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A B S T R A C T

Alignment-based database search and sequence comparison are commonly used to detect horizontal gene
transfer (HGT). However, with the rapid increase of sequencing depth, hundreds of thousands of contigs are
routinely assembled from metagenomics studies, which challenges alignment-based HGT analysis by over-
whelming the known reference sequences. Detecting HGT by k-mer statistics thus becomes an attractive alter-
native. These alignment-free statistics have been demonstrated in high performance and efficiency in whole-
genome and transcriptome comparisons. To adapt k-mer statistics for HGT detection, we developed two ag-
gregative statistics Tsum

S and Tsum
* , which subsample metagenome contigs by their representative regions, and

summarize the regional DS
2 and D2

* metrics by their upper bounds. We systematically studied the aggregative
statistics’ power at different k-mer size using simulations. Our analysis showed that, in general, the power of Tsum

S

and Tsum
* increases with sequencing coverage, and reaches a maximum power> 80% at k=6, with 5% Type-I

error and the coverage ratio> 0.2x. The statistical power of Tsum
S and Tsum

* was evaluated with realistic simu-
lations of HGT mechanism, sequencing depth, read length, and base error. We expect these statistics to be useful
distance metrics for identifying HGT in metagenomic studies.

1. Introduction

Horizontal gene transfers (HGT) is the transversal exchange of ge-
netic material between different organisms, cells, or organelles, as well
as that between organisms and environment. It accelerates the speed of
biological adaptation to the environment, promotes the evolution of
organisms, and promotes the convergence of species [1]. The main
modes of HGT in prokaryotic organisms are conjugation, transforma-
tion and transduction [2–4], while the mode of HGT for eukaryotic
organisms are complex, with increased potential in the presence of viral
transfection, host parasites or direct contacts of symbiotic organisms
[5].

Researchers are highly interested in identifying and analyzing HGT
in metagenomics sequence data, so as to understand how it reshapes
and rebuilds the microbial community in response to a changing en-
vironment. The computational methods for predicting HGT genes from
biological sequences include: (1) phylogenetic methods, which uses
bootstrap resampling [6,7] and maximum likelihood framework [8,9]
for identifying the significant differences between phylogenetic trees;

(2) parametric methods, which extract the characteristics of genes from
a genome as its tags [10]. These tags can include sequence structure-
based features [11], statistical features [12,13], and information en-
tropy-based features [14]; and (3) sequence distance-based methods,
which detects HGT using sequence comparison.

The distance-based methods were predominated by alignment-
based metrics. These methods require computing the optimal pairwise
or multiple alignment (locally or globally) using dynamic program-
ming, such as algorithms implemented by ClustalW [15] and Muscle
[16], or performing alignment-based database search, such as algo-
rithms implemented by BWA [17], Blat [18], Blast [19] and Fasta [20].
However, in either cases, finding the optimal alignment demands a
significant amount of computation both in time and memory space.
Consequently, these alignment-based methods are limited by their
throughput in comparatively analyzing a large number of contigs as
seen in today's metagenomics studies.

Alternatively, alignment-free statistics are potential useful distance
metrics, which are more efficient computationally and do not require
high sequence homology [21,22]. In principle, alignment-free methods
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decompose the DNA or protein sequences into short subsequences (or k-
mers). They first compute k-mer frequency vectors based on k-mer oc-
currence and then calculate the sequence distances based on these
vectors. These methods originated from the application of comparing
computer programs [23] and were introduced to molecular sequence
analysis by the early works of Hao et al. [24] and others [25] dating
back to the early 2000s. Notably, Dr. Hao's [26] work in CV-Tree
methods represents the first systematic whole-genome phylogenetic
attempt using alignment-free k-mer statistics.

Nowadays, k-mer based statistics have become a cornerstone in
alignment-free whole-genome and gene-based sequence comparisons
[27–30]. It was proved useful in predicting protein structure and
function [31], in predicting HGT [32,33], and in constructing phylo-
genetic trees [34]. Those applications typically involve comparing
conserved sites or homology regions between two sequences and
quantifying molecular evolutionary relationships at the sequence level.
Those successful applications were built upon the good performance
that k-mer based statistics and distance metrics have in clustering and
classifying amino acid and nucleic acid sequences.

In this paper, we specifically extended the aggregative k-mer sta-
tistics Tsum previously developed by Liu et al. [35] to the task of de-
tecting HGT in metagenomics sequence data. We developed a sequence
subsampling scheme that computes and summarizes the k-mer statistic
metrics from the regional contigs using their upper bounds with ag-
gregative statistics. The rationale is that the identified regions of the
two contigs that maximize such k-mer metrics will also have the highest
potential for being HGT. We parameterized the subsampling based on
realistic assumptions of sequencing platform and HGT mechanisms. We
tested the developed aggregative statistics in the cases of seven different
k-mer metrics and with a k-mer size ranging from 4 to 8 by simulations.
We found Tsum

S and ∗Tsum, as parameterized by DS
2 and D2

* metrics re-
spectively, at the k-mer size 6 have the best power for detecting HGT
events.

2. Materials and methods

k-mer based alignment-free statistics, first count the k-mer fre-
quency and then correlate these k-mer frequency vectors (or their
transformations), to evaluate the similarity, or homology, between two
biological sequences. A k-mer is defined as a short subsequence of the
DNA (nucleic acid) or protein (amino acid) sequence. The length of a k-
mer is defined by the value of k (e.g., if k=4, then the k-mer length is 4
base pair). In the case of DNA sequences, a k-mer is composed of k
random letters from the alphabet A T G C{ , , , }. When a k is chosen, there
are 4k possible k-mers and their occurrence in a sequence can be re-
corded in a 4k dimension k-mer frequency vector. All alignment-free k-
mer statistics based themselves on the observed fact that these k-mer
frequency vectors will show higher similarity if the two biological se-
quences being compared are more evolutionarily related.

2.1. Alignment-free k-mer statistics

Formally, we can define two molecular sequences as X and Y and
their shared sequence length n. For a given k, the occurrence of all
possible k-mer words, as denoted by = ⋯w w w wk1 2 , is counted for the
sequence X and recorded in the k -mer frequency vector Xw. Similarly,
the k-mer words are counted and recorded for the sequence Y in Yw.
Note, both Xw and Yw are 4k dimensional vectors made up of the oc-
currence numbers of all possible 4-mers, which is denoted by Λk.
Therefore, the similarity, or relatedness, between the two sequences can
be measured by correlating the two k-mer frequency vectors Xw and Yw.
This similarity or relatedness metric can be transformed to obtain
proper dissimilarity or distance metrics.

In this setting, Torney et al. [36], derived the similarity metric D2
statistic as:

∑=
∈

D X Y
w

w w2
Λk (1)

Kantorovitz et al. [37] extended D2 to D Z2 , which allows a gen-
eralized subtraction of background distribution from the D2 statistic.
The technique proved very effective for predicting the regulatory region
of seemingly unrelated genes. E.g., Foret et al. [38,39] found that the D2
statistic is superior to both Blast and exact k-mer matching in the
evolutionary comparison of sequences. It can be seen from Eq. (1) that
D2 correlates the occurrence numbers of all k-mers directly, without
adjusting for the total number of k-mers presented in individual se-
quences, which means that D2 is subject to bias in sequence length as
well as background sequencing noise incorporated in individual se-
quence.

Reinert et al., [40] then identified that the performance of D2 in
large-scale biological sequences comparison could be improved by ad-
justing for the noise as introduced by individual sequences. They de-
veloped two generalized versions of D2, namely D2

S and D2
* [41,42] and

proved that they are advantageous to D2 in comparing sequences. These
statistics were derived following the theorem by Shepp et al. [43],
which states that if the independent variables U and V are normally
distributed and their means are zero, then +UV/(U V )2 2 1/2 is also
normally distributed. Based on that fact, Reinert and Liu standardized
the D2 statistic for raw k-mer frequency vectors Xw and Yw, as the fol-
lows:

= − − +∼ n k pX X ( 1)w w w (2)

= − − +∼ n k pY Y ( 1)w w w (3)

∑ ⎜ ⎟= ⎛
⎝

+ ⎞
⎠

∼ ∼∼ ∼

∈

D X Y / X YS

w
w w w w2

Λ

2 2

k (4)

∑= − +∼∼

∈

n k pD ( X Y /( 1) )
w

w w w2
*

Λk (5)

Here, pw is the probability of the word w ( = ⋯w w ww k1 2 ) occurs in the
sequence and = …p p p p pw w w w wk1 2 3 under an independent and identical
distribution (i.i.d.) model.

2.2. Aggregative measures Tsum
S and ∗Tsum

To extend D2
S and D2

* to whole-genome sequence comparison, in
which high intra-sequence heterogeneity could alter local k-mer dis-
tributions, Liu (2011) et al. introduced an aggregative measure Tsum.
Tsum subsamples the sequence distances using sliding windows and
summarizes them using local upper bounding of D2

S and D2
* statistics.

The subsampling strategy was configurable by the window and shift
sizes. Using simulations, Liu et al. found that the statistical power of
Tsum, which aggregates D2

S and D2
* statistics, was maximized when the

whole-genome sequence was subsampled with non-overlapping sliding
windows.

Following the procedure of Liu et al. (see Fig. 1), we defined F1 to FN
as the subsampled fragments, and G the size of subsampling gap. We
defined Xi

S as the maxima of D2
S between the ith subsampled fragment of

X and all subsampled fragments of Y. The same was true for Yi
S. Thus,

= ≤ ≤X max D (F , F )i
S

j N
S

i j1 2
X Y

(6)

= ≤ ≤Y max D (F , F )j
S

i N
S

i j1 2
X Y

(7)

Next, by summarizing over all Xi
S’s and Yi

S’s, we defined the ag-
gregative k-mer statistic Tsum between X and Y as:

∑ ∑= +
= =

T X Ysum
S

i

N

i
S

j

N

j
S

1 1 (8)

Similarly, we can derive Xi
*, Yi

* and Tsum
* – the aggregative k-mer

statistic for Xi
*’s and Yi

*’s when D2
* is used.
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To simply the simulation, we defined the parameter genome cov-
erage rate R as:

= + ×R F/( F G) 100% (9)

and the combined gap and fragment length, i.e. the entire genome
segment length E as:

= +E F G (10)

It is thus convenient to vary E and R in our simulation with this new
parameterization, where R represents the fraction of unknown parts of
sequences and E represents the expected genome segment given full
sequence information. We then evaluated the statistical power of Tsum

S

and ∗Tsum by simulating a large number of HGT and non-HGT sequence
pairs with a range of parameters representing real NGS metagenomics
data.

2.3. Simulation model and statistical power

We built two computer models to simulate the background and
foreground biological sequences respectively. We simulated the back-
ground sequences as pairs of independently and identically distributed
(i.i.d.) random letter sequences of the same length from the nucleic acid
alphabet A T G C{ , , , }. These pairs of sequences were considered as
unrelated and assigned to the control group.

For the foreground simulation, we considered both uniform and
non-uniform distributions of random letters. In the case of uniform
distribution, the probability of observing A, C, G, and T in a sequence
is all the same at 1/4. We refer to this simulated distribution as the
equally independent and identical distribution (e.i.i.d) scheme. In the
case of non-uniform distribution, we assign a probability of 1/3 to
observing G and C, and a probability of 1/6 to observing A and C. We
refer to this simulated non-equally independent and identical dis-
tribution (n.i.i.d) as the n.i.i.d (gc-rich) scheme because of its enrich-
ment of G and C bases in the resultant sequences.

Reinert and Sun et al. (2009) proposed two procedures to simulate
related sequence pairs representing true biological relationships, one
for mimicking the real sequence compositions as seen in cis-regulatory
modules (CRM) and the other for mimicking that as seen in horizontal
gene transfer. As we are studying the HGT in prokaryotes, we simulated
the foreground sequence pairs by adapting their HGT procedure (see
Fig. 2). Specifically, we randomly selected a set of motif sites in the first
background sequence of a pair. We then transferred these motifs to the
other background sequence by using them to replace the corresponding
sites in the second sequence. These site positions were randomly se-
lected by generating the Bernoulli random numbers (1s for being se-
lected) with the probability that a position gets selected was 0.05. The
length of a motif L was set to 5.

We computed the Tsum
S and ∗Tsum statistics for all such generated

background and foreground sequence pairs. To compute the statistical
power, we regarded background sequence pairs as true negatives and
foreground pairs as true positives. We set the required statistical sig-
nificance level (Type-I error rate) to ɑ=5%, which is the fraction of
true negatives that were also declared positive by the statistic. The
statistical significance threshold t was learned from a statistic's 1-
ɑ=95% percentile value (ranked in ascendance) from 10,000 simu-
lated background sequence pairs. As we applied the threshold t to the
collection of Tsum (either Tsum

* or Tsum
S ) statistics computed for the

foreground pairs, we estimated the fraction of true positives which were
not declared positive by the threshold, which is the Type-II error, i.e. 1-
beta. Beta is then the statistical power with a range from 0 to 1 and we
computed it as follows:

= ≥βPower ( ) N /10000tTsum (11)

The individual simulation element is analogous to the hypothesis
testing for each pair by which the H0 states the two sequences is not
related (null), while the H1 states otherwise. When the statistic com-
puted is larger than t, the alternative hypothesis H1 is accepted, which
is correct if the pair is foreground, or wrong if the pair is background.
Conversely, if the statistic is less than t, the null hypothesis H0 is re-
tained, which is correct if the pair is background, or wrong if it is
foreground.

Our overall simulation process was as follows: first, we set the
common motif length L in the range of (4,5,6,7,8) and k-mer size k in
the range of (4,5,6,7,8); Next, we calculated the power values of Tsum

S

and Tsum
* for each k and L parameter combination with the coverage rate

R ranging from 25% to 75%; Then, we iterated the power computation
for the genome segment length ranging from 1000 to 10,000 with the
increment of 1000; In each iteration, we simulated 10,000 pairs of
background and foreground sequences to compute power; Finally, the
obtained power values were plotted in curves where the X-axis is the
genome length and the Y-axis is the power. Finally, we identified the
optimal k for different L values based on genome segment length and
the obtained maximum statistical power.

2.4. Simulation and statistical software

We developed a software package for carrying out the power ana-
lysis, termed SeqPowerK, using the C# language. SeqPowerK can
compute the statistical power for generic k-mer statistics with versatile
parameter specifications as detailed in its user's manual (https://github.
com/liuxuemeiscut/SeqPowerK).

Fig. 1. The Tsum resampling scheme. (On Seq X and Seq Y , F1 to FN are the subsampled fragments, and G is gap. Xi
S is the maxima of D2

S between the ith subsampled
fragment of X and all subsampled fragments of Y . The same for Yi

S is the maxima of D2
S between the ith subsampled fragment of Y and all subsampled fragments of X.)
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3. Results and discussion

3.1. The effect of subsampling coverage rate R on the power of Tsum
S and

∗Tsum

The subsampling coverage rate R is an important parameter because
it represents the fraction of genomes available for alignment-free ana-
lysis. Under different combinations of k and L, also considering both the
e.i.i.d and n.i.i.d (gc-rich) background schemes, we explored the statis-
tical power of Tsum

S and Tsum
* with a varying subsampling coverage rate

R from 25%, 50%, to 75% (see Fig. 3). For both Tsum
S and Tsum

* , when the
coverage rate R is high, the statistical power is high. For example, at
R=25%, the statistical power is only 65%, which is significantly lower
than that of R=50% and 75%, when the powers are> 85%. The sta-
tistical power at R=50% and 75% are reasonably close, suggesting
that the Tsum statistic efficiency is saturated by a reasonable high cov-
erage rate at ∼50%.

Fig. 2. Simulating the foreground sequence pairs using the Horizontal Gene Transfer (HGT) procedure with motif length L=5.

Fig. 3. Statistical power of Tsum
S and Tsum

* when the coverage rate R=25%, 50%, 75%. (Two statistics Tsum
S and Tsum

* are used in this figure. Full length is the length of
whole sequence, R is subsampling coverage rate, k is k-mer's length and L is the length of motif. The probability of four bases is P(A)= P(C)=P(G)= P(T)= 1/4 in
e.i.i.d model, and P(A)= P(T)= 1/6, P(G)= P(C)= 1/3 in n.i.i.d (gc-rich) model.).
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Fig. 4. Statistical power of Tsum
S and Tsum

* when k=4, 5, 6, 7, 8. (Two statistics Tsum
S and Tsum

* are used in this figure. E is the entire genome segment length, R is
subsampling coverage rate, k is k-mer's length and L is the length of motif. The probability of four bases is P(A)= P(C)=P(G)= P(T)= 1/4 in e.i.i.d model, and P
(A)= P(T)= 1/6, P(G)= P(C)= 1/3 in n.i.i.d (gc-rich) model.)
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3.2. The optimal k-mer size for achieving the best power of Tsum
S and ∗Tsum

The k-mer size choice is typically the first and foremost important
parameter influencing alignment-free sequence comparison. Power si-
mulations are useful ways to find the optimal k value given realistic
parameter settings. We simulated HGT sequence data with motif length
L in (4,5,6,7,8) and fixed E=800. We compared and identified the
optimal k when the statistical power is the highest given these para-
meters (see Fig. 4). We first observed that if the k is too small, the
statistics power is low. When k=4, the highest statistical power
is< 70%. When the k is larger than 5, the statistical power is generally
better than 80%. And the optimal k depends on coverage rate and the
underlying sequence relatedness as represented by L.

We also observed that the statistical power of Tsum
S and Tsum

* differed
slightly on k values. For both e.i.i.d and n.i.i.d (gc-rich) background
models, no matter of the values of L, the optimal k for the highest power
of Tsum

S is either 5 or 6 (Fig. 4a–d), while the optimal k of Tsum
* is 6 or 7

(Fig. 4e–h). Based on these facts, k=6 is likely the best choice for
general alignment-free sequence analysis, for example, the statistical
power at k=6 is consistently> 80% when the coverage rate is> 20%,
which is at least comparable to and often times far better than what
were achievable by other k values for either Tsum

S or Tsum
* .

We also compared the classification performance between Tsum
S and

Tsum
* . Overall, the power of Tsum

* was higher than that of Tsum
S . As we

known, Tsum
* was based on D2

* and Tsum
S was based on D2

S, which could
mean that D2

* is better than D2
S in this type of application. This is be-

cause the subsampling procedure divides the sequence into a series of
genome segments. Previous research based on D2 statistics showed that,
in general, D2

S and D2
* have higher power than D2 and that D2

S is more
suitable for longer sequence comparisons, while D2

* is more suitable for
shorter sequences. However, in practice, we often do not know the
genome segment length of the related subsequences. In this respect, the
robustness of a statistic is required, and Tsum

S is generally better than
Tsum

* .

3.3. The effect of genome segment length E on the power of Tsum
S and ∗Tsum

We also studied the statistical power with different segment length E
under k=6 and L=6. We varied genome segment size E form 400,
600, 800 to 1000. Fig. 5 showed that the statistical power of Tsum

S and
Tsum

* positively correlates with E. However, compared with the coverage
rate R, the genome segment length E has only a modest effect on the
power. The maximal difference in power is < 0.1. Segment length E
represents the degree of fragmentations in the subsampling process.

Fig. 5. Statistical power of Tsum
S and Tsum

* when E=400, 600, 800, 1000. (Two statistics Tsum
S and Tsum

* are used in this figure. E is the entire genome segment length,
R is subsampling coverage rate, k is k-mer's length and L is the length of motif. The probability of four bases is P(A)= P(C)=P(G)= P(T)= 1/4 in e.i.i.dmodel, and P
(A)= P(T)= 1/6, P(G)= P(C)= 1/3 in n.i.i.d (gc-rich) model.)
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Segment length E determines the amount of sequences per fragment
that is available for estimating k-mer frequency. Thus the smaller E the
lessser accurate such estimates are, which in turn reduces statistical
power.

4. Conclusions

HGT describes how organisms transfer genetic material to other
cells rather than offspring. HGT plays a key role in the evolution of
species and microbial genome diversity. With the increasing number of
NGS data, the prediction of HGT is of great practical significance for
better understanding the impact of environment on community struc-
ture. So far, the many methods relying upon sequence alignment to
identify HGT were burdened by computation challenges. k-mer based
alignment-free sequence comparison were effective in comparing mul-
tiple sequences and identifying HGTs without incurring significant
computational cost.

In this paper, we proposed two new aggregative k-mer statistics Tsum
S

and Tsum
* by subsampling and finding the upper bounds of underlying

DS
2 and D2

* statistics to identify HGT. We conducted an extensive si-
mulation benchmark to evaluate the statistical power of various k-mer
distances using these aggregative metrics. Our power analysis showed
that, in general, the statistical power of k-mer statistics increases with
sequencing coverage. We found that the optimal k-mer size for se-
quence comparison is 6 for both Tsum

S and Tsum
* , which ensures a sta-

tistical power> 80% given the assumed Type-I error rate of 5% and the
genome coverage rate> 0.2x. To summarize, we propose Tsum

S and
∗T with Dsum

S
2 and D2

* metrics and k-mer size 6 as the best aggregative
statistics for detecting HGT events, a conclusion may help guide further
research in this direction.
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