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For patients with the acute respiratory distress syndrome

(ARDS), ventilation strategies that limit end-expiratory

derecruitment and end-inspiratory overdistension are the only

interventions to have significantly reduced the morbidity and

mortality. For this reason, the use of high-frequency oscillatory

ventilation (HFOV) was considered to be an ideal protective

strategy, given its reliance on very low tidal volumes cycled at

very high rates. However, results from clinical trials in adults

with ARDS have demonstrated that HFOV does not improve

clinical outcomes. Recent experimental and computational

studies have shown that oscillation of a mechanically

heterogeneous lung with multiple simultaneous frequencies

can reduce parenchymal strain, improve gas exchange, and

maintain lung recruitment at lower distending pressures

compared to traditional ‘single-frequency’ HFOV. This review

will discuss the theoretical rationale for the use of multiple

oscillatory frequencies in ARDS, as well as the mechanisms by

which it may reduce the risk for ventilator-induced lung injury.
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Introduction
Of the many pathologies associated with respiratory fail-

ure, the acute respiratory distress syndrome (ARDS) is

perhaps the most devastating in terms of outcome. Respi-

ratory failure from ARDS is associated with mortality

approaching 40% [1]. Survivors may also be burdened

with substantial morbidity, including long-term physical

and mental health impairments [2]. ARDS thus imposes

significant burdens on public health resources worldwide,
Current Opinion in Physiology 2021, 21:36–43 
and only minimal improvements in outcomes have

occurred over recent decades [3]. Risks for developing

ARDS include a diverse range of predisposing factors and

initiating insults, such as aspiration, trauma, sepsis, pneu-

monia, inhalation injury, blood product transfusion, or

burns. Regardless of etiology, the syndrome results in a

progressive deterioration of lung function towards a final

common pathway: hypoxemic respiratory failure charac-

terized by alveolar flooding, derecruitment, reduced com-

pliance, increased shunt fraction, and increased dead

space. A key pathologic feature of ARDS is the hetero-

geneous structural derangements to the lung tissues,

arising from inflammation, edema, surfactant dysfunction,

and fibroproliferation [4��].

Endotracheal intubation and supportive conventional

mechanical ventilation (CMV) remain the mainstays of

treatment for the early management of ARDS. However

CMV may exacerbate existing lung injury, due to cyclic,

intratidal overdistention (volutrauma) and repeated, asyn-

chronous opening and closing of airspaces with each

inflation (atelectrauma). The mechanical stresses associ-

ated with these phenomena, as well as the temporal rates

at which they are applied [5], result in the release of

cytokines and other inflammatory mediators (biotrauma)
that can further exacerbate the existing injury [6,7]. This

ventilator-induced lung injury (VILI) is thus a direct result

of the mechanical heterogeneity of injured parenchyma,

leading to maldistribution of ventilation and correspond-

ing impairments in gas exchange. Since ventilation dis-

tribution in ARDS is governed by a heterogeneous dis-

tribution of regional mechanics, the most appropriate

distending pressure, ventilation frequency, or tidal vol-

ume for one lung region may not necessarily be the same

for another, even within the same patient. This conun-

drum of minimizing injurious stretch, while maintaining

life-supporting gas exchange, is central to the ventilator

management of these complex patients [8].

Ventilation strategies that limit this end-expiratory dere-

cruitment and end-inspiratory overdistension are the only

interventions to have significantly reduced the morbidity

and mortality of ARDS, using low tidal volume (VT) or

driving pressure (DP) to reduce inspiratory overdistention

[9,10], and appropriate levels of positive end-expiratory

pressure (PEEP) to limit end-expiratory opening and

closing [11�]. Such ‘protective’ ventilation strategies,

however, may result in significant hypoventilation of

the injured lung. Increasing respiratory rate is the only
www.sciencedirect.com
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means available to increase CO2 removal during CMV,

but may be largely ineffective given the increased dead

space and ventilation-to-perfusion mismatch associated

with ARDS [12]. Adjustments to VT, DP, or PEEP based

on such criteria provide little insight into how such

interventions impact regional gas transport in the injured

lung, or how to customize ventilator management for the

pathophysiology of an individual patient. For example,

optimal PEEP for a given patient depends much more on

the unique pattern of injury and the amount of recruitable

lung [13], rather than on oxygenation alone [14]. More-

over, there may still exist focal regions of high stress and

strain within the lung, despite apparently modest dis-

tending pressures transduced at the airway opening

[15,16��]. Thus the ability to improve, if not optimize,

non-injurious ventilation in patients with ARDS is a

consideration not only for improving in clinical outcomes,

but also for appropriate management of scarce resources.

The rise and fall of high frequency oscillatory
ventilation in ARDS
High-frequencyoscillatoryventilation (HFOV)isanalternative

form of mechanical ventilation utilizing tidal volumes

smaller than anatomic dead space, 10-fold to 50-fold higher

respiratory frequencies than CMV, and high instantaneous

flows. Compared to CMV which relies on convective trans-

port as the dominant mechanism for gas exchange [17],

HFOV relies on several different mechanisms, including

turbulence, pendelluft, asymmetric velocity profiles, Tay-

lor dispersion, molecular diffusion, collateral ventilation,

and cardiogenic mixing [18,19]. The relative contributions

for any of these gas transport mechanisms are highly depen-

dent on the frequency and amplitude of oscillation, the
Figure 1
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Schematic of the concept of multifrequency oscillatory ventilation (MFOV) u

receives convective flows at different oscillatory frequencies, depending on

while the others prefer intermediate (b) or higher (c) frequencies. When thes

spectrally broadband MFOV waveform (d), each compartment can selective
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and mechanical properties of the lung [20,21�]. HFOV thus

appears to achieve many of the goals of a lung protective

strategy, utilizing appropriate mean airway pressures to

sustain recruitment, and small tidal volumes to limit over-

distention. Consequently, HFOV was initially thought to

be panacea for ARDS and VILI [22–24]. Despite some

initial promising results [25–28], subsequent large random-

ized clinical trials and meta-analyses indicated that HFOV

did not reduce mortality in adults with ARDS [29–31].

Moreover, HFOV has not been shown to be superior to

CMV in preterm or low birth weight infants [32]. This

failure of HFOV to reduce mortality suggested suboptimal,

if not injurious, ventilation of the injured lung, potentially

arising from variable (and unpredictable) effects of fre-

quency, amplitude, and mean airway pressure [33–35].

The primary determinant of ventilation distribution in

the injured lung is the distribution of regional mechanical

properties of the airways and parenchyma, such as local

resistance, inertance, and elastance [33]. Even within the

same patient, the most appropriate distending pressure,

ventilation frequency, or flow/volume amplitude for one

region of the lung may not necessarily be the same for

another [36]. When the lung exhibits such spatial mechani-

cal heterogeneity, local ventilation distribution becomes

highly frequency-dependent [20,21�,34,37,38], and the

most effective frequency for optimal gas exchange in a

given region will vary depending on its local mechanical

properties [33,35]. Such frequency-dependence of regional

ventilation may also lead to regional hyperinflation and/or

derecruitment of the lung in the setting of mechanically

heterogeneous disease [33,35,39,40]. Consistent with this

notion, both computational and experimental studies have
(c) (d)
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demonstrated that oscillatory ventilation at a single high

frequency results in some regions of the lung being under-

ventilated and subjected to the risk of atelectrauma, while

other regions are overventilated and at risk for volutrauma

[21�,33,34,41]. Such data indicate that small amplitude

volume oscillation at a single, arbitrary frequency is not

suitable for maintaining effective gas transport and

exchange throughout a spatially heterogeneous lung. In

addition, the use of very high mean airway pressures during

HFOV may impair venous return and cardiac output, with

implications for end-organ perfusion [42].

Oscillatory ventilation revisited: the use of
multiple simultaneous frequencies
Strategies to optimize CMV or HFOV based on arbitrary

targets for VT, DP, PEEP, or mean airway pressure neglect

the important influence of regional mechanical heteroge-

neity on ventilation distribution [33–35,43]. Recent stud-

ies have proposed that mechanical function and gas

exchange in the lung can be significantly improved if

volume oscillations are applied at multiple frequencies

simultaneously, rather than at a single high frequency,
Figure 2

(a) 
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Oxygenation
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Mean Airway
Pressure, Pao

Time from Rand

Summary of (a) oxygenation index OI, (b) ventilator cost function VC, (c) me

versus time in thirteen lambs randomly assigned to receive traditional single

crossover design study. OI was computed as ðF IO2 PaoÞ=PaO2, where F IO
was computed as ðV2

rms PaCO2Þ=Wt, where V2
rms denotes the root mean s

CO2 tension, and Wt denotes subject weight. *Significant difference betwee

ANOVA with Tukey Honest Significant Difference criterion. All data are expr

permission.
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due to more even distribution of ventilation to different

regions in accordance with local mechanical properties

[44–48]. This unique modality has been termed Multi-
Frequency Oscillatory Ventilation (MFOV), as a natural

extension of HFOV. MFOV is specifically designed to

complement the heterogeneity of the injured lung, by

relying on the local mechanical impedances of the airways

and parenchyma, which can selectively filter out flows of

‘less-desirable’ frequencies, while simultaneously allow-

ing flows at frequencies more ‘optimal’ for a particular

region to participate in gas exchange (Figure 1). With

further adjustments in oscillatory volume amplitude and

mean airway pressure, MFOV may improve gas exchange

in the injured lung while minimizing the detrimental

effects of cyclic alveolar overdistention and derecruit-

ment [44]. MFOV attempts to exploit mechanical hetero-

geneity in the lung, by the design and implementation of

flow waveforms with spectral content more appropriate

for ARDS. Accordingly, MFOV challenges current para-

digms for ventilator management in ARDS that seek to

reduce the influence of regional mechanical heterogene-

ity on gas exchange and exacerbation of injury [49].
(b)

(d)

Ventilatory Cost
Function, Vc

Dynamic Respiratory
Elastance, Edyn

omization (minutes)
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an airway pressure Pao, and (d) dynamic respiratory elastance Edyn

-frequency HFOV (closed symbols) or MFOV (open symbols) in a

2 denotes the fraction of inspired O2 and PaO2 arterial O2 tension. Vc

quare of the airway volume waveform, PaCO2 denotes the arterial

n SFOV and MFOV modalities, using two-way repeated-measures

essed as mean � standard error. Modified from Ref. [44], with
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Figure 3

CT Intensity Δ Air Fraction Δ Air Fraction (%) Peak Strain (%)

M
F

O
V

H
F

O
V

C
M

V

Current Opinion in Physiology 

Example transverse and sagittal maps of original CT Hounsfield intensities, absolute and relative changes (D) in air fraction, and peak strain for a

representative porcine subject with acute lung injury induced with oleic acid. Changes in air fraction F are computed based on Hounsfield

intensities, assuming air and tissues have intensities — 1000 HU and 0 HU, respectively. Peak strain is computed based on the change in the

Jacobian determinant |J| of the image registration deformation matrix. See Ref. [47] for details.
However, its use requires a sophisticated, higher order

understanding of the interplay of regional mechanics,

ventilation distribution, and gas exchange. Such under-

standing has been made possible by recent experimental

and computer simulation studies.

A previous study in preterm lambs demonstrated that a

generic MFOV waveform, generated by a commercially

available hybrid pediatric ventilator-oscillator, could

achieve significantly better oxygenation (Figure 2-a)

and more efficient CO2 elimination (Figure 2-b) com-

pared to traditional single-frequency HFOV in preterm

lambs [44]. These improved indices of gas exchange

could also be maintained with significantly lower mean

airway pressures (Figure 2-c), possibly indicating that

the additional frequencies in the MFOV waveform

enhanced lung recruitment. Moreover, respiratory sys-

tem elastance was also significantly lower during MFOV

compared to HFOV (Figure 2-d), consistent with

enhanced lung recruitment at lower distending airway

pressures. These data therefore indicate that MFOV

can be a more efficient ventilatory modality in preterm

lungs compared to traditional HFOV, and can maintain
www.sciencedirect.com 
lung recruitment at lower mean airway pressures. More

recently in a dynamic CT imaging study of porcine lung

injury [47], both HFOV and MFOV improved gas

exchange efficiency and reduced intratidal variations

in regional strain compared to CMV (Figure 3). These

results also indicated that parenchymal strain during

oscillatory ventilation was regionally heterogeneous and

dependent on frequency. MFOV also significantly

reduced the average regional intratidal strain through-

out the injured lung compared to either CMV or HFOV,

and reduced the spatial gradients of strain compared to

CMV.

Consistent with the premise for MFOV, computer simu-

lations in three-dimensional canine, porcine, and human

lungs have demonstrated that ventilation distribution and

CO2 elimination is spatially clustered [20,21�,45,50], and

highly dependent on both the degree of heterogeneity as

well as oscillatory frequency (Figure 4). Such regional and

frequency-dependent differences in gas exchange sup-

port the notion that MFOV is ideally suited for the

heterogeneously injured lung. More importantly, reduced

heterogeneity in the distributions of ventilation and
Current Opinion in Physiology 2021, 21:36–43
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Figure 4

(a)

(b)

(c)

(d)
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Computational model of a porcine lung with heterogeneous injury. The airway tree is shown in black (a), while the colored acini denote tidal strain

(b), mechanical power (c), and CO2 elimination (d) throughout the model during oscillatory ventilation at 10 Hz and 46.7 mL. These oscillatory

settings resulted in 5.5 mL min�1 kg�1 of total CO2 elimination for the whole model. Derecruited acini are shown in gray (�39% of all acini in the

model). Direction of gravity g is into the page (�) or toward the bottom of the page (#) as indicated. Modified from Ref. [46], with permission.
parenchymal strain can be achieved by the superposition

of multiple simultaneous oscillatory frequencies, poten-

tially reducing the risk for VILI compared to traditional

single-frequency HFOV [45]. It is also theoretically pos-

sible that lung-protective MFOV waveforms can be spe-

cifically ‘tuned’ to mechanically heterogeneous lungs of

individual patients [46], with sufficiently low flow/volume

amplitudes to reduce parenchymal overdistention, while

still being inflated with appropriate distending pressures

to reduce cyclic recruitment/derecruitment. However,
Current Opinion in Physiology 2021, 21:36–43 
this likely would require more advanced imaging tech-

niques [47].

Conclusions
In the light of recent clinical trials, debates on the merits

of oscillatory ventilation as management strategy for

ARDS has been tempered [51–53], even though it may

still hold promise for patients with severe hypoxemia [54].

Perhaps this indicates a premature abandonment of this

very unique, albeit nonintuitive, ventilatory modality in
www.sciencedirect.com
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adults [55], before a sufficient understanding of its phys-

iologic risks and benefits could be achieved. Nonetheless,

there remains considerable room for improvement in the

delivery of oscillatory ventilation in patients [56,57]. By

taking advantage of the unique relationship between

oscillatory frequency and ventilation distribution in the

mechanically heterogeneous lung, MFOV may hold

promise as a protective oscillatory ventilation strategy

in ARDS and other forms of acute respiratory failure.

However, its eventual use in patients will require further

preclinical studies to understand its potential applications

in other pathophysiologies relevant to ARDS. For exam-

ple, exacerbations of asthma, COPD, or pneumonia also

manifest themselves in a very spatially heterogeneous

manner throughout the lung. Thus MFOV may also have

implications for the management of acute respiratory

failure from other etiologies. The possibility that MFOV

can more efficiently penetrate ‘difficult-to-reach’ regions

of the lung also has implications for the optimal delivery

of aerosols and drugs, such as beta agonists, steroids, or

even inhaled volatile anesthetics [58,59]. Moreover, the

ability to enhance gas exchange at lower mean airway

pressures may make MFOV a more appropriate ventilator

modality in patients with impaired cardiac function [60],

or in pathologies for which a structurally weakened

parenchyma increases the risk barotrauma [61,62].

Whether other therapeutic interventions that are known

to be efficacious in ARDS, such as prone positioning [63],

confer additional lung protection when used in combina-

tion with MFOV is of course only speculative at this

point. Thus while MFOV may have potential to change

current ventilator management in critically ill patients,

there remain fundamental questions regarding the mech-

anisms by which it improves gas exchange and mechani-

cal function. It is also unclear if there are limits on the

degree of lung mechanical heterogeneity for which

MFOV can still maintain protective ventilation and effi-

cacious gas exchange [33,45,46,64]. The preliminary

experimental and computational studies presented in this

review suggest that MFOV has potential to reduce the

risk of VILI compared to CMV or traditional HFOV, at

least based on short term physiologic and mechanical

metrics. The potential for MFOV or other oscillatory

modalities to reduce the morbidity and mortality associ-

ated with ARDS must of course await future clinical trials.
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