro-inflammatory cytokine has been shown in EAE
(109). Accordingly, transmembrane TNF (tmTNF) and TNFR2
induce remyelination in EAE, while soluble TNF (solTNF)
suppressed phagocytosis of myelin debris and thus inhibited
remyelination in the cuprizone demyelination model (110).

MicroRNAs (miRNAs) are a group of small non-protein-
coding RNAs, which have a role in biological functions through
the regulation of gene expression. Different miRNAs can affect
microglia and MФ functions. Mir-124 is a specific miRNA in the
brain and plays a role in CNS development and neurogenesis of
adults (111, 112). Mir-124 is highly expressed in microglia
compared to other cells and can maintain the resting
phenotype of microglia. In experimental studies, no evidence
of microglial activation has been shown in EAEmice treated with
mir-124. Ponomarev et al. (112) have found that transfection of
bone marrow-derived macrophages (BMDMs) with mir-124
induced downregulation of markers such as CD45 and CD11b,
suppressed the expression of TNF-a and iNOS, and increased
Frontiers in Immunology | www.frontiersin.org 5
the expression of anti-inflammatory cytokine TGF-b. Moreover,
they have indicated that inflammatory responses and EAE
symptoms were alleviated in treated mice (112).

Long intergenic noncoding RNA (lincRNA)-Cox2 belongs to
long noncoding RNA and can regulate immune functions.
LincRNA-Cox2 plays a role in inflammatory responses
through binding to the p65 subunit of NF-kB and modulating
NLRp3 and Asc expression. Xue et al. (113) showed that
knockdown of lincRNA-Cox2 promoted resting microglia
(CD11b+ CD45med) and suppressed IL-1b secretion. Also,
lincRNA-Cox2 silencing inhibited NLRP3 inflammasome
activation and thereby promoted autophagy in BMDMs and
microglia. Moreover, knockdown of lincRNA-Cox2 in EAE
models decreased inflammatory cells in the white matter and
improved EAE symptoms.

Collectively, evidence indicates that activated microglia act as
a double-edged sword in MS pathogenesis (38). So, targeting
microglia activation and inducing a shift to M2 phenotype would
be a promising choice in the future of MS treatment.
MICROGLIA AND MACROPHAGES
MARKERS

Resting microglia do not highly express MHC-II and
costimulatory molecules, so they cannot prime T cells (114,
115). The expression of surface markers changes following
activation of microglia. For example, myeloid marker
expression and adenosine A2A receptors are upregulated
during their activation, while P2Y12 receptors are
downregulated (54, 116, 117). Also, MHC expression and
costimulatory molecules such as CD80, CD86, and CD40 have
been increased after microglia activation in EAE (106, 118, 119).
However, specific deletion of MHC-II in microglia does not
promote disease progression, so microglia is not enough to
stimulate autoreactive T cells (120). Moreover, studies have
shown that microglia are impaired APCs despite their ability
to uptake myelin (121, 122).

In the inflammatory state, microglia express p22phox, CD68,
CD86, and MHC-II antigens, while in the inactive lesion, they
mostly express anti-inflammatory markers including CD206,
CD163, and ferritin (76, 123). Efficient myelin debris removal
and clearance by phagocytosis is an essential step in effective
remyelination, and the surface expression of triggering receptors
on myeloid cells-2 (TREM2) plays a key role in phagocytosis
(124). Piccio et al. (125) have indicated that the expression of
TREM2 on microglia is increased during EAE, and blocking of
this receptor with mouse monoclonal antibody is accompanied
by cellular infiltration and EAE exacerbation. Also, other
molecules such as complement receptor 3 (CR3), signal
regulatory protein (SIRP), IFN-b, and transmembrane TNF
(tmTNF) participate in this process (106, 110, 126).
Discriminating microglia from MФs is challenging; however,
some markers such as CD45 and CD11b have been introduced as
differential markers.
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According to this classification, CD11b+ CD45med cells are
microglia, and CD11b+CD45hi cells are MФs (127); however,
this classification is controversial, and the expression of some
markers such as CD45 changes under different conditions (127–
130). Furthermore, there are more reliable differential markers,
including TMEM119, Sal-like1 (Sall1), sialic acid-binding Ig-
type lectin H (Siglec-H), and P2Y12R (76, 131–136).

TMEM119 is a cell-surface protein that is highly expressed on
human and mouse microglia. This protein indicates a highly
conserved sequence and does not express on MФs and immature
microglia; however, its function is still unknown (131). The
purinergic receptor (P2Y12) directs microglia movement
toward damage sites (137). The other molecule, Sall1, which is
a transcriptional regulator, plays a role in microglia morphology
and gene expression (134). Siglec-H is mainly expressed on
microglia in mice, but the homology of human Siglec-L2 with
Siglec-H is approximately 40% (138, 139).
MONOCYTE-DERIVED MACROPHAGES IN
THE CENTRAL NERVOUS SYSTEM

Peripheral blood monocytes are derived from bone marrow
hematopoietic stem cells (HSCs) and defined as classical
(CD14+CD16-), non-classical (CD14lowCD16+), and
intermediate monocytes. However, there are few infiltrating
monocytes in the CNS under physiological conditions. Also,
substantial accumulation of monocytes, predominantly non-
classic CD16+, in both gray and white matter MS lesions is
significant, especially during disease relapses (140, 141). During
the effector stage of EAE, monocytes rapidly infiltrate
surrounding meninges, perivascular space, and choroid plexus
through and differentiate into MФs (142, 143). These MФs
contribute to the progression of the paralytic stage of EAE and
demyelination by expressing MHC-II, costimulatory molecules,
and producing pro-inflammatory factors (38). Thus, in EAE,
MФ depletion is associated with a lower CNS injury and
attenuated signs and symptoms of disease (144, 145).

Expression of cell adhesion molecules such as intercellular
adhesion molecule (ICAM)-1, vascular cell adhesion molecule
(VCAM)-1, and activated leukocyte cell adhesion molecule
(ALCAM) by CNS endothelial cells and their interaction with
integrins like leukocyte function-associated antigen [(LFA)-1,
aLb2], VLA-4 (a4b1), and CD6 are essential steps of immune
cell migration into the CNS (146). Nerve injury-induced protein
(Ninjurin)-1 and junctional adhesion molecule-like (JAML) are
other adhesion molecules involved in monocyte-derived MФ
migration (147, 148).

Moreover, CCR2 is a crucial chemokine receptor in the
recruitment of Ly6Chigh monocytes to the inflamed CNS,
which exacerbates disease progression in the EAE model. So
that mice without CCR2 are resistant to EAE induction (149).
Besides, CCR4, a chemokine receptor for CCL17 and CCL22, is
upregulated in MФs of CNS lesions, and interestingly, mice
lacking CCR4 have also been reported to be resistant to
EAE (150).
Frontiers in Immunology | www.frontiersin.org 6
Both M1 and M2 MФs are detected in MS lesions, and they
may repolarize to apposite phenotype depending on the local
environment and stage of disease. According to The study by
Vogel et al. in active and chronic active MS lesions, the
expression of typical M1 markers is higher than M2 markers
(151). Also, in EAE, both M1 and M2MФs enhance and regulate
the disease’s pathogenesis (152, 153).

DuringMS,M1MФs secrete high amounts of pro-inflammatory
agents such as IL-6, IL-12, IL-1, TNF-a, IL-23, reactive oxygen
species, and nitrogen species and CCL4, CCL5, CCL8, CXCL9,
CXCL10, and CXCL2. This condition leads to the recruitment of
immune cells, exacerbating neuroinflammation and tissue damage
(142). IL-6 is a crucial cytokine in CNS autoimmunity
establishment, as IL-6-deficient mice have shown attenuated EAE
symptoms. Furthermore, IL-1b has been considered as an inducer
of Th17 polarization and EAE progression (154). Recent research
on bone marrow chimeric mice has revealed that monocyte-derived
MФs express TRPM2 protein and subsequently produce CXCL2,
leading to enhanced neutrophil infiltration and EAE progression
(155). Studies on brain autopsy of MS patients have shown that M1
MФs express CD68 (as a phagocytosis marker), HLA, and CD86,
which contribute to antigen-presenting to primed T cells. Also,
iNOS has increased in M1 MФs. iNOS enzyme and nitric oxide
production have an important impact on microglia activation, BBB
disruption, demyelination, oligodendrocyte injury, axonal
degeneration, and axonal conduction impairment (76, 156).
According to single-cell oxidative stress transcriptome analysis of
CNS innate immunity in EAE, similar to microglia, seven
monocyte/MФ clusters (MpI–VII) have been identified, which
have different potentials in ROS production and Ag presentation.
Regarding the results, Clusters MpI and MpII had increased Cybb
and H2-Ab1 expression, whereas clusters MpIII and MpIV had
only high expression of H2-Ab1 and are more potent in Ag
presentation (87). So, according to previous studies, the M1 MФs
are generally considered harmful in MS (Figure 2).

On the other hand, studies have demonstrated the neuron-
protective activities of MФs in EAE. High levels of M1 MФ
infiltration present in the CNS during exacerbations of disease in
mice, but a gradual increase in M2 MФs is associated with
improved neurological impairment (157). The increase in the
expression of tissue transglutaminase (TG2) mRNA level in
monocytes derived from MS patients indicates anti-
inflammatory MФs and subsequently immunomodulatory
cytokines (158). M2 MФs cause an anti-inflammatory state
and tissue repair by secreting IL-4, IL-10, IL-13, and TGF-b
cytokines. These cells also drive the recruitment and
differentiation of Th2 and regulatory T cells (Treg), which
suppress the inflammatory response in EAE mice (159).

Moreover, M2 MФs express scavenger receptors to clear
myelin debris in the damaged spinal cord, promoting CNS
repair (160). These populations of MФs can produce
neurotrophic factors, including IGF-1, BDNF, vascular
endothelial growth factor (VEGF), epidermal growth factor
(EGF), and IL-1 receptor antagonist that leads to alleviate
sympathetic neuron dysfunction (161). Also, they block the
iNOS enzyme to decrease inflammation, increase environment
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FIGURE 2 | The destructive/regenerative roles of M1/M2 macrophages in multiple sclerosis and possible treatments. (A) 1) Peripheral blood monocytes enter the inflamed
CNS following the attachment to adhesion molecules (e.g., the interaction of ICAM with LFA-1, VCAM-1 with VLA-4, ALCAM with CD6, homophilic interaction of ninjurin-1
and JAML with themselves, and also JAML with the other receptor CXADR), the concentration gradient of chemokines [CCL5, CCL17, CCL22, and MCP-1(CCL2)], MIF,
and HMGB-1 through damaged BBB, and differentiated into monocyte-d MФs. Inhibition of adhesion molecules (e.g., ICAM-1 and VCAM-1 by IFN-b, VLA-4 by
natalizumab, and ninjurin-1 by anti-ninjurin-1 blockade), receptors (e.g., MR), or chemokines and other stimulators (e.g., MCP-1 by clozapine or HMGB-1 by EP), which is
involved in monocyte migration could be a therapeutic approach. 2) M1 MФs (CD86+, CD68+, MHC-II+) are the dominant subpopulation of monocyte-d MФs. They
enhance CNS inflammation by producing pro-inflammatory cytokines, chemokines, ROS, and NO. 3) NO production leads to increase BBB destruction, microglial
activation, myelin damage, and inhibits oligodendrocyte function. 4) Pro-inflammatory cytokines are involved in TH1 and TH17 polarization, enhancing neuroinflammation.
5) GM-SCF is essential for differentiation and function of M1 MФs, so, GM-CSFR blockade can improve inflammation. 6) Repolarization of inflammatory M1 MФs into anti-
inflammatory M2 phenotype could be a good choice for MS treatment. (B) 1) A smaller population of monocyte-d MФs is M2 MФ with anti-inflammatory phenotype. It
secretes immunomodulatory cytokines, chemokines, and tissue regenerative agents. 2) Anti-inflammatory cytokines induce the polarization of TH2 and Treg cells, which
suppress neuroinflammation. 3) Secreted activin A leads to oligodendrocyte differentiation. 4) Expression of scavenger receptor is involved in cleaning the myelin debris.
CNS, central nervous system; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; ALCAM, activated leukocyte cell adhesion molecule;
LFA-1, leukocyte function-associated antigen-1; VLA-4, very late antigen-4; CD6, cluster of differentiation 6; ninjurin-1, nerve injury-induced protein-1; JAML, junctional
adhesion molecule-like; CCL2, chemokine (C-C motif) ligand 2; CCL17, chemokine (C-C motif) ligand 17; CCL22, chemokine (C-C motif) ligand 22; CCL3, chemokine (C-C
motif) ligand 3; CCL4, chemokine (C-C motif) ligand 4; CCL5, chemokine (C-C motif) ligand 5; CCL8, chemokine (C-C motif) ligand 8; CXCL9, chemokine (C-X-C motif)
ligand 9; CXCL10, chemokine (C-X-C motif) ligand 10; CXCL12, chemokine (C-X-C motif) ligand 12; MCP-1, monocyte chemoattractant protein-1; MIF, macrophage
migration inhibitory factor; HMGB-1, high-mobility group box-1; BBB, blood–brain barrier; MФ, macrophage; MR, mineralocorticoid receptor; CD86, cluster of differentiation
86; CD68, cluster of differentiation 68; MHC-II, major histocompatibility complex class II; ROS, reactive oxygen species; NO, nitric oxide; TH1, T helper type 1; TH17, T
helper type 17; TH2, T helper type 2; Treg, regulatory T cell; IL-1, interleukin-1; IL-6, interleukin-6; IL-12, interleukin-12; IL-23, interleukin-23; IL-10, interleukin-10; IL-4,
interleukin-4; IL-13, interleukin-13; TNF-a, tumor necrosis factor-alpha; TGF-b, transforming growth factor-beta; GA, glatiramer acetate; EP, ethyl pyruvate; GM-CSFR,
granulocyte-macrophage colony-stimulating factor receptor; VEGF, vascular endothelial growth factor.
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stability, and protect neural cells against injury (162) (Figure 2).
In summary, M2 MФs dominantly play a role in suppressing
inflammation and promoting tissue regeneration. However, the
dichotomy of MФ polarization is not accurate. Accordingly, in
the active MS lesion, the presence of MФs with an intermediate
phenotype, co-expressed M1 and M2 markers, has been
confirmed. So, it seems that MФ phenotype and function are
influenced by environmental conditions (151). In the following,
we will discuss the effects of different therapeutic agents on MФs
and microglia in the CNS of MS patients.

Actual Therapeutic Approaches That
Affect Macrophages and Microglia
Population in Multiple Sclerosis
DMTs are a group of drugs that reduce the early clinical and
subclinical disease activity that may contribute to long-term
disability. More than 10 Food and Drug Administration (FDA)-
approved DMTs target the immune-mediated disease process and
differ in routes of administration in addition to their frequencies
(163). Generally, T cells and B cells are most frequently discussed as
targets of DMTs, but some of the current MS disease-modifying
therapies also affect myeloid cells, although these cells are not the
main target of the drug (164). The probable effects of DMTs on
microglia and monocyte-derived MФs have been shown in Table 1,
and some of them are discussed below:

IFN-b is a member of the human type I interferons family
that has different roles in the regulation of the immune system,
including the decrease of tissue damage and inflammation
through downregulation of matrix metalloproteinase 9 (MMP-
9), inhibition of effector cell migration by downregulating the
adhesion molecule VLA-4, and prevention of T-cell proliferation
(196–198). Besides, IFN-b decreases cell migration to the CNS
through CCR7 inhibition and reduces pro-inflammatory
cytokines such as IL-12 in monocytes (199, 200).

This cytokine is the first FDA-approved drug used in the
treatment of RRMS to reduce relapses and severity of MS disease
Frontiers in Immunology | www.frontiersin.org 8
due to its various immunomodulatory properties and several
actions on immune cells (201, 202).

Kocur et al. (126) have found that IFN-b-treated microglia
accumulate in areas containing myelin debris for phagocytosis.
Moreover, adult wild-type and IFN-b−/− mice microglia and BV2
microglia in culture media promote phagocytosis of myelin debris
after treatment with recombinant IFN-b (rIFN-b), while IFNAR1
−/− microglia show a bit of a promotion. Therefore, IFN-b and
IFNAR1signaling are necessary to stimulate microglial
phagocytosis of myelin debris (126) (Figure 1). Another study
by Floris et al. (169) in IFN-b-treated EAE animals has shown
reduced clinical score and improved disease symptoms.
Furthermore, they have found that following this treatment,
expressions of ICAM-1 and VCAM-1 were reduced in the CNS
endothelial cells, leading to the subsequent reduction in monocyte-
derived MФ migration into the inflamed CNS (169) (Figure 2).

The other therapeutic agent, glatiramer acetate (GA,
Copolymer-1, Copaxone), is a drug that affects MФs. It is
prescribed in RRMS, and its clinical effects have been indicated in
both MS and MS models (203). Weber et al. have addressed one of
the immunological mechanisms of GA treatment in EAE mice.
They have found that GA can develop anti-inflammatory type II
monocyte polarization with an increase in the production of IL-10
and TGF-b. It also decreases the secretion of IL-12 and TNF-a and
the expression of CD40 and CD80. Furthermore, GA-treated type II
monocytes can reverse clinical EAE, accompanied by a reduction in
the number of CNS lesions. This GA mechanism has shown the
importance of type II monocytes in the future of drug intervention
in MS (175) (Figure 2).

Fingolimod (FTY720) is an FDA-approved drug for the
treatment of RRMS. It is a high-affinity agonist of sphingosine-1-
phosphate (S1P) receptor, with an immunosuppressive effect. Qin
et al. (177) have reported that fingolimod (FTY720) suppresses
microglial activation (fewer Iba-1+ or CD68+ microglia) and
attenuates neuroinflammation in a mouse model of white matter
(WM) ischemic damage caused by chronic hypoperfusion. It
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switches microglial polarization from M1 to M2 phenotype in WM
ischemic injury through activating STAT3 (177). Furthermore,
other studies have shown that fingolimod influences MФs, and
monocytes induce switching to M2 phenotype in culture and
decrease IL-12 production (199) (Figure 1).

Another DMT is natalizumab, a humanized monoclonal
antibody used in the treatment of RRMS and reduces relapse rate
and axonal damage. This Ab binds to a4 subunit of a4b7 integrin,
and actually, it can inhibit adhesion molecule VLA-4, which has a
role in the pathogenesis of EAE and MS (18). Mindur et al. (180)
have shown that natalizumab can suppress the activated microglia
and MФs in the onset of EAE. Also, studies have demonstrated that
monocyte-derived MФs entered into the CNS using VLA-4 so that
anti-VLA-4 may decrease MФ infiltration to the CNS (180)
(Figure 2). Moreover, Sucksdorff et al. (179) have reported that
natalizumab can decrease microglia activation in normal-appearing
white matter and at chronic active lesions of MS patients’ brains. In
Frontiers in Immunology | www.frontiersin.org 9
another study, Öhrfelt et al. (204) indicated that the CSF-soluble
TREM2, a marker of microglial activation, is reduced to baseline
levels in MS patients following treatment with natalizumab. But the
exact effect of this Ab on microglia is not understood (204).

Promising Therapeutic Approaches That
Affect Macrophages and Microglia
Population in Multiple Sclerosis
Inhibition of Migration and Infiltration of Immune
Cells to the Central Nervous System
Nerve injury-induced protein-1 (ninjurin-1) is a cell surface
protein that is found in many tissues such as CNS vascular
endothelial cells and leukocytes (remarkably in monocytes),
leading to an interaction between these cells in a homophilic
manner (205). As Ifergan et al. showed, the expression of
ninjurin-1 was upregulated in inflammatory APCs in the CNS
of EAE mice and in MS lesions. So, it is associated with the
TABLE 1 | Probable effects of disease-modifying therapies (DMTs) on microglia and/or monocyte-derived macrophages.

DMTs Definition Effect on microglia and/or monocyte-derived macrophages

Interferon-b Cytokine released by host cell in response
to viral infection and regulating immune
responses (165)

- In MS patients, induces anti-inflammatory phenotype by reducing the production of nitric oxide and in
contrast, increasing the expression of BDNF and Ig like transcript-3 in monocyte-derived MФs
(166–168).

Inhibits infiltration of monocyte-derived MФs into the CNS (169).

- In EAE, upregulating IL-27 expression in monocyte-derived MФs leads to Th17 suppression (170)

- In vitro, promotes phagocytosis capacity of microglia (126).
Glatiramer
acetate

Synthetic amino acid polymer (15, 171) - In MS, induces anti-inflammatory phenotype by inhibiting the production of nitric oxide in both microglia
and monocyte-derived MФs.

Enhances the phagocytic activity of microglia and monocyte-derived MФs (172, 173).

Decreases microglial activation (174).

- In EAE, promotes anti-inflammatory phenotype in monocyte-derived MФs by increasing the production
of IL-10 and TGF-b and decreasing the secretion of pro-inflammatory cytokines and the expression
of adhesion molecules (175).

- In vitro, increases the production of IL-10 and reduces TNF-a in microglia (176).
Fingolimod Agonist of sphingosine-1-phosphate (S1P)

receptor (177)
- In MS, induces anti-inflammatory phenotype by inhibiting the production of pro-inflammatory cytokines

and expression of pro-inflammatory miR-155 in monocyte-derived MФs. (116/1, 164.167/2)

- In EAE, decreases CD40 expression and production of TNF in monocyte-derived MФs (178).

- In vitro, switches M1 microglia to M2 phenotype (177).
Natalizumab Anti-VLA-4 humanized monoclonal antibody

(18)
- In MS, reduces microglia activation (179).

- In EAE, suppresses the activated microglia and monocyte-derived MФs (180).
Dimethyl
Fumarate

Methyl ester of fumaric acid (181) - In MS, decreases the expression of pro-inflammatory mir-155 in monocyte-derived MФs (182).

- In EAE, reduces the infiltration of monocyte-derived MФs in to the CNS (183)

- In vitro, induces anti-inflammatory phenotype by inhibiting the production of nitric oxide and pro-
inflammatory cytokines in microglia (184).

Teriflunomide A reversible inhibitor of mitochondrial
enzyme dihydrooratate dehydrogenase
(DHODH) (185)

- In MS, induces anti-inflammatory phenotype by increasing the production of IL-10 and PDL-1
expression (186).

- In EAE, inhibits the migration of monocyte-derived MФs in to the CNS (187, 188).

- In vitro, induces anti-inflammatory phenotype in microglia by increasing IL-10 production (187, 189).
Rituximab Chimeric Anti-CD20 monoclonal Ab (190) - Inhibits monocyte activation by depleting GM-CSF expressing memory B cells (190).
Mitoxantrone Cytotoxic agent of the anthracenedion

family (191)
- In vitro, reduces migration capacity of monocytes (192).

Siponimod Selective sphingosine-1-phosphate receptor
modulator (193)

- In EAE, reduces the production of IL-6 and CCL5 in activated microglia (194)

- In vitro, inhibits IL-6 production in siponimod-treated microglia (193).
Cladribine Chlorodeoxyadenosine (CdA), is purine

nucleoside analog (195)
- In vitro, inhibits the proliferation of microglia.

Induces apoptosis in microglia (195)
MS, Multiple sclerosis, BDNF, Brain-derived neurotrophic factor; Ig, Immunoglobulin; CNS, Central nervous system; EAE, Experimental autoimmune encephalomyelitis; TH17, T helper
type 17; IL-27, Interleukin-27; IL-10, Interleukin-10; TGF-b, Transforming growth factor-beta; TNF-a, Tumor necrosis factor-alpha; miR-155, microRNA-155; CD-40, Cluster of
differentiation 40; VLA-4, Very late antigen-4; PD-L1, Programmed death-ligand 1; CD-20, Cluster of differentiation20; Ab, Antibody; GM-CSF, Granulocyte-macrophage colony-
stimulating factor; IL-6, Inreleukin-6; CCL5, chemokine (C-C motif) ligand 5.
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migration of monocytes across the brain endothelium.
Furthermore, this group found that blockade of ninjurin-1
with either the Ab or the peptide resulted in alleviating EAE
symptoms and reducing demyelination and immune cell
infiltration in mice (147). According to this result, ninjurin-1
targeting may be helpful in MS treatment (Figure 2).

The chemokines, including monocyte chemoattractant
protein 1 (MCP-1 or CCL2) and CCL5 or RANTES (Regulated
on Activation, Normal T cell Expressed and Secreted), are
expressed by different cell types in the CNS and secreted by
infiltrating blood-derived MФs following their infiltration into
the CNS. These chemokines are associated with acute symptoms
of CNS disease in rats and mice (206, 207). Recently, Robichon
et al. (208) have treated EAE mice with clozapine, an atypical
antipsychotic agent and can cross the BBB (209). They have
indicated that clozapine reduces the infiltration of monocytes,
neutrophils, and T cells by decreasing the expression of CCL2
and CCL5 in the CNS. This agent also directly upregulates cyclic
AMP in immune cells, which leads to alteration of CCL5 and
CCL2-mediated signaling pathways and inhibition of migration.
As CCL2 and CCL5 are involved in MФ migration and
regulation in EAE, drugs such as clozapine that target CCL2
and CCL5 expression should be considered in future studies
(208) (Figure 2).

Ethyl pyruvate (EP) is the other compound, a redox analog of
dimethyl fumarate (Tecfidera). In a study, Djedović et al. (210)
have shown that EP decreases the EAE symptoms at the time of
disease peak by inhibiting high-mobility group box 1 protein
(HMGB1) in ED1+ and Iba1+ reactive microglia. This effect is
induced by reducing the degeneration of axons (210,
211) (Figure 2).

Also, mineralocorticoid receptor (MR or NR3C2) has
immunoregulatory effects and plays an important role in
developing the polarization of myeloid cells toward the
inflammatory M1 phenotype (212). Montes-Cobos et al. (213)
have deleted the expression of this receptor in myeloid cells in
EAE mice (MrlysM Mice) and showed that it is accompanied by
reducing neuroinflammation and frequency of inflammatory
monocytes and microglia (CD45high CD11bhigh Ly6Chigh) in
the CNS. Also, the onset of the disease in MrlysM Mice and
control populations was similar, but in the mutant mice, in the
chronic phase of the disease, the severity has been significantly
reduced. Based on these results, blockade of MR by different
drugs has the potential improvement effects in MS disease
(213) (Figure 2).

Macrophage migration inhibitory factor (MIF) is a pro-
inflammatory cytokine that is associated with various
inflammatory diseases. Its elevation has been identified in the
CSF of patients during a relapse of MS (214). Kithcart et al. have
observed that administering an MIF inhibitor to C57Bl/6 mice
protects them from EAE. Furthermore, they have found little or
no infiltration of MФs in the spinal cord. They also have found
that MIF-deficient C57Bl/6 mice have significantly fewer severe
clinical signs of disease during both the acute and chronic phases
of the disease. Therefore, MIF inhibitors or MIF deletion could
be a novel therapeutic option for MS treatment (215) (Figure 2).
Frontiers in Immunology | www.frontiersin.org 10
Targeting the Activation and Function of Microglia
and Macrophages
Galectin-1 is a family of endogenous lectins encoded by the
Lgals1 gene. Starossom et al. (216) have found that recombinant
galectin-1 decreases surface expression of MHC-II, CD86, and
iNOS mRNA in microglial cells in vitro. Galectin-1 also
diminishes the production of TNF and CCL2 levels in IFN-g-
polarized M1 microglial cells. Moreover, induction of EAE in
Gal1-deficient (Lgals1-/-) mice has led to an increase in Iba+
MHC-II+ microglial cells and axonal loss and a decrease in
axonal outgrowth during autoimmune neuroinflammation.
Interestingly, the adoptive transfer of Gal1-secreting astrocytes
to these mice has suppressed EAE by inhibiting microglia (216).
So, galectin-1 is a critical molecule in the regulation of microglia
and can be considered in treating neuroinflammation
diseases (Figure 1).

Quetiapine (Que) is an atypical antipsychotic drug (APD),
and previous studies have indicated that APDs influence
activated microglia through the reduction of TNF-a and nitric
oxide (NO) production (217–219). Que regulates immune
responses in EAE by suppressing the release of pro-
inflammatory factors from activated microglia (218, 220).

Wang et al. (221) have used long-term Cuprizone-treated
mice (mimics the chronic phase of neuroinflammation disease)
and treated them with Que. They have found Que inhibits the
activation of microglia/MФs in corpus callosum lesions. Also,
pretreatment with Que inhibits the translocation of NF-kB p65
subunits and Ca2+ elevation by reducing the upregulation of
STIM1 and modulation of store-operated Ca2+ entry (SOCE).
Since the Ca2+ signaling pathway is significant for microglial
activation (221), Que probably influences these cells through the
above mechanisms. Thus, Que and other drugs that affect
calcium channels and regulate microglial activity could be
incorporated into new research (Figure 1).

Moreover, thymoquinone (TQ), which is extracted from the
Nigella sativa plant seed oil, has reduced inflammatory cytokines
such as IL-2, IL-4, IL-6, IL-10, and IL-17a in LPS/IFN-g-activated
microglia. In addition, it has downregulated several NF-kB
signaling target genes, including IL6, complement factor B
(CFB), CXCL3, and CCL5. Furthermore, TQ treatment has
increased neuroprotective protein expression in LPS/IFN-g-
activated BV-2 microglial cells (222–225) (Figure 1).

Like microglia, some therapeutic agents influence the
functional activity of monocyte-derived MФs. Accordingly,
GM-CSF is a cytokine that plays a critical role in
neuroinflammation onset, as GM-CSF KOs are resistant to
disease induction (226). Ifergan et al. (227) have found that
targeting the GM-CSF receptor (expressed on monocytes, DCs,
MФs, and neutrophils) can alleviate chronic EAE. Its blockade
has resulted in a significant reduction of the relapse severity in
treated mice compared to controls (227). Furthermore, following
anti-GM-CSF Ra treatment, the costimulatory molecules such as
CD80, CD86, CD40, and MHC II expression and inflammatory
cytokines, including IL-1b, IL-6, IL-12p40, IL-23p19, and TNF-a
by mDCs and inflammatory monocytes, have reduced. Also, in
the presence of anti-GM-CSF Ra, chemotactic agents are
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required in inflammatory monocyte migration like CXCR2
(binds to MIF) and CCR6 decrease and ameliorate EAE.
Moreover, Lotfi et al. (228) have indicated that GM-CSF
blockade in monocytes is accompanied by CXCL11 production
and T-cell suppression in vitro. Because CNS-infiltrating
inflammatory monocytes and mDCs highly express GM-CSF
Ra in both EAE and MS, anti-GM-CSF Ra treatment could be a
good suggestion for the treatment of MS in the future
(229) (Figure 2).

Several therapeutic methods have attempted to target the NF-
kB pathway as a critical inflammatory signaling pathway in
MФs. The NF-kB family member, c-Rel, is a crucial
transcription factor in inflammation and induces pro-
inflammatory cytokine production in MФs. Moreover, c-Rel
upregulation has been indicated in the spinal cord-infiltrating
MФs. Accordingly, Deng et al. (230) have found that silencing of
c-Rel in CNS-infiltrating MФs by SiRNA PEG-PLL-PLLeu
micelles (cationic micelles based on hybrid polypeptide
copolymers [poly (ethylene glycol)-b-poly (L-lysine)-b-poly (L-
leucine) (PEG-PLL-PLLeu)] is an effective gene delivery system,
which suppresses the clinical signs of EAE and alleviates
inflammation in the CNS. Their results showed that these
nanoparticles are mainly taken up by F4/80+ cells (CNS-
infiltrating inflammatory MФs and microglia). Furthermore,
following downregulation of the c-Rel expression in MФs,
IFN-g and IL-17A production by MOG-specific T cells were
suppressed in EAE mouse spleen. So, C-Rel targeting in MФs,
which dampens Th1 and Th17 responses in EAE, will be helpful
for future research on MS treatment (231).

Promote Activation, Migration, and Phagocytosis of
Myelin Debris
Although autoantibodies are a hallmark of MS disease, natural
IgM antibodies usually have beneficial functions in the body
(232). rHIgM22 is a human recombinant type of IgM that has
been shown to promote remyelination in cuprizone-mediated
animal models of MS (233). Zorina et al. (234) have
demonstrated that treatment with rHIgM22 increases myelin
uptake in microglial cells compared to the Ctrl IgM treatment.
CR3 and IgM Fc domain are required for rHIgM22-mediated
phagocytosis (235). Therefore, the addition of anti-CD11b
antibody (CR3 consists of two subunits, CD11b and CD18)
and Fc5m antibody results in a negative response to rHIgM22.
Moreover, in compstatin (C3 inhibitor)-pretreated BV-2 cells,
rHIgM22-mediated myelin uptake has wholly blocked. Thus, it
seems that complement opsonization is necessary, whereas
multiple receptors may be involved (234, 236) (Figure 1).
Nevertheless, more research will shed light on rHIgM22
functions and their effectiveness in the treatment of MS.

M-CSF is a major cytokine in changing microglial phenotype
into an anti-inflammatory subtype. Also, it has many roles in the
survival, proliferation, and differentiation of myeloid cells (237,
238). In a study, Laflamme et al. (239) have found that M-CSF
administration in the cuprizone EAE mouse model diminishes
demyelination and improves myelin sheath overall organization.
In addition, M-CSF augments microgliosis (increasing
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immunoreactivity for Iba-1 indicates microgliosis) and
increases the expression of TREM2 mRNA (239) (Figure 1).

Ionotropic P2X receptors (P2XRs) are nucleotide-gated ion
channels of the P2R family (240). In EAE and human MS,
activated microglia highly express Purinergic P2X4R, which
makes these receptors remarkable (241).

Ivermectin (IVM) is a semisynthetic macrocyclic lactone that
FDA has approved for parasitic disease treatment. IVM interacts
with P2X4R and allosterically modulates ion channels (242, 243).
Interestingly Zabala et al. (244) have reported that IVM
promotes remyelination in the lysolecithin-induced
demyelination model in organotypic cerebellar slices. Also,
decreased expression of pro-inflammatory genes vs. increased
anti-inflammatory gene expression has been found during
polarization (244). Furthermore, another study has shown that
P2X4R locates intracellularly in late endosomes and lysosome
membranes (245). Interaction between IVM and P2X4Rs
induces lysosome fusion subsequently and leads to acidic
endolysosome generation and altogether promotes phagocytic
capacity in anti-inflammatory microglia (244) (Figure 1).

Polarization of Microglia and Macrophages to an
Anti-Inflammatory Phenotype by Some
Therapeutic Agents
In a study, Yu et al. (246) have presented that msh-like homeobox-3
(MSX3) increases M2 polarization and impedes microglia M1
polarization through interfering with MSX3 expression in
microglia. In this state, expression of IGF-1, CD206, and FIZZ-1
mRNA levels decreased, but the expression of IL-1b, iNOS, and
TNF-a mRNA increased. In contrast, overexpression of MSX3 in
microglia has induced a reduction in IL-1b, iNOS, and TNF-a
mRNA expression and increased FIZZ-1, CD206, IGF-1, and
activin-A mRNA expression. IGF-1 and activin-A are M2-derived
factors that promote maturation and survival of oligodendrocyte
precursor cells (103, 246–248). Moreover, the overexpression of
MSX3 has induced upregulation of peroxisome proliferator-
activated receptor (PPAR)g, JAK3, and STAT6 genes associated
with M2 polarization. Interestingly, transplantation of MSX3-
overexpressed microglia has improved remyelination and
alleviated signs of disease in EAE mice. Also, overexpression of
MSX3 in human microglia has shown similar results (246). Based
on these results, targeting MSX3 could be assessed as a therapeutic
protocol in the future.

In another study, Aryanpour et al. (249) have shown that
progesterone therapy increases M2 phenotype-related mRNAs
(TREM-2, CD206, Arg-1, and TGF-b) and, in contrast, leads to
depletion of M1-microglia markers (iNOS, CD86, MHC-II, and
TNF-a) in cuprizone-induced demyelinated mouse model.
Moreover, the protein and mRNA expressions of NLRP-3 and
IL-18 have been decreased after progesterone therapy. According
to a significant decrease in the percentage of demyelination areas
after progesterone therapy and its effect on diminishing
inflammation (249), future research should consider the
potential impacts of this therapy in MS (Figure 1).

The monocyte-derived MФs are highly plastic cells, like
microglia, which can repolarize to other phenotypes based on
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exposure to a different condition. Lenalidomide, an oral FDA-
approved drug, is used for myelodysplastic syndromes and
multiple myeloma treatment (250). Also, its immunosuppressive
and neuroprotective effects have been indicated in EAE. Weng
et al. (251) have found that lenalidomide ameliorates EAE
symptoms from the early stage and lasts until the end of
experiment. It also reduces demyelination due to MФ
polarization toward M2 phenotype via IL10–STAT3–IL10
positive feedback loop. This state leads to IL-10 production and
subsequent suppression of pro-inflammatory Th1 and Th17 cell
responses. So lenalidomide could be considered as a potential
therapeutic drug candidate for attenuating neuronal
demyelination in CNS of MS patients (251) (Figure 2).

On the other hand, studies have shown that voltage-gated
potassium channels 1.3 (Kv1.3) in T cells, microglia, and MФs
are necessary for activation, proliferation, and cytokine
production of cells (252, 253). Accordingly, Fan et al. (254)
have designed an EAE vaccine composed of a B-cell epitope from
a pore reign peptide between extracellular loop S5 and S6 on
Kv1.3 channels with a universal synthetic T-cell epitope, Pan
HLA DR-binding peptide (PADRE). Following the
immunization of rats by the PADRE-Kv1.3 vaccine and
subsequent induction of EAE, microglia and MФ populations
have significantly reduced at the first peak day of the disease.
Also, they have shifted to the M2 phenotype with the decrease in
iNOS expression and increase in Arg-1. Regarding the protective
role of this vaccine in preventing or treating EAE through
balancing immune responses, this could be a promising option
for MS treatment in the future (254) (Figure 2).

Bryostatin-1 (bryo-1) is a macrocyclic lactone that can pass
through CNS and affect the immune system. This compound
favors an anti-inflammatory environment by inducing a type 2
phenotype (255, 256). Kornberg et al. (257) have administered
bryo-1 to EAE mice at the first clinical sign of motor weakness,
corresponding to tail paralysis and also on 10 days after peak
disease, and observed the promotion of anti-inflammatory
phenotype in MФs. So, exploring bryo-1 effects on
inflammation in MS might be a promising idea for future
research (Figure 2).

A natural polyamine, spermidine, is produced from arginine
by arginase enzyme (258), and according to the study by Yang
et al. (259), administration of spermidine in EAE mice has
attenuated disease symptoms and reduced the infiltration of
CD4+ T cells and CD11b+ MФs into the CNS. The
amelioration by spermidine has relied on shifting MФs
phenotype from inflammatory (high expression of CD80 and
CD86 and secretion of IL-1b, IL-12, IL-6, and TNF-a) to anti-
inflammatory M2 phenotype (downregulation of NF-kB, Il6,
Il1b, Il12, as well as Nos2 and upregulation of Arg1).
Interestingly, this study’s results have shown that MФs of
spermidine-treated mice could transfer the protective effect
and alleviate disease severity in EAE. This study has
introduced spermidine as a possible drug candidate for MS
treatment in the future (259) (Figure 2).

Moreover, Veremeyko (260) have demonstrated forskolin’s
(coleonol) effects, a plant-derived traditional oriental medicine,
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on the experimental model of MS. In forskolin-treated EAEmice,
downregulation of MHC-I, CD86, and NOS2 on microglia and
MФs in the CNS has been observed. In contrast, forskolin
treatment has induced upregulation of miR-124, Arg1, Mrc1,
Ym1, and Fizz1 on CNS microglia and MФs, leading to
polarization anti-inflammatory M2 phenotype. In this state,
the changing balance through activating the ERK pathway has
decreased neuroinflammation in EAE mice (260).

The other compound, fasudil [1-(5-isoquinolinesulfonyl)-
homo-piperazine], with impact on CNS MФs, is a selective
Rho kinase (ROCK) inhibitor that inhibits cell migration,
proliferation, and survival and used to treat some neural
diseases (261, 262). Following fasudil administration by Liu
et al. (263), the disease severity has alleviated in early and late
treated EAE mice. Besides, MФs have shifted from M1 to M2
phenotype (decrease in M1 markers iNOS, TLR-4, and CD40
expression vs. increase in M2 markers CD206 and Arg-1).
Furthermore, the level of IL-10 as an anti-inflammatory
cytokine has increased after fasudil treatment. This study has
suggested further research on the possible role of fasudil in MS
treatment (263) (Figure 2). In addition to the effects of some
drugs or natural compounds on MФs, some cytokines also
change CNS MФ phenotype and have potential therapeutic
impacts. For example, IL-33 is one of the crucial cytokines of
the immune system that can promote Th2-cell expansion and
skews MФs toward the M2 activation state (264). In a study,
Jiang et al. (265) have presented that treatment of EAE mice with
IL-33 facilitates the polarization of alternatively activated MФs
and reduces inflammation of the CNS. However, the exact
function of IL-33 in the CNS is unclear and needs more
investigation in MS therapy (265) (Figure 2).

Recent studies have shown that neural stem cell
transplantation (NSCT) ameliorates CNS inflammation in
animal models by modulating the immune responses (266,
267). Peruzzotti-Jametti et al. (268) have shown that NSCT in
EAE mice alleviates disease signs and inflammation by reducing
succinate levels in CSF, leading to: 1) a decrease in mononuclear
phagocyte (MP) infiltration and 2) secretion of prostaglandin E2
(PGE2), which reprograms type 1 MPs toward an anti-
inflammatory phenotype. This study has recommended a new
anti-inflammatory mechanism for possible treatment of MS in
the future (268) (Figure 2).

We know glucocorticoids (GCs) as strong immunosuppressive
drugs widely used in treating MS and various inflammatory
diseases. GCs can suppress the immune system by many
mechanisms like inhibition of cytokine secretion and leukocyte
migration, increasing T-cell apoptosis, and shiftingMФ polarization
(269). It is documented that MФ reaches anti-inflammatory
phenotype following exposure to GC, accompanied by the
limitation of immune responses and resolution of disease
symptoms (270). Montes-Cobos et al. (271) have applied GC via
inorganic–organic hybrid nanoparticles (IOH-NP) with [ZrO]2
+{[betamethasone phosphate (BMP)]0.9[Flavin mononucleotide
(FMN)]0.1}2-(BMP-NP). They have found that MФs are
polarized to anti-inflammatory phenotype (decreased percentages
of MHC class II+ and CD86+ cells) in EAE treated mice. Thus, MФ
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polarization is crucial for the efficacy of BMP-NP treatment. Based
on the potential of BMP-NP as a suitable nanoformulation for GC
therapy without toxicity, future investigations should be expanded
to examine its potential effects in the treatment of MS and other
autoinflammatory diseases (271) (Figure 2).
CONCLUSION

The role of MФs and microglia in neuroinflammation and MS
pathogenesis calls our attention to the use of different therapeutic
agents that target these cells. Microglia recognize infections,
toxins, and injuries and have a role in maintaining homeostasis
in the adult CNS. Activation of microglia also induces the
expression of different inflammatory transcription factors such
as NF-kB, JAK/STAT, JNK, ERK1/2, and p38. Moreover,
different cytokines, including IL-6, IL-8, IL-12, IL-23, IL-1b,
and TNF, are produced after microglia activation. The
production of chemokines such a CCL2, CCL3, and CCL4 is
also induced by activated microglia, which can facilitate
leukocyte recruitment in the early phase of MS disease. During
the effector stage of EAE, monocytes rapidly infiltrate
surrounding meninges, perivascular space, and choroid plexus
through and differentiate into MФs. These MФs contribute to the
progression of the paralytic stage of EAE and demyelination by
expressing MHC-II, costimulatory molecules, and producing
pro-inflammatory factors. In EAE, MФ depletion is associated
with a lower CNS injury and attenuated signs and symptoms of
the disease. So, both resident MФs in the CNS and monocyte-
derived MФs that enter into the CNS following alteration in CNS
homeostasis play an essential role in neuroinflammation.
Moreover, due to their different origin, location, and turnover,
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other strategies may target various myeloid cell populations.
Although the main targets of some drugs in MS treatment are not
MФs and microglia cells, they influence these cells indirectly. For
example, DMTs, such as IFN-b, fingolimod, and GA, can change
the activation, migration, and polarization of M1/M2 MФs and
microglia. Also, many therapeutic agents whose impacts on MФs
have been assessed in vitro or in animal models. Researchers have
recently examined various methods of drug delivery by MФs or
their products to the CNS. For example, Tong et al. (272) have
found monocyte-derived MФs mediate the delivery of
superparamagnetic iron oxide nanoparticles (SPIONs, cell-
based delivery systems) into the inflamed brain. They have
indicated that monocyte-derived MФs uptake SPIONs with
different sizes and carry them into the inflamed brain in vivo
(272) (Figure 2). Also, MФ-derived exosomes have been
investigated as possible drug delivery agents to the CNS (273).
Overall, understanding the exact mechanism of therapeutic
agents on MФ population and determining the precise role of
MФs as a drug delivery system in CNS will help their usage in
clinical studies.
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