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Abstract: In the present research, an orange extract (OE) was obtained and encapsulated in a zein
matrix for its subsequent physicochemical characterization and evaluation of its antioxidant capacity.
The OE consists of phenolic compounds and flavonoids extracted from orange peel (Citrus sinensis)
by ultrasound-assisted extraction (UAE). The results obtained by dynamic light scattering (DLS)
and scanning electron microscopy (SEM) indicated that zein nanoparticles with orange extract
(NpZOE) presented a nanometric size and spherical shape, presenting a hydrodynamic diameter of
159.26 ± 5.96 nm. Furthermore, ζ-potential evolution and Fourier transform infrared spectroscopy
(FTIR) techniques were used to evaluate the interaction between zein and OE. Regarding antioxidant
activity, ABTS and DPPH assays indicated no significant differences at high concentrations of orange
peel extract and NpZOE; however, NpZOE was more effective at low concentrations. Although this
indicates that ultrasonication as an extraction method effectively obtains the phenolic compounds
present in orange peels, the nanoprecipitation method under the conditions used allowed us to
obtain particles in the nanometric range with positive ζ-potential. On the other hand, the antioxidant
capacity analysis indicated a high antioxidant capacity of both OE and the NpZOE. This study
presents the possibility of obtaining orange extracts by ultrasound and coupling them to zein-based
nanoparticulate systems to be applied as biomedical materials functionalized with antioxidant
substances of pharmaceutical utility.

Keywords: zein nanoparticles; ultrasound-assisted extraction; antioxidant capacity

1. Introduction

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) readily attack a
variety of critical biological molecules such as lipids, DNA, and essential cellular proteins,
causing alterations in the normal physiology of cells and organs, activating and accelerating
disease processes [1]. Several studies show adverse effects caused by oxidative stress; an
imbalance between ROS generation and the antioxidant system alters gene expression
and cell signaling, causing cancer progression or death [2]. Another ROS-related disease
is cerebral ischemic stroke, a leading cause of death and disability in humans [3]. It has
recently been pointed out that oxidative stress may be a significant factor in COVID-19
pathogenesis due to its role in the response to infections [4]. In addition, oxidative stress
transforms 3CLpro (a key proteinase for SARS-CoV-2 replication and a significant target
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for antiviral drug development) into an insoluble and enzymatically active form, leading
to increased viral replication/transcription, suggesting the therapeutic potential of antioxi-
dants in the clinical treatment of COVID-19 patients [5]. Antioxidants are compounds used
by the body to eliminate free radicals, which are highly reactive chemicals that introduce
oxygen into the cells and cause oxidation in different cell parts, changes in the DNA, and
various changes that accelerate the body’s aging [6]. However, the body’s antioxidant
defenses are sometimes not entirely efficient, and there is an increase in the formation
of free radicals, i.e., oxidative stress. In cases such as these, some authors mention the
importance of consuming phenolic compounds such as flavonoids [7] and highlight the
importance of exogenous consumption of antioxidants through diet to further protect the
body and help fight heart disease and cancer [8].

The use of organic solvents generates waste, and the existence of solvent traces in the
extracts obtained is also possible [9] However, recently, some studies have been published
on the extraction of bioactive molecules using non-polluting technologies, including super-
critical fluids—mainly supercritical state carbon dioxide [10] This methodology allows for
obtaining high-quality extracts and simultaneously doing it in an environmentally friendly
way [11]. Supercritical CO2 extraction allows for selective extraction, uses moderate tem-
peratures, allows for easy separation of the compounds obtained, does not present toxic
residues in the extracts, and is an environmentally friendly technology that allows recy-
cling of the solvents used. A recent technology is the use of UAE, offering some valuable
advantages such as higher productivity, yield, and selectivity; shorter process time; high
quality in the final product; and the reduction of chemical/physical risks. It is also more
environmentally friendly as it does not generate hazardous industrial waste [12]. The ex-
traction is based on the application of ultrasound (20–100 kHz) which causes the implosion
of cell cavitation bubbles in which acoustic waves propagate, leading to the disruption of
cell membranes. This action facilitates the penetration of the solvent into the cells, thus en-
hancing mass transfer and the release of bioactive compounds. Ultrasonication is a method
for obtaining extracts and uses physical and chemical phenomena that are fundamentally
different from those conventionally applied in extraction, processing, and preservation
techniques [13]. The compounds obtained in many cases present low solubility and the
low stability of phenolic phytochemicals in the gastrointestinal tract, which plays an essen-
tial role in their low absorption rate. Among these bioactive molecules, some flavonoids
have been used—mainly those extracted from citrus peel—demonstrating applications in
the biomedical area by exhibiting antioxidant, antihypertensive, anti-inflammatory, and
anticarcinogenic capacity through different mechanisms [5]. Their affinity determines the
aqueous solubility of phenolic phytochemicals with water molecules, and molecular weight
plays a crucial role in aqueous solubility. There are alternatives to reduce this problem. The
synthesis of polymeric nanoparticles has been proposed to give them the property of inte-
grating bioactive molecules and protecting them from degradation in their physiological
distribution route to meet their objective of reaching the critical area of action [14]. The
interest in the study of micro- and nano-systems developed based on chitosan has attracted
significant attention in applications related to the encapsulation of bioactive compounds
due to its recognition as safe (GRAS) and its biological properties such as biodegradability,
biocompatibility, and low or no toxicity, as well as its ability to form films, membranes,
gels, beads, fibers, and micro- and nanoparticles [15].

In recent years we have witnessed increasing research in the field of nanotechnol-
ogy. In particular, the boom in polymeric nanoparticles, used in various areas of life and
health, is no exception. These nanoparticles have been designed from biocompatible and
biodegradable polymers, a characteristic that confers to them a certain level of reliabil-
ity when used in terms of health by demonstrating effects as coadjuvant antimicrobial
agents [16], anticancer [17], and antioxidants [18]. The polymeric nanoparticles’ potential in
medicine has been experimented with as influencers of the immune system directly by their
composition or indirectly as carriers of active substances [19]. In vitro systems for drug
delivery based on nanocarriers have been developed to load the antioxidant drug curcumin
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on biocompatible PCL nanoparticles (Cur-PCL/F68 NPs), evaluating their in vitro cell
viability in neuronal (SH-SY5Y) and glial (MIO-M1) cells as an approach to examine the
behavior of NPs in biological environments [20]. In polymeric nanoparticle synthesis, it
has been possible to confer the property of integrating bioactive molecules and protecting
them from degradation in their physiological distribution pathway to meet their objective
of reaching the critical area of action [14].

Several investigations have highlighted the zein molecule’s versatility. zein is a
prolamin protein found in corn, is insoluble in water, and can form complex nanostructures
to encapsulate different compounds. Zein-based films, for example, zein conjugate with
essential oils of garlic and thyme (where the oil mixture was added at 0%, 2%, 3%, and 5%
(v/v) to the zein films) showed inhibitory activity against all tested bacteria (enteropathogenic
Escherichia coli (EPEC), Listeria monocytogenes, Salmonella Enteritidis, and Staphylococcus
aureus) related to food contamination, with inhibition halos of between 6.5 mm and 8.27 mm.
Furthermore, the results showed that the coating could be applied as a carrier to increase
the shelf life of food products [21]. Similarly, flavonoids with glycoside groups on the
A-ring exhibited excellent zein-binding ability, and their binding process to zein was
driven by a hydrophobic force [22]. In another investigation, tocopherol was successfully
encapsulated in a zein–chitosan complex; the results indicated encapsulation of tocopherol,
and the particle size and ζ-potential of the complex ranged from 200 to 800 nm and
from +22.8 mV to +40.9 mV, respectively. Compared to zein nanoparticles, the zein–
chitosan complex provided more significant control of tocopherol release under simulated
gastrointestinal tract conditions [23]. Another investigation studied the potential of a zein
nanoparticle-based system for the oral administration of resveratrol in humans and its
impact on pharmacokinetics. These nanoparticles showed a mean size of 331 nm with an
encapsulation efficiency of 87%. A single dose of 250 mg of resveratrol was administered to
16 healthy volunteers. The concentrations of resveratrol and its metabolite resveratrol-3-
0-D-glucuronide were monitored to find the relationship between the amount and these
parameters [24].

Similarly, quercetin and vitamin A were encapsulated in zein nanoparticles, and the
results showed that the encapsulation efficiency depends on their initial concentration in
the synthesis mixture. In the presence of an initial 0.05 g of quercetin, the encapsulation
efficiency was 37%. The encapsulation efficiency for 50 µL of vitamin A was 44%. Further-
more, with the increase in zein concentration and the addition of sodium caseinate as a
stabilizer, the encapsulation efficiency increased from 44% to 85% [25].

Biopolymer composite nanoparticles based on zein may be an effective oral delivery
system for flavonoids such as quercetin; it could provide alternative antioxidant activity
of quercetin delivered in the form of nanoparticles and used in pharmaceutical formula-
tions [26]. Another attractive composite is epigallocatechin-3-gallate-loaded zein nanopar-
ticles. It has been used for its biological properties related to skin pigmentation and sun
protection [27]. Otherwise, a green reductant like an aqueous extract of Citrus sinensis in Ag
nanoparticle synthesis can create a capping without any toxic reagent in the formulation.
These nanoparticles revealed excellent antioxidant and anti-human-lung-cancer effects
and may be used in medicine as a chemotherapeutic supplement or drug [28]. There have
been investigations into the beneficial applications of nanoparticles. However, there is
evidence of great endeavors and the necessity to optimize the size, shape, stability, delivery,
and other characteristics. Mainly, there is a necessity to evaluate the potential risks of
nanoparticles before their applications in clinical practice in cancer treatment [29].

In the present research work, the antioxidant effect of nanoparticles based on zein and
orange extract (Citrus sinensis) was evaluated, and the extract was obtained by ultrasound-
assisted extraction. Subsequently, physicochemical characterization was carried out, and
the antioxidant capacity was evaluated.
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2. Materials and Methods
2.1. Ultrasonic-Assisted Extraction of Bioactive Compounds from Citrus Peel

Citrus sinensis Valencia oranges obtained from the local market were used. First, the
peel was washed, cut into eighths, and dried in a convection oven (Lindberg/Blue Model
MO1490A-1, Asheville, NC, USA) for 24 h at 45 ◦C. It was then ground in a food processor
(Nutribullet 600 W) and sorted to 0.85 mm using a T20 sieve obtained from FICC S.A. de
CV, Mexico. The next step was to take 2.5 g of the sample and place it in a beaker containing
10 mL of water. The extraction was performed in a Qsonica Model Q500 ultrasonic cleaner
at a frequency of 20 kHz, amplitude of 30%, and two periods of 10 min with 1 min of rest.
Subsequently, the extract was filtered in a filtration kit and centrifuged at 4 ◦C and 30 min
at 6000 rpm in an OHAUS centrifuge, Model FC571812. Finally, the filtered extract was
lyophilized (Labconco FreeZone 12, Kansas City, MO, USA) at −61 ◦C, 0.00024 Pa for 72 h.

2.2. Synthesis of Zein Nanoparticles

Zein nanoparticles (NpZ) were prepared using a modified method based on the
antisolvent procedure [30]. First, 142.85 mg of zein (CAS 9010-66-6 Sigma-Aldrich, St. Louis,
MI, USA) was dissolved in 10 mL of ethanol/water binary solvent (90:10 v/v) to form a
stock solution. Then, 2 mL of the stock solution was added to 9 mL of deionized water using
a peristaltic pump with a constant flow rate of 0.6 mL/min. This process was performed
under continuous magnetic stirring (1000 rpm) (Figure 1). The samples were stored at 4 ◦C
for subsequent physicochemical characterization (DLS, ζ-potential, and SEM). The final
dispersions were freeze-dried for 24 h to obtain solid nanoparticle powder samples. The
powder samples were used to evaluate their antioxidant activity.
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2.3. Physicochemical Characterization of Nanoparticles

A Malvern Zetasizer NanoSeries was used to measure the size distribution and
ζ-potential of the samples. In addition, SEM (JEOL JSM-7800F, Pleasanton, CA, USA)
was used to evaluate the morphology of the nanoparticles. Samples were diluted 1 to
10 before deposition on an aluminum film. FTIR spectra were collected on a Spectrum
spectrometer (Perkin Elmer Inc., Waltham, MA, USA) equipped with a single attenuated
total reflectance (ATR) diamond set to a range of 400 cm−1 to 4000 cm−1 [31].

2.4. Quantification of Total Phenol Content (NpZ, NpZOE, and OE)

An incubation process was carried out using test tubes with an amount of 50 µL of
each sample incubated with 3.0 mL of distilled water and 250 µL of Folin–Ciocalteu reagent,
750 µL of 20% Na2CO3, and 950 µL of distilled water. After 3 min, 1.0 mL of a sodium
carbonate solution was added and allowed to react for 60 min in the dark [32]. A gallic acid
curve was prepared, and the results are expressed as gallic acid equivalents per gram of
dry matter (mg GGE/g d.w.). All analyses were performed in triplicate.
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2.5. Determination of Total Flavonoids (NpZ, NpZOE, and OE)

The aluminum chloride (AlCl3) assay was used [33]. Each sample (0.5 mL) was mixed
with 2 mL of distilled water and 0.15 mL of 10% (w/v) AlCl3. After 10 min of incubation
in the dark at room temperature, 1 mL of 1 M sodium hydroxide (NaOH) and 1.2 mL
of distilled water were added to the mixture. After 15 min incubation in the dark at
room temperature, the mixture was measured in a microplate reader (Veloskan™LUX,
Thermo Fisher Scientific, Waltham, MA, USA) at 430 nm. The standard used was quercetin.
Therefore, results are given as milligrams of quercetin equivalent per gram of dry weight
(mg QE/g d.w.) [34].

2.6. Antioxidant Capacity ABTS Assay (NpZ, NpZOE, and OE)

The method consisted of reducing the green/blue coloration produced by the reaction
of ABTS with the antioxidant present in the sample. To generate a cation radical, 19.2 mg of
ABTS was dissolved in 5 mL distilled water. The ABTS radical was spread by oxidation of
ABTS (7.0 mM) with potassium persulfate (K2S2O8, 4.95 mM) in the dark (12 h) at 25 ◦C.
Next, ABTS was diluted with PBS (0.2 M, pH 7.4) to reach an absorbance of 0.7 measured
at 734 nm. Finally, 20 mL of sample and 200 mL of ABTS solution were taken and allowed
to react for 30 min, and the absorbance was measured at 734 nm in a microplate reader
(Veloskan™ LUX, Thermo Fisher Scientific, Waltham, MA, USA). The trapping activity
is reported as ABTS radical inhibition (%) [35]. Equation (1) was used to determine the
scavenging capacity.

Scavenging capacity =

(
1 −

(
Abs1 − Abs2

Abs0

))
× 100 (1)

where Abs0 is the control absorbance (water), Abs1 is the absorbance of the sample with
ABTS, and Abs2 is the absorbance of the water with ABTS.

2.7. FRAP Assay (NpZ, NpZOE, and OE)

The ferric reduction ability was evaluated based on the FRAP assay. FRAP reagent was
prepared in acetate buffer (pH 3.6), 10 mM, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ) solution
in 40 mM HCl, and 20 mM iron (III) chloride solution in 10:1:1 (v/v/v) ratios [35]. The
treatments were diluted in different concentrations. A volume of 20 µL of the sample
was taken, and 280 µL of FRAP reagent was added. As a reference, a solution of Trolox
standard was prepared. Then, the reaction was carried out for 30 min, and the absorbance
was measured at 638 nm in a microplate reader (Veloskan™ LUX, Thermo Fisher Scientific,
Waltham, MA, USA). The results are expressed as micromoles of Trolox equivalent per
gram of dry sample (µmol TE/g d.w.).

2.8. DPPH Radical Scavenging Assay for NpZ, NpZOE, and OE

DPPH radical scavenging assays were performed according to Hu et al., 2015 [36].
First, the treatments were diluted in different concentrations. Next, each concentration
(50 µL) and methanolic DPPH solution (200 µL) at a concentration of 0.4 mM were added to
a 96-well microplate. Then, the reaction was carried out in the dark at 25 ◦C for 30 min. Af-
ter that, the absorbance was measured at 515 nm using a microplate reader (Veloskan™LUX,
Thermo Fisher Scientific, Waltham, MA, USA). Finally, a Trolox standard solution was
prepared and assayed under the same conditions [35]. Additionally, the antioxidant concen-
tration corresponding to 50% inhibition of the DPPH radical (EC50 DPPH) was calculated
from the graph of the scavenging percentage versus the concentration of the antioxidant
(mg/mL) tested using linear regression [32].
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3. Results and Discussion
3.1. Physicochemical Characterization

Figure 2 shows the SEM results of the NpZ and NpZOE samples, respectively. The
micrographs show a well-defined spherical morphology. The addition of EO resulted
in less agglomeration in the NpZOE sample compared to NpZ, which is related to less
coalescence and, thus, higher stability. Likewise, the standard deviation of the NpZOE
sample decreased relative to that of NpZ. This suggests greater size control caused by
adding the extract. These results agree with the DLS measurements, in which a decrease
in polydispersity is also observed (Table 1). This effect can also be observed in the size
distribution plots obtained from SEM micrographs, where a significant decrease in size
populations can be seen (Figure 3).The decrease in ζ-potential (Table 1) is attributed to the
presence of OE on the particle surface. This change in surface charge is due to the hydroxyl
groups contained in the OE.
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Table 1. Hydrodynamic diameter (nm) and zeta potential (mV) values of zein nanoparticles (NpZ)
and zein nanoparticles with orange extract (NpZOE).

NpZ NpZOE

Hydrodynamic diameter (nm) 159.26 ± 5.96 b 199.96 ± 2.87 a

ζ-potential (mV) + 22.63 ± 1.52 b + 11.86 ± 0.63 a

PDI 0.182 0.058
a,b Different literals per row indicate a significant difference (p < 0.05).
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This behavior was previously reported when studying resveratrol-loaded zein par-
ticles coated with alginate, where a decrease in the zeta potential was observed with
increasing alginate concentration and increasing number of negative charges present on the
surface [37]. The results show that zein nanoparticles with orange extract with a positive
surface charge were obtained. This electrical character can promote cell uptake due to its
electrostatic interaction between the nanoparticle surface and cell membrane [38]. The parti-
cle sizes observed in the SEM micrographs are 86.5 ± 34.6 nm and 150.1 ± 31.8 nm for NpZ
and NpZOE, respectively. The size of NpZ is smaller than that reported by Luo et al. [23],
who reported zein particles with a diameter up to 364 nm. This can be attributed to the
concentration of zein used previously, 5 mg/mL, which is much higher than that used
in the present investigation (0.5 mg/mL). The hydrodynamic diameter observed in DLS
shows an increase in size caused by the presence of OE during the nanoparticle formation
process. The preceding coincides with the effect observed in the SEM micrographs. Previ-
ous studies reporting the encapsulation of natural extracts show an increase in particle size
upon addition of the extract, caused by the spatial arrangement of the amino acid chains of
zein interacting with the encapsulated extract molecules [24].

3.2. FT–IR Spectra

Figure 4 shows the OE spectrum; an intense signal is observed at 3231 cm−1 due to
the stretching of the O-H bond present in the phenolic and alcoholic groups of flavonoids
and organic acids. A prominent band is seen at 1594 cm−1 due to the stretching of the C=C
bond present in aromatic rings. One more signal around 1404 cm−1 may be associated
with stretching of the C=O bond. A band is observed from 1308 cm−1 to 1232 cm−1 due to
hydrogen bonds [27]. Finally, a signal is observed at 1068 cm−1, indicating the presence of
C-O-C stretching of ester groups [31].
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In the case of NpZ, the characteristic bands corresponding to amides I, II, and III are
1651 cm−1 due to C=O stretching, 1537 cm−1 due to N-H bending, and 1242 cm−1 due to C-
N stretching [39]. In addition, a band is detected at 3299 cm−1 due to the OH groups’ axial
stretching and the N-H bond. Compared with that of NpZ, in the spectrum of NpZOE, the
signal of 3299 cm−1 was shifted to 3287 cm−1; this migration of the characteristic absorption
band meant that the interaction of OE and zein affected the formation of a hydrogen bond
between zein groups and flavonoid groups (OH and C=O). In addition, zein’s characteristic
amide I and II bands were located at 1651 cm−1 and 1537 cm−1, respectively. Upon the
inclusion of OE, the absorption peak of the amide I band shifted to 1645 cm−1, while the
amide II band shifted to 1516 cm−1. Previous results reported this effect and attributed the
signal shift to the formation of hydrogen bridges and hydrophobic interactions. The above-
mentioned elucidates a stable system’s formation through non-covalent interactions [27,40].

3.3. Quantification of Total Phenols and Flavonoids

Table 2 shows total phenols of 132.31 ± 5.14 µmol Eq AG/g dry weight. This result is
higher than that reported by other authors, such as Rodsamran et al. [41], who obtained
54 ± 1 µmol Eq AG/g ps under the conditions of amplitude 30%, time 4 min, and 50%
ethanol in lime peel, as well as Londoño et al. [42], who obtained 19.5 µmol Eq AG/g
ps at 60 kHz over 30 min in water (1:10) in orange peel. Dahmoune et al. [43] reported
13.5 µmol Eq AG/g ps with an amplitude of 65.94% at 27 kHz for 8.33 min at 2 ◦C using
75.79% aqueous acetone. On the other hand, NpZ presented significantly higher total
phenols than did the OE, with a value of 311.02 ± 8.20 µmol Eq AG/g; this is because
zein, by its protein nature, belongs to the prolamins; therefore, it presents in its structure
predominantly proline [44], an aromatic amino acid detected by Folin–Ciocalteu’s reagent
in the technique [45]. This decrease in the value of total phenols compared to NpZ is
because phenols are a secondary metabolite present in citrus/orange peel which is found
in minimal amounts [46], while in pure zein, proline is predominant [44], even though the
ratio between zein and extract favors the extract.

Table 2. Concentrations of flavonoids and total phenols determined in orange extract (OE), zein
nanoparticle (NpZ), and zein nanoparticle with orange extract (NpZOE) samples.

Total Phenols
µmol Eq AG/g Dry Weight

Flavonoids
µmol Eq QC/g Dry Weight

OE 132.31 ± 5.14 a 6.73 ± 0.62 a

NpZ 311.02 ± 8.20 b 30.47 ± 1.49 b

NpZOE 254.02 ± 13.40 c 46.50 ± 1.10 c

a,b,c Different literals per row indicate a significant difference (p < 0.05).

Table 2 presents the quantification of flavonoids referring to quercetin as an antioxidant
model (µmol Eq QC/g dry weight). The OE presented 6.73 ± 0.62 and NpZ presented
30.47 ± 1.49, while NpZOE presented a higher amount of 46.50 ± 1.10 µmol Eq QC/g dry
weight. Campo et al., 2016 obtained from 24 µmol to 36 µmol Eq QC/p of orange peel with
a UAE pretreatment at 45 kHz at a temperature of 30 ◦C for 30 min. Londoño et al., 2010
obtained 40.25 ± 12.09 µmol Eq QC/p at 60 kHz over 30 min at 40 ◦C using water (1:10).
The Eq value of quercetin is lower than that reported by other authors, possibly because the
conditions used in this study were milder; only water at room temperature was used, while
the other studies used organic solvents in their extraction. In addition, it was observed
that the same behavior occurred in the quantification of flavonoids as in the total phenolics
technique concerning the zein nanoparticles and the complex.

The different samples present phenolic compounds responsible for inhibiting the
activity of free radicals and reactive oxygen species. Previously, the possible mechanism of
action of phenols was reported: they can act by interrupting the lipid oxidation reaction,
inhibiting chemiluminescence reactions by capturing several reactive oxygen species [47].
In addition, the encapsulation of these extracts favors stability and protection against
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external factors such as contact with oxygen, temperature, and light, which cause their
degradation [27,48].

3.4. Antioxidant Capacity—ABTS Assay

Figure 5 shows each treatment’s ABTS radical inhibition capacity at the different
concentrations tested. The activity levels of OE and NpZOE were statistically equivalent
to that of Trolox at the maximum concentration tested (500 µg/mL). On the other hand,
no significant difference was found between OE and NpZOE at 500 µg/mL, 250 µg/mL,
and 31.3 µg/mL. The results indicate that the NpZOE treatment at all concentrations
tested presented higher antioxidant activity than the NpZ treatment. Similar results have
been reported regarding an increase in the antioxidant capacity of zein nanoparticles when
including bioactive molecules that improve the ABTS radical trapping capacity, for example,
zein–turmeric and zein–quercetin nanoparticles compared to empty zein nanoparticles [49].
This effect can mainly be attributed to the higher concentration of OE included in the
NpZOE formulation.
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A statistically significant result (p < 0.05) is that higher antioxidant activity was ob-
served at 7.8 µg/mL for the NpZOE treatment concerning NpZ, OE, and Trolox. Even at
this concentration, antioxidant capacity above 10% was observed for the NpZOE treatment.
This effect may be due to some antioxidant activity associated with the differences in
concentration of bioactive molecules in OE, NpZ, and NpZOE, with 6.73 ± 0.62 µmol,
30.47 ± 1.49 µmol, and 46.50 ± 1.10 µmol Eq QC/g d.w., respectively (Table 2). It has been
reported that coupling bioactive molecules with biopolymeric nanoparticles favors the
stability and bioavailability of these compounds [48,50].
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3.5. Antioxidant Capacity—DPPH Assay

The DPPH test is widely used to evaluate free radicals’ scavenging ability and total
antioxidant capacity. Figure 6 shows the DPPH radical stabilization activity. The NpZOE
and OE treatments were statistically equivalent, showing DPPH radical inhibition capacity
higher than 35% at the 500 µg/mL concentration, while NpZ showed lower activity at
the same concentration. However, at the 250 µg/mL concentration, the NpZOE treatment
showed a higher antioxidant capacity, above 13% inhibition of the DPPH radical. At lower
concentrations, the same behavior was observed, i.e., NpZOE treatment was more effective
than NpZ and OE. This behavior has also been reported in thymol-loaded zein nanoparti-
cles, which reached 32% inhibition of the DPPH radical, and the inhibition increased with
increasing concentration of thymol in the zein nanoparticles [30]. Similar results have been
published in a determination of the antioxidant capacity of lime peel extracts extracted
by EUA (amplitude 30%, time 4 min, and ethanol 50%), showing total phenols of 450 µEq
AG/g d.w. and antioxidant capacity for DPPH of 11 µEq Trolox/d.w. [39].
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ferent literals indicate a significant difference (p < 0.05).

3.6. IC50 Concentration

In the DPPH and ABTS assays, IC50 is the antioxidant concentration required to obtain
50% radical inhibition [50]. It is crucial to determine the antioxidant capacity of NpZ,
NpZOE, and the OE bioactive antioxidant to help select the most favorable conditions
ensuring the extraction of natural antioxidants with beneficial effects on health. Therefore,
their concentrations responsible for 50% radical scavenging activity against 350 M of the
DPPH and ABTS radicals were determined. The IC50 values for OE scavenging DPPH
and ABTS radicals were 49.86 µg/mL and 572.5 µg/mL, respectively (Table 3). Previous
research reported IC50 values for zein and zein–epigallocatechin-3-gallate nanoparticles
of 996 µg/mL and 113 µg/mL, respectively, for nanoparticles with 285.8 nm and 340 nm
diameters and ζ-potential values of 29.6 ± 0.8 mV and 37.9 ± 0.32 mV [37]. Therefore,
the treatments quantified the DPPH and ABTS radical scavenging activity in terms of the
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inhibition percentage of the free radical by the treatments and the IC50 values in µL/mL. For
ABTS, NpZ presented IC50 391.03 µg/mL, which is higher than that of NpZOE, indicating
the effectiveness of integrating orange extract into zein nanoparticles.

Table 3. IC50 of OE, NpZ, and NpZOE samples, according to the ABTS and DPPH determina-
tion methods.

IC50 (µg/mL) ABTS IC50 (µg/mL) DPPH

OE 49.86 572.50
NpZ 391.03 879.81

NpZOE 87.41 652.32
The antiradical activity is expressed as IC50 (µg/mL), the concentration required to cause 50% ABTS and DPPH
inhibition under the defined conditions.

Table 4 presents the antioxidant capacity results of the tested treatments, expressed
in Trolox equivalent micromoles per gram of dry sample (µmol TE/g d.w.). The ABTS of
the orange extract incorporated into the zein nanoparticles was approximately 863.17 µM
TE/g d.w., which means that the antioxidant capacity of 1 g of NpZOE was equivalent
to that of 863.17 µM Trolox [49]. Higher Trolox equivalent antioxidant capacity (TEAC)
values represent higher antioxidant activity, indicating greater capacity to scavenge free
radicals by hydrogen transfer and to reduce Fe(III) to Fe(II) [47]. The DPPH and ABTS
assay results show that NpZOE presented higher antioxidant activity than did OE and
NpZ (p < 0.05). Similar results have been published; the TEAC was compared between
curcumin solubilized in ethanol and curcumin encapsulated into zein–pectin nanoparticles.
Encapsulated curcumin was about twice as efficient at scavenging ABTS as curcumin
solubilized in ethanol, and empty (curcumin-free) nanoparticles exhibited feeble ABTS
scavenging capacity [49]. The determination of the antioxidant capacity by FRAP indicated
that the orange extract (OE) presented greater capacity (p < 0.05) in terms of Fe(III) to
Fe(II) reduction, which could be attributed to the metal chelating capacity of the molecules
contained in the extract. Contrary to previous research, the results show that both the ABTS
scavenging capacity and ferric-ion-reducing power of quercetin–zein-loaded nanoparticles
were significantly higher than those of quercetin in solution [26].

Table 4. Antioxidant capacity of orange extract (OE), zein nanoparticles (NpZ), and zein nanoparticles
with orange extract (NpZOE) determined by ABTS, DPPH, and FRAP. The results are reported as
Trolox equivalent micromoles per gram of dry sample (µmol TE/g d.w.).

ABTS DPPH FRAP

OE 851.78 ± 2.79 a 1604.83 ± 15.21 a 2506.65 ± 9.71 a

NpZ 547.13 ± 8.71 b 1429.61 ± 10.47 b 2239.27 ± 115.15 b

NpZOE 863.17 ± 6.29 c 1614.90 ± 9.71 c 2269.49 ± 20.99 b

The data are represented as mean values ± standard deviation (n = 3). Different letters within the same row
indicate statistically significant differences (p < 0.05).

4. Conclusions

UAE in water is an effective method of obtaining the phenolic compounds present
in orange peels, and the nanoprecipitation method under the conditions used allowed
for obtaining particles in the nanometric range with positive ζ-potential. The interaction
studies show the formation of hydrogen bonds and hydrophobic interactions between
zein and orange extract and elucidate a stable system’s formation through noncovalent
interactions. These characteristics are desirable in the area of cellular internalization of
bioactive molecules. The antioxidant capacity analysis indicated a high antioxidant capacity
of both orange extract and the zein nanoparticles with orange extract. As stated above, this
opens up potential applications in the design of systems for treating pathologies caused by
excess oxidizing species. The results suggest that two different mechanisms may determine
the antioxidant activity of NpZOE, donating hydrogen atoms (DPPH) or electrons (ABTS),
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thus protecting against oxidative damage and free radical stabilization. This study presents
the possibility of obtaining orange extracts by ultrasound and coupling them to zein-
based nanoparticulate systems to be applied as biomedical materials functionalized with
antioxidant substances of pharmaceutical utility.
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