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Abstract

Respiratory syncytial virus (RSV) infections peak during the winter months in the United States, 

yet the timing, intensity, and onset of these outbreaks vary each year. An RSV vaccine is on the 

cusp of being released; precise models and accurate forecasts of RSV epidemics may prove vital 

for planning where and when the vaccine should be deployed. Accurate forecasts with sufficient 

spatial and temporal resolution could also be used to support the prevention or treatment of RSV 

infections. Previously, we developed and validated an RSV forecast system at the regional scale 

in the United States. This model-inference system had considerable forecast skill, relative to the 

historical expectance, for outbreak peak intensity, total outbreak size, and onset, but only marginal 

skill for predicting the timing of the outbreak peak. Here, we use a superensemble approach 

to combine three forecasting methods for RSV prediction in the US at three different spatial 

resolutions: national, regional, and state. At the regional and state levels, we find a substantial 

improvement of forecast skill, relative to historical expectance, for peak intensity, timing, and 

onset outbreak up to two months in advance of the predicted outbreak peak. Moreover, due to 

the greater variability of RSV outbreaks at finer spatial scales, we find that improvement of 

forecast skill at the state level exceeds that at the regional and national levels. Such finer scale 

superensemble forecasts may be more relevant for effecting local-scale interventions, particularly 

in communities with a high burden of RSV infection.
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1. Introduction

Models of infectious diseases can help elucidate transmission dynamics, estimate 

epidemiological parameters, evaluate hypothetical containment or transmission events, and 
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forecast epidemics. Depending on the modeling objectives, mathematical models can be 

composed of compartments classified by stage of infection (Shaman et al., 2013; Shaman 

and Karspeck, 2012; Yang et al., 2015), based on individual agents operating within a 

stochastic framework (Ferguson et al., 2005; Willem et al., 2015), or defined by statistical 

associations with environmental or sociological factors (Darrow et al., 2014; Ségala et 

al., 2008). Forecasts generated using different modeling methodologies can be highly 

discrepant; however, statistical approaches can be used to reconcile and combine different 

forecast products into a more accurate weighted average forecast. Such superensemble 

forecasting is well-established in weather and climate forecasting (Krishnamurti et al., 

2001; Yun et al., 2003), and has been applied recently to the forecast of infectious disease 

outbreaks (Ray and Reich, 2018; Yamana et al., 2017, 2016). In particular, Bayesian Model 

Averaging (BMA) is a multi-model averaging method that quantifies model uncertainty 

and combines different conceptual models based on their uncertainty and robustness. The 

resulting multi-model averages or superensembles have been shown to improve overall 

forecast accuracy compared to forecasts generated from a single model (Xu et al., 2017; 

Yamana et al., 2016).

Respiratory syncytial virus (RSV) has been modeled statistically to identify associations 

with meteorological parameters (du Prel et al., 2009; Onozuka, 2014; Ségala et al., 

2008; Sloan et al., 2011), and simulated using a variety of compartmental model forms 

to investigate epidemiological dynamics (Pitzer et al., 2015; Reis and Shaman, 2016; 

Velasco-Hernández et al., 2015; Weber et al., 2001; White et al., 2007). Our previous 

work developed an RSV simulation and epidemic forecasting system that used a susceptible­

infected-recovered (SIR) compartmental model, the ensemble adjustment Kalman filter 

(EAKF), and Census Division and Health and Human Services (HHS) regional data 

in the United States (Reis and Shaman, 2016). This model-inference system produced 

forecasts of peak intensity and epidemic onset with greater accuracy, or skill, than historical 

expectance at leads of up to four weeks, long enough to provide additional planning time 

for administration of prophylactic treatment to at-risk individuals. However, the forecasts 

of peak epidemic timing were only marginally more accurate than historical expectance, 

largely due to the regularity of RSV epidemics at the regional scale.

In this study, we simulate and forecast RSV using three distinct forecasting systems, and 

combine these component forecasts into a superensemble, using a BMA algorithm. We 

apply this prediction system to RSV observations at the national, regional, and state levels, 

with the objective of identifying the efficacy and utility of forecast systems of varying 

complexity at different spatial scales. We hypothesized that with ample data, the simplest 

historical models could compete with complex models at large spatial scales, particularly 

early in an outbreak. Conversely, we expected increasing accuracy for the superensemble 

forecasting system, relative to historical expectance, at more localized geographic scales 

where RSV outbreaks exhibit greater variability.

2. Materials

For each spatial scale, we used specimen laboratory RSV tests collected through the 

National Respiratory and Enteric Virus Surveillance System (NREVSS) and disseminated 
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by the Centers for Disease Control and Prevention (CDC) (Centers for Disease Control and 

Prevention, 2017). We summed the positive specimens identified through antigen detection, 

viral isolation, and PCR testing and divided by the number of total tests administered. 

Antigen detection has been the most common method of RSV testing since at least 1997. 

PCR tests became widespread around 2010, and are slowly replacing both antigen detection 

and viral culture as the dominant test for RSV. To account for changing testing patterns 

and utilize a broader RSV signal, we summed the positive specimens identified through 

antigen detection, viral isolation, and PCR testing and divided by the number of total 

tests administered. Data were provided from 1997 to 2014, allowing for 17 seasons of 

RSV outbreaks at the national level. At the regional level, a sufficient volume of tests 

(≥20 samples per region) did not become available until 2004, allowing for simulation and 

forecast of 10 seasons of RSV outbreaks, sub-divided in the 19 overlapping Census Division 

and Health and Human Services divisions. At the state level, we summed the number of 

positive antigen and PCR detected RSV tests and divided by the total number of these tests, 

which were provided online as a three-week backward-looking moving average (Centers for 

Disease Control and Prevention, 2017). Our state data time series commences 2013–2014 

and continues through the 2016–2017 season, with 26 states reporting three seasons with at 

least 30 observations. Time series of all three data aggregations are shown in Fig. 1.

For all three data forms, we simulated 42-week single-season RSV epidemics starting week 

37, in mid-September, and ending on week 26, in early July. For each data stream, we 

generated retrospective forecasts of RSV epidemics using three independent forecast models 

(F1–F3). As described below, F1 and F2 employ Bayesian inference approaches, and F3 
uses the historical expectance and serves as a simple null model. Forecast skill is evaluated 

based on superensemble performance relative to the null model.

3. Methods

We used three methods to generate retrospective forecasts of RSV outbreaks for four 

separate epidemic characteristics: 1) peak intensity, the maximum value in the 42-week 

RSV epidemic; 2) peak timing, the week of peak intensity; 3) mean cases, the mean percent 

of samples that were positive during the 42-week cycle; and 4) epidemic onset, defined as 

the first of two consecutive weeks in a season for which RSV incidence meets or exceeds 

a threshold of 10% positive, as specified by the CDC. Weekly forecasts were generated 

beginning on week 40 of each season and continuing for 37 weeks (through mid-June).

3.1. F1. Bayesian weighted outbreaks

For the first forecast method, Bayesian Weighted Outbreaks (BWO), we simulated each 

measure of RSV incidence using multi-model averaging. As described in (Yamana et 

al., 2016), we use the Bayesian Model Averaging (BMA) algorithm to model the future 

progression of a disease outbreak as a weighted sum of historical epidemic trajectories. 

Trajectory weights are determined based on the likelihood of the observed data being 

correct, given the historical trajectories over a training period, which in this case is the four 

weeks leading up to the week of the forecast, t. The BMA weighting scheme is determined 

by optimizing the following equation:
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p y(t − 4): t ∣ f1, (t − 4): t, …, fk, (t − 4): t = ∑
k = 1

K
wkgk y(t − 4): t ∣ fk, (t − 4): t (1)

where y is the observed incidence over the training period, wkis the weight assigned to 

each historical trajectory fk (i.e. an array of historically observed weekly incidence), and gk 

(y| fk) is the conditional probability density function (PDF) associated with each trajectory. 

K is the number of historical trajectories being considered. Each conditional PDF for y 
is assumed to be normal with mean fkand standard deviation σ. We determine wk and 

σ by applying a log-likelihood optimization algortihm using the expectation-maximization 

algorithm (Raftery et al., 2005), in effect, minimizing the difference between observations 

and the BMA-generated forecasts. Optimization tolerance was set to 10−4, with a maximum 

of 600 iterations.

The optimized weights, which sum to one, are multiplied by fk and summed to obtain the 

forecast trajectory for all future weeks (t +1 through 42):

E y(t + 1):42f1, (t + 1):42, …, fk, (t + 1):42 = ∑
k = 1

K
wkfk, (t + 1):42 (2)

In other words, the BWO forecast is the expected value from the posterior model probability, 

or weights wk, multiplied by the historical trajectories fk.

3.2. F2. SIR-EAKF

For the second approach, and as described previously (Reis and Shaman, 2018, 2016), we 

simulated and forecast RSV outbreaks using the ensemble adjusted Kalman filter (EAKF) 

combined with a dynamical susceptible-infected-recovered (SIR) model:

dS
dt = − R0IS

DN (3)

dI
dt = R0IS

DN − I
D (4)

with S as the susceptible population, I as the number of infected, R0 as the basic 

reproductive number, D as the mean infection period, and N as the size of the population. N 
was held constant at an arbitrary size of 500,000 people.

The model-filter structure employs an ensemble of simulations. Here, 300 ensemble 

members are integrated per modeling run, which provide a mean and variance associated 

with each forecast. All ensemble simulations were initiated at the beginning of a season, 

with a random selection of state variable and parameter distributions, which are listed in 

Table 1.
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We repeated each 300-member ensemble simulation five times to account for stochastic 

effects stemming from the random initialization. The EAKF, which is described in depth in 

Anderson (2001), is used to adjust the observed state variable, RSV incidence, with each 

new observational estimate of RSV incidence. This adjustment accounts for observation­

ascribed uncertainty, here called the observed error variance (OEV), as well as model 

estimated uncertainty, derived from the ensemble prior variance. Following update of the 

observed state variable, the unobserved state variable and parameter estimates are then 

adjusted based on their co-variability with the new posterior observed state variable. OEV is 

defined as:

OEV = OEV 0 + OBS2

a
(5)

where OEV0 is the minimum OEV, and a is a constant. With this form [E5], OEV increases 

with observation magnitude, as measured by a simple three-week moving average OBS. 

Following sensitivity analysis, we set OEV0 as 105 and a as 50. We mapped our observations 

to the incidence of population I with a scalar γ, set to 0.05, which accounts for the 

passive rather than active sampling scheme of the NREVSS data that tests only symptomatic 

individuals. SIR-EAKF forecasts (F2) were generated by integrating the posterior, following 

EAKF update, through to the end of the season without further adjustment. The mean 

trajectory from the 300 ensemble members is used as the SIR-EAKF forecast.

3.3. F3. Historical expectance or null

Our third forecast method, called the null model, used historical expectance (Reis and 

Shaman, 2016), which was defined as the mean epidemic trajectory or time-series from 

each location s, leaving out the current year. The historical expectance is akin to the RSV 

epidemic that a health expert might expect based on their prior experience with patient 

demand at the beginning of the season.

3.4. Superensemble

Following Yamana et al. (Yamana et al., 2016), our superensemble merges predictions from 

different forecasting methods. This weighted average accounts for model uncertainty and 

offsets the biases of each individual forecast. To generate our superensemble forecasts, we 

combined the three prediction methods (F1 to F3) using the same BMA algorithm described 

in Eqs. (1) and (2). Rather than assigning weights based on the observed epidemic trajectory, 

as was done for the F1 forecast, training data for the superensemble are the observed and 

predicted values of each of the four epidemic characteristics over a training forecast period 

(here termed TF1 to TF3). We again leave out the current year, so that the set of training 

forecasts consists of data from all regions for all years except the year being forecast.

To prevent superensemble forecast of a given year that included BWO (F1) or null (F3) 

forecasts generated using training data from the year being forecast, we generated ‘parallel’ 

forecasts for use in the superensembles each year; e.g., a superensemble for year 3 would 

weigh F1 – F3 that were generated excluding training data from year 3. For simplicity, we 

term this approach advanced leave-one-out (ALOO).
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Because the relative accuracy of the three individual forecasting methods varies based on 

the stage of the epidemic, weights are calculated separately for each calendar week, as in 

(Ray and Reich, 2018; Yamana et al., 2016). For example, a superensemble forecast for a 

given location during week 10 uses training forecasts for week 10 from the other years for 

all regions. Similarly, previous work has demonstrated that ensemble compartmental model­

filter forecasts can be calibrated based on ensemble variance; i.e. forecast accuracy can be 

predicted based on ensemble spread (Reis and Shaman, 2016; Shaman et al., 2013; Shaman 

and Karspeck, 2012). To incorporate this a posteriori information about the accuracy of the 

SIR-EAKF forecasts (F2) when generating the superensemble, we stratify forecasts into two 

categories: those with above-median F2 ensemble variance and those with below-median 

F2 ensemble variance. As high-variance SIR-EAKFs (F2) are known to be unreliable, we 

exclude such forecasts from the superensemble, and instead use TF1 and TF3 to obtain 

weights for F1 and F3. Conversely, for below-median F2 ensemble variance forecasts, we 

use TF2 with below-median variance and the corresponding TF1 and TF3 forecasts to obtain 

weights for F1–F3. In sum, we adapted the BMA algorithm (E1–E2) to combine forecasts 

F1 to F3, and stratified the weighting based on the SIR-EAKF forecast variance and week of 

forecast t:

p(yTF1, TF2, TF3) = ∑
k = 1

3
wkgk y ∣ TFk, t, v (6)

The superensemble forecasts are the sum of weights wk multiplied by forecasts Fk, which 

are each associated with a PDF gk (yTFk, t, v) that is optimized by the BMA algorithm using 

the log-likelihood function, thus generating a forecast per E2.

When evaluating the superensemble retrospective forecast accuracy, we grouped forecasts 

based on observed standard deviation of epidemic characteristics, superensemble variance, 

and lead week, which is defined as the current week minus the week of predicted peak 

intensity. We used the historical expectance as a benchmark for judging the utility of 

the other forecast methods; in particular, superensemble forecast accuracy must exceed 

historical expectance to justify its utilization. We define relative skill as the mean absolute 

error (MAE) of historical expectance minus the MAE of the superensemble.

4. Results

The superensemble RSV forecasts at each spatial scale were generally more accurate than 

each of the individual forecasting methods in predicting outbreak peak intensity, peak 

timing, mean cases, and onset. Fig. 2 shows the forecast mean absolute error (MAE) 

as a function of actual lead week (current week minus observed epidemic peak) for the 

superensemble and three individual forecasting approaches for data at the regional spatial 

grouping. The superensemble predictions exceeded historical expectance for leads of 0–7 

weeks (i.e. 0 to −7) or longer for each characteristic. The mean error of each forecast type 

and each spatial aggregation is plotted in S1 Fig. Generally the predicted value is lower than 

the observed early in the outbreak, and vice versa after the actual peak. SIR-EAKF forecasts 

underestimate the mean cases characteristic throughout the outbreak, albeit by less than 5% 
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at leads of eight weeks or fewer. Note that here we used actual lead week (current week 

minus actual peak timing) to compare concurrent forecasts from F1–F3, but unless otherwise 

specified, all other plots use predicted lead week as defined in the Methods.

The mean weights optimized for F1–F3 to create the superensemble for all spatial groupings 

are shown in Fig. 3. The left column of Fig. 3 shows weights assigned only based on F1 
and F3 for which the SIR-EAKF forecasts (F2) with above-median variance were omitted 

from the superensemble calculation. The right column of Fig. 3 shows the weights assigned 

to all three forecasts for SIR-EAKF forecasts with below-median variance. Early in an 

outbreak, the null model was given the greatest weight for the intensity, mean cases, and 

timing characteristics. Little weight is allocated to the SIR-EAKF forecasts for the outbreak 

characteristics measuring magnitude, intensity and mean cases, until about week 4 (late 

January). Likewise, the BWO, a weighted average of past epidemics, was assigned little 

weight in superensemble forecasts of intensity early in the epidemic, suggesting that RSV 

epidemic peak intensity does not strongly correlate with the magnitude of incidence early 

in the RSV season. As the epidemic developed, more weight was applied to the BWO and 

SIR-EAKF systems, which more explicitly use recent observations to adjust their predictions 

of future outcomes. Although the null model nearly matches superensemble forecasts at the 

state scale for timing (Fig. 2), the superensemble assigned the null very little weight when 

forecasting epidemic onset.

Fig. 4 shows the superensemble skill relative to historical expectance (superensemble 

MAE minus null MAE) versus predicted lead week, with the superensemble skill as a 

centered running mean, binned at 2-week intervals; MAE at one-week intervals is plotted 

with a dotted line. At the regional level, the MAE of intensity, timing, and onset for the 

superensemble forecasts were lower than historical expectance for leads of more than ten 

weeks (Fig. 4). At the state level, superensemble MAE of these characteristics were lower 

than historical expectance at leads of six or more weeks, depending on the forecast metric 

(Fig. 4). For mean cases, the superensemble at the 3 spatial scales, national, regional and 

state, matched or underperformed historical expectance, due to a relatively stable overall 

RSV mean annual burden, as measured by percent positivity. Similarly, national level 

outbreaks of RSV were similar in timing, intensity, and mean cases from year to year, 

such that the superensemble forecast MAE for these characteristics was lower only at shorter 

leads of about 2 weeks. At all levels, the superensemble outperforms the null for the onset 

by 0.5 weeks starting at a lead of eight weeks.

The difference in MAE between the superensemble and historical expectance is plotted in 

Fig. 5 as a function of the observed standard deviation of each outbreak characteristic. As 

a reference, the observed standard deviation of the four epidemic characteristics for each 

spatial grouping is shown in S2 Fig. The observed standard deviation significantly correlates 

with the superensemble skill, with the slope p-value shown, for lead week groupings 

beginning eight weeks before the predicted peak for peak timing and onset, and beginning 

four and six weeks for intensity and mean cases, respectively. Fig. 5 plots each region 

and state in the lead week interval groupings, as well as the overall mean for each spatial 

grouping (shown with a larger marker outlined in black). As the variability of observed 

RSV outbreak metrics increases, the MAE of the superensemble forecast decreases. This 
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negative association between epidemic variability and forecast error, which is particularly 

pronounced for the timing and onset characteristics, indicates that RSV forecasts have 

particular utility in areas where RSV outcomes are less regular.

5. Discussion

Healthcare officials could use accurate, calibrated RSV forecasts to help plan for the 

distribution of expensive RSV prophylaxis or future vaccines, and increase medical 

preparedness by anticipating patient demand, which may decrease emergency department 

wait times. Here, we demonstrated a robust, flexible, and accurate RSV epidemic forecast 

system. We significantly improved upon our previous SIR-EAKF model-filter RSV forecasts 

(Reis and Shaman, 2016) by using a superensemble approach that combines three model 

methodologies. Previously our forecasts of regional RSV peak timing exceeded historical 

expectance just two weeks before the predicted peak; here the superensemble forecast skill 

exceeds historical expectance for timing with a lead of more than ten weeks in the regional 

and state groupings. Peak intensity was better predicted with a lead of six weeks at the 

state level and 10 weeks at the regional level. Prediction of mean cases was limited to two 

lead weeks, perhaps a reflection of the limited interannual variability exhibited by percent 

positivity data. Prediction of outbreak onset out-performed historical expectance at lead 

times of more than ten weeks at regional and state groupings.

Generally, the superensemble capitalizes on the strength of each forecast method. Early 

in the epidemic, the F3 null model was assigned more weight within the superensemble, 

particularly for peak intensity (Fig. 3). Later in the epidemic season, the BWO and SIR­

EAKF forecasts, which are updated with each new observation, were assigned greater 

weight. The SIR-EAKF forecasts were assigned less weight than the BWO forecasts 

for characteristics that reflect outbreak magnitude, peak intensity and mean cases, and 

conversely, more weight for the peak timing and onset characteristics.

We showed that forecast error can be predicted using a combination of forecast lead (Fig. 

4) and the observed standard deviation of each epidemic characteristic (Fig. 5). Calibration 

of the forecast allows quantification of expected accuracy of a forecast in real time (Shaman 

et al., 2014; Yang et al., 2014), and thus provides a measure of confidence in choosing 

between the superensemble forecast and historical expectance. We expected to find greater 

variability among epidemics at finer spatial resolution, and a corresponding increase in 

forecast accuracy over historical expectance, such that forecasts at more local scales would 

be more skillful relative to the null model. Indeed, state forecasts usually had the highest 

skill for each of the four metrics, although at times it was surpassed by the regional forecasts 

(Fig. 4). Conversely, the national RSV epidemics have lower observed variability in intensity 

and mean cases (S2 Fig.), and this outbreak regularity is reflected in the high accuracy 

of the historical expectance forecast. As a result, the benefits of using a superensemble 

approach were smaller than at the region and state levels (Figs. 4 and 5). Overall, we 

found a consistent negative association between observed standard deviation of epidemic 

characteristics and forecast MAE (Fig. 5). Thus, the forecasts appear to have greater utility 

in areas with high year-to-year variability.
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For our superensemble, we selected one statistical model based on historical outbreaks 

(BWO), one process-based model (SIR-EAKF), and a simple null model. While an SIR 

model forecast is similar to that of other dynamical systems (e.g. including an exposed 

category in an SEIR model, as shown in S3 Fig), additional models might have generated 

distinct outbreak structures that could have informed the superensemble. Indeed, a larger 

superensemble comprised of more competing models with more potentially offsetting 

biases might produce still more accurate weighted-average predictions. Further, it would 

be interesting to see whether outbreaks at each spatial scale could inform forecasts at other 

spatial scales.

In this work, we combined antigen, viral, and PCR testing results to capture a larger 

sample of RSV infections and in doing so incorporate changing testing practices over time. 

Both viral and PCR tests generally have a lower percent positive rate than antigen tests, 

because they may be conducted on patients with a wide variety of respiratory symptoms, 

in comparison to antigen detection tests which are only administered on suspected RSV 

patients. These differences may shift biases in the combined test signal, as rates of utilization 

of a particular test can change.

While the retrospective superensemble forecasts developed here are encouraging, real-time, 

operational RSV forecasting still has yet to be generated and validated. The RSV data we 

present are generally available with a 1–2 week delay, so, in practice, a forecast lead of less 

than two weeks would only estimate the real-time incidence of RSV. While this information 

could still inform health care decision-making, a longer lead time (e.g. that observed at the 

region or state level) would be required to allow public health officials time to implement 

responses. Further, RSV data as initially released by the CDC is often subject to revision, 

which will further increase the error of real-time forecasts.Nowcast estimates of RSV for the 

most recent weeks could be developed to bridge the gap between the present and the most 

recent available data. A separate study is needed to develop such nowcast estimates using 

statistical approaches combined with real-time proxy data, such as online search and twitter 

activity.

Smoothing the model weights across weeks, or another covariate, may also improve 

superensemble performance (e.g. Ray and Reich, 2018). As Fig. 5 demonstrates, with 

sufficient variability in outbreak characteristics, the superensemble outperforms the null 

model. Future work could test whether stratifying by observed standard deviation, or 

other characteristics, improves superensemble performance. One limitation of this work 

was that superensemble variance output from the BMA algorithm was not well correlated 

with forecast performance, so we do not present probability estimates associated with the 

superensemble forecasts. However, forecast accuracy can be computed for each spatial 

aggregation to show the expected accuracy of a forecast by lead week (e.g. S4 Fig for the 

regional scale).

The improved skill of superensemble RSV epidemic forecasts relative to historical 

expectance could help medical professionals prepare for RSV patient demand. Although 

RSV outbreaks vary less than other infectious outbreaks (e.g. influenza), an accurate 

quantitative expectation of RSV patients could help health care facilities plan during the 
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busy winter season, when morbidity spikes in a variety of infectious and non-infectious 

diseases. Increasing awareness of RSV as a threat to a growing elderly population as well 

as vulnerable infants (Openshaw et al., 2017), increasing access to rapid PCR testing of 

RSV infection, and rapid development in RSV vaccine availability (Giersing et al., 2017; 

Moscona, 2015) make accurate and calibrated forecasts of RSV more relevant than ever. 

Infants at risk for severe RSV-induced bronchiolitis, whether due to their prematurity or 

other risk factors, are usually recommended to receive five doses of expensive prophylaxis, 

which are not available to all at-risk infants (Committee on Infectious Diseases et al., 

2014; Resch, 2014). As others have noted, any changes to the recommended prophylactic 

dosing would require rigorous additional study by physicians (Panozzo and Hampp, 2015), 

particularly given the vulnerability of the population at risk for severe RSV-induced 

bronchiolitis; yet as a theoretical exercise, if accurate, calibrated RSV epidemic forecasts 

could reduce the required prophylactic from five to four doses per month by anticipating the 

RSV epidemic timing two months earlier, an additional 20% of children could be covered 

by prophylaxis. Assuming an optimistic 96% reduction in hospitalization from prophylaxis 

(Banerji et al., 2014; Homaira et al., 2014; Paes et al., 2012), a 20% increase in prophylaxes 

coverage could prevent over 400,000 outpatient visits of children under five years old per 

year in the United States, including over 100,000 emergency department cases (Hall et al., 

2009). This simple calculation indicates the potential value of RSV forecasts in terms of 

both illnesses averted and saved hospital resources.
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Fig. 1. 
MedianRSV percent positive specimen data across each spatial resolution over the 42­

weekRSV season, with the bounded region from the 25th to 75th percentiles of region­

specific incidence shaded. Dotted lines indicate the minimum and maximum values.
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Fig. 2. 
Mean absolute error (MAE) of RSV forecasts at the regional scale plotted as a function of 

actual lead week (forecast initiation week minus observed peak week for intensity, timing 

and total cases; forecast initiation week minus observed onset week for onset). The three 

models used to generate the superensemble are shown.
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Fig. 3. 
RSV superensemble weights, averaged over all spatial groupings, as a function of week 

of forecast. Left column: Superensemble weights calculated without SIR-EAKF training 

data, from SIR-EAKF forecasts with above-median variance. Right column: superensemble 

weights calculated with SIR-EAKF forecasts, from SIR-EAKF forecasts with below-median 

variance.
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Fig. 4. 
The mean absolute error (MAE) of the superensemble minus the MAE of the null model 

plotted as a function of predicted lead week (forecast initiation week minus predicted 

peak week for intensity, timing, and total cases; forecast initiation week minus predicted 

onset week for onset). MAE at one-week intervals is plotted with a dotted line and MAE 

aggregated at two-week intervals is plotted with a solid line.
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Fig. 5. 
Relative skill, i.e. the MAE of the superensemble minus historical expectance (null) 

compared to the standard deviation of the observed metric. Colors indicate lead week 

increments. Trend line includes all spatial groupings. Circle: nation, diamond: region, 

square: state. Larger markers indicate mean of spatial grouping. The p-values indicate the 

significance of a linear model of the relative skill and observed standard deviation.
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Table 1

The initial parameters used in the SIR-EAKF are described by their range, mean, or standard deviation, and 

distribution type. All simulations were initialized with these values.

Variable or parameter Initialized Range Distribution

Susceptible, S 1.4 × 105 – 4.9 × 105 people;
μ = 29.5 × 104; σ =7.1 × 104 Normal

Infectious, I One to 1.5 × 103 people; μ = 14.8 Exponential

Duration of Infection, D 4–9 days Uniform

Reproductive number, R0 1.3–4.0 new cases per infection Uniform
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