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A B S T R A C T

Large-scale agriculture in the state of Mato Grosso, Brazil is a major contributor to global food supplies, but its
continued productivity is vulnerable to contracting wet seasons and increased exposure to extreme temperatures.
Sowing dates serve as an effective adaptation strategy to these climate perturbations. By controlling the weather
experienced by crops and influencing the number of successive crops that can be grown in a year, sowing dates
can impact both individual crop yields and cropping intensities. Unfortunately, the spatiotemporally resolved crop
phenology data necessary to understand sowing dates and their relationship to crop yield are only available over
limited years and regions. To fill this data gap, we produce a 500 m rainfed soy (Glycine max) sowing and harvest
date dataset for Mato Grosso from 2004 to 2014 using a novel time series analysis method for Moderate Reso-
lution Imaging Spectroradiometer (MODIS) satellite imagery, adapted for implementation in Google Earth Engine
(GEE). Our estimates reveal that soy sowing and harvest dates varied widely (about 2 months) from field to field,
confirming the need for spatially resolved crop timing information. An interannual trend toward earlier sowing
dates occurred independently of variations in wet season onset, and may be attributed to an improvement in
logistic or economic constraints that previously hampered early sowing. As anticipated, double cropped fields in
which two crops are grown in succession are planted earlier than single cropped fields. This difference shrank,
however, as sowing of single cropped fields occurred closer to the wet season onset in more recent years. The
analysis offers insights about sowing behavior in response to historical climate variations which could be
extended to understand sowing response under climate change in Mato Grosso.
1. Introduction

The response of agricultural productivity to changing temperature
and rainfall regimes will determine the health of economies, food sys-
tems, and societies as climate continues to warm. Climate change is
projected to negatively impact food security by reducing arable land,
decreasing mean crop yields and increasing vulnerability to extreme
weather events (Schmidhuber and Tubiello, 2007); for example, in Africa
and South Asia, temperature and rainfall shifts are expected to lower the
mean yield of major crops by 8% by the 2050s (Knox et al., 2012).

This future agricultural productivity, however, will be influenced by
how farmers adapt to changing weather regimes within their diverse
physical, cultural, and economic contexts (Khanal et al., 2018; Reidsma
et al., 2010). Management has such a strong influence on productivity
ang).
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that farmers may be able to minimize or even reverse the harmful effects
of climate change through a broad range of strategies, including cultivar
selection, increased cropping intensity, improved water management,
and nutrient and pest management (Alexander et al., 2018; Anwar et al.,
2013; Borchers et al., 2014; Hassan and Nhemachena, 2008; Howden
et al., 2007; Reidsma et al., 2010; Thornton et al., 2018). Frequently, a
core element of strategies to mitigate climate impacts on agriculture in-
volves changing the sowing and harvest dates of crops, in conjunction
with changes in variety selection to adapt to the changes in photoperiod
and growing season length. Examples spanning production systems from
sorghum in Italy (Howden et al., 2007), to soybean in Austria (Alexan-
drov et al., 2002), the US south east (Baldwin and Cossar, 2009), and
sub-Saharan Africa (Waha et al., 2013), rice in Sri Lanka (Dharmarathna
et al., 2014) and corn in the US midwest (Kucharik and Serbin, 2008)
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broadly demonstrate that adaptations in sowing dates could mitigate or
reverse the negative effects of climate change on production. Typically,
growers select a sowing date to optimize the exposure of crops to bene-
ficial weather conditions and avoid exposure to harmful conditions
during sensitive phenological stages. Such exposure can have large im-
pacts on productivity - for example, a 1% decrease in irrigated wheat
yield was observed for every day of delayed planting in northern India, a
decline caused by heat stress during the grain filling period of crop
growth (Ortiz-Monasterio et al., 1994).

In tropical regions like Brazil, where crops are heavily reliant on
rainfall and already experience the upper limit of their temperature
tolerance (Challinor et al., 2014; Rosenzweig et al., 2014), projections of
a hotter, drier climate may limit farmers' ability to adapt by adjusting
sowing dates. The state of Mato Grosso in central-west Brazil, is a center
of soy production that accounts for 27% of Brazil's and 10% of global soy
supplies (Victoria et al., 2012; Abrahao and Costa, 2018; Cohn et al.,
2016). Soy's productivity in Mato Grosso depends in part on a long rainy
season that facilitates double cropping systems, in which soy is the first of
two crops grown in succession during the same year (Abrahao and Costa,
2018; Correa and Schmidt, 2014; Arvor et al., 2012b). However, sus-
taining this high productivity depends in part on whether its intensive
cropping practices and high crop yields can be maintained under the
shorter wet seasons and higher temperatures expected with climate
change (Arvor et al., 2012b,a, Costa and Pires, 2010, Dubreuil et al.,
2012, Gourdji et al., 2013). Sowing dates form a crucial link between
climate and agricultural productivity in Mato Grosso. Since adjusting
sowing dates offers an effective climate adaptation strategy, under-
standing the current timing of soy planting is essential to determine
whether and how Mato Grosso's agricultural systems can be sustained in
the future (Abrahao and Costa, 2018; Pires et al., 2016).

High-resolution sowing data are essential to quantify these climate
risks to soy production, but until now were unavailable in Mato Grosso.
In this paper, we produce a 500m dataset of soy sowing and harvest dates
over Mato Grosso from 2004 to 2014. Spatiotemporal patterns in the
sowing dates reveal drivers of sowing behavior (such as cropping in-
tensity and wet season onset) that can be incorporated into models to
improve yield projections under climate change.

Sowing dates play two key roles in Mato Grosso's response to a hotter
and drier climate (Pires et al., 2016; Fu et al., 2013). First, as a primary
control on the weather experienced by crops, changing sowing dates is
one of the most cost-effective adaptations to climate change (Alexandrov
et al., 2002; Baldwin and Cossar, 2009; Howden et al., 2007; Kucharik
and Serbin, 2008; Waha et al., 2013; Waongo et al., 2014). Farmers may
select sowing dates to avoid water and heat stress during important
phenological stages (Ortiz-Monasterio et al., 1994), increasing biomass
accumulation and yields (Soltani and Sinclair, 2012). Second, sowing
dates constrain choices in cropping intensity or crop variety. For
example, farmers who practice rainfed double cropping may prefer to
sow as early as possible in the wet season (Pires et al., 2016). Delays in
the sowing could render double cropping impossible, effectively halving
the region's agricultural productivity (Fu et al., 2013; Spera et al., 2020).
In Mato Grosso, a drier wet season has been associated with increased soy
(first crop) yields but reduced corn (second crop) yields (Cohn et al.,
2016). Cohn et al. (2016) attribute this to a switch from double cropped
systems in which a short-cycle, lower-yield soy variety is planted in
combination with corn, to single cropped systems using long-cycle,
higher-yield soy varieties. Higher temperatures can also impact crop-
ping intensity in Mato Grosso: a temperature anomaly of þ1 �C was
associated with a decline in cropping intensity (3.2% overall production
loss) (Cohn et al., 2016).

In addition to cropping choices, sowing dates in Mato Grosso are
subject to a range of climatic, legal, and socio-economic constraints – all
of which can interact to produce spatially complex variations in when
and where sowing occurs. The onset of the wet season is important
because soy in Mato Grosso is predominantly rainfed (Abrahao and
Costa, 2018; Pires et al., 2016). Farmers are also legally constrained from
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sowing in a period close to the wet season onset (June 15 - September
15/30) by a prescribed sanitary period imposed to prevent pathogen
outbreaks (Pires et al., 2016). Farmers are also subject to a host of
socio-economic constraints that lead to dynamic sowing behavior (Waha
et al., 2012). Variations in sowing dates can occur over spatial scales as
small as individual fields and reflect diverse factors such as risk aversion,
access to equipment and labor, use of irrigation, desired cropping in-
tensity, and soil type (Begue et al., 2010; Bussmann et al., 2016; Dounias
et al., 2003; Feola et al., 2015; Kala, 2015; Pires et al., 2016), while
interannual variations reflect volatility in climate, crop price, equipment
availability, or technological development (Iizumi et al., 2019; Kucharik,
2006; Kucharik and Serbin, 2008; Ma et al., 2012). Interactions between
climatic and socio-economic factors may also occur: Mato Grosso's lack of
insurance and weak governance may make cropping and sowing de-
cisions more responsive to climate anomalies than regions with more
codified agricultural practices (Cohn et al., 2016). The spatially and
inter-annually variable sowing dates could translate into large fluctua-
tions in yield. It is unclear at present which of these climatic, legal, and
socio-economic constraints dominate contemporary sowing decisions,
and whether any will impose hard limits on adaptation of sowing dates in
response to climate change.

In the absence of either highly resolved datasets documenting sowing
date, or a reasonable model to predict sowing data, agricultural pre-
dictions in Mato Grosso (and elsewhere) are forced to rely on untested
assumptions about the timing of sowing. For example, many crop
modeling studies assume that sowing occurs on the yield-maximizing
date or at wet season onset (Grassini et al., 2015; Iizumi et al., 2019;
Sacks et al., 2010; Waha et al., 2012). In South America, long growing
seasons and intensive cropping practices mean that such assumptions
could result in errors in sowing date as great as five months (Waha et al.,
2012). Similarly, farmers who wish to double crop are sometimes pre-
sumed to plant immediately after the sanitary break to increase the
likelihood of a successful second crop, but it is unclear whether the
sanitary break truly imposes a hard limit on sowing (Pires et al., 2016).
This gap in knowledge could be addressed with high-resolution sowing
data that illuminates the limits of local adaptability, allowing targeted
vulnerability assessments and policy evaluation.

Unfortunately, the high cost of ground surveys means sowing and
harvest dates are not known at sufficient spatiotemporal resolution to
isolate climatic and socio-economic controls on sowing behavior in Mato
Grosso. The highest quality sowing data available over Mato Grosso is a
weekly crop progress report produced by the Instituto Mato-Grossense de
Economia Agropecuaria (IMEA) (IMEA, 2019), which reports the percent
of soy planted over 7-day intervals. These reports are not spatially
explicit and aggregate across important regional differences within the
state (Picoli et al., 2018).

In other regions where sowing data are unavailable, time series
analysis of remotely sensed vegetation indices have been used to
extract phenological dates of natural vegetation and crops (Boschetti
et al., 2009; Bolton et al., 2020; Gao et al., 2020; Jonsson and
Edklundh, 2004; Sakamoto et al., 2005; Zhang et al., 2003, 2020). By
calibrating and validating the phenological stages against
ground-truth sowing and harvest dates, satellite-observed vegetation
indices can be related to ground-level behavior. These approaches
have been applied to agricultural production in the US, Europe and
Asia: in the midwest US, 500 m sowing dates for maize, wheat and
soybean achieved root mean squared errors (RMSE) of less than 10
days compared to state-level Crop Progress Reports (Ren et al., 2017;
Urban et al., 2018); in Italy, 250 m rice planting and harvest dates have
been estimated with error of 10 days (Boschetti et al., 2009); in Japan,
1 km planting and harvest dates were estimated with RMSE of 12.1
days and 10.6 days, respectively (Sakamoto et al., 2005); and pheno-
logical information extracted for wheat at 1 km scale in Punjab, India
and for wheat and corn at 30 m in central China were both highly
correlated to validation data collected at an aggregated scale (Lobell
et al., 2013; Pan et al., 2015).
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However, existing satellite-based approaches cannot be directly
applied to Mato Grosso: the state's variety of cropping practices require
an estimation method that avoids region-specific assumptions about crop
timing (Zalles et al., 2019) and or that rely on local expert knowledge of
agricultural practice (Begue et al., 2018). An absence of spatially explicit
ground truth data requires the construction of proxies from
high-resolution satellite data against which to test planting date esti-
mation algorithms. Here, we propose an approach to address both of
these issues, creating 500 m and 25 km sowing and harvest maps of soy,
commonly the first of two crops planted within a growing season, across
Mato Grosso for 2004 to 2014.

The resulting spatial maps of sowing date contain rich information about
individual farmers’ behavior within their climatological, logistical, and eco-
nomic contexts - knowledge that will allow analysis of how yields were
influenced by sowing timing, and extrapolation to farmer behavior and pro-
ductivity under future scenarios. A preliminary analysis of the sowing date
information is presented here, and identifies important spatial and temporal
variability, trends, and constraints on sowing date,which can be immediately
used to refine assumptions about soy agriculture in Mato Grosso.

2. Methods

2.1. Study site

Mato Grosso is a 900,000 km2 state located in the southern Brazilian
Amazon comprising three major biomes: Pantanal (tropical wetland,
62,000 km2) in the south, Amazon (humid tropical forests, 481,000 km2)
in the north and Cerrado (tropical savannas, 360,000 km2) in the center
(Brown et al., 2013). The state experiences a hot, semi-humid to humid
climate, with nearly constant and spatially homogeneous temperatures
(22–26 �C) year round, and a strong north-south gradient in rainfall. At
the north of the state, annual precipitation exceeds 2000 mm, with a 3
month dry season; in the south, annual rainfall is 1000 mm with a 5
month (May–October) dry season (Arvor et al., 2014).

Long rainy seasons and continued improvements in crop variety have
contributed to rapid expansion of cultivated land in Mato Grosso
(Abrahao and Costa, 2018). In 2014, the total row crop area was nearly
100,000 km2 (Zalles et al., 2019), of which 85% was double cropped soy
and 12% was single cropped soy, and agriculture comprised 72% of the
state's gross domestic product (GDP) (Cohn et al., 2016) (Figure 1).
2.2. Approach

2.2.1. Proposed estimation method
While many remote sensing-based estimates of crop phenology exist,

including in Brazil (Becker et al., 2020), they must be adjusted for use in
Figure 1. (a) Mato Grosso, Bra
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Mato Grosso. First, the simplifying assumptions used in previous studies,
including relatively rigid assumptions about crop phenology and timing,
are not defensible on regional scales, particularly where multiple cropping
intensities co-occur (Zalles et al., 2019). Second, ground data availability is
a major constraint in Mato Grosso, creating difficulties for calibration and
validation of remote sensing estimates. Without innovation in generating
ground-truth datasets, spatially resolved satellite-based sowing and harvest
dates can only be validated using aggregated data such as IMEA crop
progress reports. To address these challenges, we used a scalable time series
analysis method, adapted from a linearized harmonic time series fitting
algorithm introduced by Clinton (2017), to extract phenological milestones
from EVI derived from MODIS imagery. Requiring only linear regression,
this algorithm was able to take advantage of Google Earth Engine (GEE)'s
automatic parallelization and readily available satellite imagery. Clinton
(2017)'s linearized harmonic time series fitting method, designed to fit
periodic and stationary natural vegetation phenology, was expanded to
account for non-periodic agricultural time series in which single, double
and triple cropping can occur in succession, and in which the growing
season may shift rapidly from year to year. The algorithm provided a
scalable, rapid analysis that maintained accuracy and minimized assump-
tions regarding crop timing. The phenological milestones derived from this
algorithm were related to reference ground sowing and harvest dates
observed from high-resolution (3–5 m) Planet Labs imagery, producing a
calibrated relationship between sowing/harvest and MODIS-derived
phenological dates (Planet, 2017). We show that high-resolution imagery
can provide validation data where survey information is unavailable.
2.3. Datasets and definitions

A range of remotely-sensed imagery, existing maps, ground-based
datasets and climate products were used in the analysis. Remote
sensing imagery consisted of the Enhanced Vegetation Index (EVI)
calculated from cloud-masked MODIS 8-day composite products
(MYD09A1 and MOD09A1) at 500 m resolution from 2004 to 2014
(NASA Goddard Space Flight Center, 2019a,b). High resolution optical
images of soy fields in Mato Grosso were obtained from the PlanetScope
(3 m) and RapidEye (5 m) satellites from August 1, 2016 to July 31, 2017
at three locations: 11 images of 32 km2 at (-55.389, -11.868); 11 images
of 55 km2 at (-53.454, -15.396); and 16 images of 126 km2 at (-57.731,
-13.285) (Planet, 2017). The images from PlanetScope and RapidEye are
referred to as “Planet Labs imagery”.

We produced a crop cover map identifying areas of single and double
cropped soy. A center pivot irrigation map for 2014 collected by Brazil's
National Water Agency (ANA) (Brito, 2017) allowed us to identify
rainfed fields for analysis. This irrigation map limited the study period to
2014 and before, but is the best data available in Mato Grosso.
zil and (b) its crop cover.
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Wet season onset from 2004 to 2014 was calculated by Abrahao and
Costa (2018). The anomalous accumulation (AA) method was applied to
a gridded (0.25 � 0.25 deg) daily rainfall product produced through
interpolation of 3625 rain gauges and 735 weather stations across Brazil
(Liebmann et al., 2007; Xavier et al., 2016). In the anomalous accumu-
lation (AA) method, the wet season onset date was defined based on the
value of the anomalous accumulation [mm/day]:

AAðtÞ¼
Xt

n¼1

ðRðnÞ�Rref

!
(1)

where RðnÞ is the rainfall on day n and Rref is a reference rainfall value,
defined here as the agronomically significant threshold of 2.5 mm/day
(Arvor et al., 2014). Here, t ¼ 1 refers to July 1, a date within the dry
season. The onset date was defined as the day at which the value of AAðtÞ
reaches its minimum (Liebmann et al., 2007).

Spatially aggregated validation was performed by comparing esti-
mated sowing dates to (1) the University of Madison - Wisconsin's
Figure 2. Method overview. Each lab
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Sustainability and the Global Environment (SAGE) dataset, which com-
piles national and subnational planting and harvest date statistics circa
2000 (Sacks et al., 2010), and (2) weekly crop progress reports from
IMEA (IMEA, 2019).

For time series analysis, we started the agricultural year on August 1,
the middle of the dry season. To relate the calendar year to the agricultural
year, we refer to “sowing year” and “harvest year”. For example, for the
agricultural year commencing August 1, 2013, the sowing year is 2013,
and the harvest year is 2014. Because soy in Mato Grosso can be single or
double cropped, we refer separately to “single cropped (SC) soy” and
“double cropped (DC) soy”, using “soy” to denote both SC and DC soy.
2.4. Estimation of sowing and harvest dates

A four-step process was used to map sowing and harvest dates for
Mato Grosso, and is illustrated in Figure 2. First, phenological milestones
were estimated from MODIS-derived Enhanced Vegetation Index (EVI)
(Step 1). Next, an equation relating the phenological milestones to
elled step is described in the text.
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sowing and harvest dates was calibrated to create 500 m sowing and
harvest maps (Step 2). In this step, reference ground data for sowing and
harvest dates were also generated from Planet Labs imagery. Quality
control and crop cover maps were applied as masks (Step 3), and a 25 km
regional sowing and harvest date map was created (Step 4). Uncertainty
in the resulting sowing and harvest dates at the 500 m and 25 km scale
were quantified during Step 4. Each step is described in detail in the
following sections.

2.4.1. Step 1: Extract phenological milestones from MODIS imagery
Soybean phenology was tracked with cloud-filtered enhanced

vegetation index (EVI) from MODIS (MOD09A1 and MYD09A1)
(Reed et al., 2009; Zhang et al., 2003) (Step 1a, Figure 2). The
removal of the cloudy pixels by retaining only pixels labeled as
“clear” in the “StateQA” band produced EVI time series containing
idiosyncratic and irregular gaps, impacting both EVI (Figure 3a) and
its time derivative, dEVI/dt (Figure 3f, computed with a forward
difference method).

The resulting gap-containing EVI and dEVI/dt time series were
smoothed with a series of moving average windows (Step 1b,
Figure 2). The size and number of smoothing windows were chosen
based on three criteria: (i) the percent of soy area for which reasonable
sowing and harvest date estimates were obtained (as defined in Step
3); (ii) accuracy of sowing and harvest date estimates (as obtained by
comparison to data described in Step 2); and (iii) robustness of esti-
mates to the number of missing points in the EVI time series (addressed
by degrading complete, cloud-filtered EVI time series: randomly
eliminating 1 to 10 of the roughly 25 EVI points covering the growing
window of the first crop). The best of the trialed methods was incor-
porated in the main algorithm. This involved smoothing each pixel's
annual time series with two successive 20-day moving average win-
dows (Figure 3b), and smoothing dEVI=dt once with a 40-day moving
average window (Figure 3f). While these windows are large compared
to the roughly 120-day growing cycle of soy, they were necessary to
eliminate high noise caused by cloud gaps and aerosols. The width of
these windows is acceptable because the method aims to describe only
broad features of the time series, such as the date of the peak and width
of the soy curve, which are not degraded under the smoothing
windows.

Next, phenological features were retrieved from the smoothed EVI
time series using the proposed fitting algorithm (Step 1b, Figure 2). The

“greenup” date for the first crop, tfirstgreenup, was defined as the date of fastest
increase in EVI. The “peak" day for first crop was similarly defined as the

date of maximum EVI, tfirstpeak;num. Peak and greenup dates are often used to
estimate sowing and harvest dates in the literature (Sakamoto et al.,
2005), and their high signal-to-noise ratio makes them relatively robust
to data gaps (Hmimina et al., 2013; Pan et al., 2015).
Figure 3. Time series
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We fitted the smoothed EVI time series to a 1st order harmonic
function following Clinton (2017), which is similar to other functional
forms used extensively in phenological studies (e.g. Geerken, 2009;
Wagenseil and Samimi, 2016):

EVI¼ β0 þ β1 � t þ A*cosð2πω � t�φÞ (2)

The terms β0 and β1 represent the mean EVI and the linear trend,
respectively. The phase, φ, and amplitude, A, terms can be calculated by
linear regression of EVI on time if frequency ω is known (Shumway and
Stoffer, 2017). The remaining parameters can be found by linear
regression. We estimated ω using the “quarter period”, q, defined as the
time difference between the tfirstpeak;num and the preceding tfirstgreenup, where ω

and q were then related as q ¼ π=2ω.

As shown in Table 1, the peak and greenup dates (tfirstpeak;num, t
first
greenup)

were identified by searching for maximum EVI or maximum jdEVI=dtj in
two time windows (see Figure 3 c, i).

We avoided computing dates in themiddle of the wet season due to high
levels of cloud cover. Therefore, the quarter period, q, for the first crop was

estimated as tfirstpeak;num � tfirstgreenup (Figure 3, c and h). Because this q was calcu-
lated for the first crop, the harmonic function was fitted only over the time

window corresponding to the first crop (from tfirstpeak;num � 2q to tfirstpeak;num þ q,
see Figure 3e). These windows maximized the number of EVI points avail-
able for fitting but avoid associating EVI observations with the wrong crop.

With ω for each crop cycle estimated from q, Eq. (2) was fitted to the
EVI time series for each crop cycle, and A and φ obtained from the fitted
values. The phase was then used to calculate the “analytic” peak date for

the first crop as tfirstpeak;fitted ¼ φ
2πω. The analytic peak date is an estimate of

peak greenness that is more robust to noise and data gaps than its
numeric counterpart. We did not calculate an analytic greenup date.

During this step, the algorithm was applied to all pixels in Mato
Grosso. Because the crop cover classification required the results of this
algorithm, we were not able to mask soy pixels until after this step was
completed. Fortunately, knowledge of whether a pixel is single or double
cropped was not required to fit the algorithm. A sensitivity analysis
showed that estimates of the first crop date were independent of the
presence or absence of a second crop, so the same methods could be
applied to single and double cropped pixels. Because crop cover data
were not available to identify the second crop, we did not estimate
sowing and harvest dates for the second crop.

The impact of crop management practices on our algorithm were also
considered. Fertilization has been shown to cause a higher rate of
phenology change (Thies et al., 1995) and higher yield in soy crop,
potentially having a larger impact on crop development than climate
change (Liu and Dai, 2020). Fertilization's impact on crop development
may be manifest in the time series of EVI as a shorter growing period or
analysis method.



Table 1. The date windows over which phenological stages were sought.

Description Symbol Date Window

Peak date of the first crop tfirstpeak;num
August 1 of the
sowing year to March 31
of the harvest year

Greenup for first crop tfirstgreenup August 1 of the sowing year
until tfirstpeak;num
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higher peak. These shifts in crop timing and peak greenness are inher-
ently captured in our time series analysis method because we make no
assumptions about growing period or peak EVI value. Furthermore, as we
ignore the last quarter of the crop cycle during fitting due to cloud cover,
our method is robust to any potential acceleration of crop maturation
that could cause the phenological curve to become asymmetric.

2.4.2. Step 2: Calibrate a relationship between phenological parameters and
sowing/harvest reference ground data generated from Planet Labs imagery

The peak and greenup dates (tfirstpeak;num, t
first
greenup) derived from EVI time

series were used to estimate the sowing and harvest dates through
equations calibrated to “ground-truth” data:

Sowing date¼ tfirstpeak;fitted � p*q (3)

Harvest date¼ tfirstpeak;fitted þ h*q (4)

Where p and h represent the number of quarter periods, q, between the

fitted peak date, tfirstpeak;fitted, and the sowing and harvest dates, respectively.

Because ground survey data do not exist in Mato Grosso, we visually
interpreted high-resolution Planet Labs imagery to identify sowing and
harvest activity over soy fields in Mato Grosso. We refer to the dataset of
sowing and harvest dates created from Planet Labs imagery as the
“reference ground dataset” (Step 2a, Figure 2).

To create the reference ground dataset, we first identified three
distinct soy regions from crop cover training data (Figure 4). Each
studied area contained 40–80 soybean fields. The Planet Labs imagery
obtained over these locations from 1 August 2016 to 31 July 2017 were
Figure 4. The location of MATOPIBA ground-truth survey and of Mato Grosso's
Planet Labs image locations (denoted 1, 2 and 3).
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manually delineated into fields based on the presence of clearly visible
roads. These images were taken by the PlanetScope (3 m) and RapidEye
(5 m) satellites, and offered enough spatial resolution to clearly delineate
soy fields, observe greenup soon after sowing, and follow the progress of
harvest equipment as bright, bare patches gradually replace mature,
brown fields at the end of the growing season.

We downloaded Planet Labs images over locations that (1) cover only
soy fields (based on crop cover point data) and (2) are representative of
all the potential sources of error in the estimation method. To ensure that
the image locations contain soy, we chose combinations of fields and
years that were reported as soy in the land cover data. In the interest of
obtaining Planet Labs images that are representative of all potential error
sources, we included both single and double cropped fields and chose
images that were spatially far apart. A large, persistent storm system
would generate the same gap in the vegetation index timeseries over
adjacent fields, potentially missing a significant source of error that
would have appeared if the storms occurred in a different pattern.
Additionally, using images scattered over Mato Grosso ensured that the
calibration was not biased toward a single producer or toward practices
that are local to a specific region. Figure 4 shows the locations in Mato
Grosso for which we downloaded images that span the whole growing
season. We uploaded these Planet Labs images to Google Earth Engine,
delineated individual fields by hand, and recorded the earliest and latest
possible sowing and harvest dates for each field. Figure 5 displays some
Planet Labs imagery samples, highlighting sowing and harvest detection
and the influence of clouds on data creation.

Farming cycles were identified for each field using observations of
bare soil, green vegetation, brown mature crops, and bare soil. This
allowed estimation of harvest dates (illustrated in Figure 5) based on the
distinct geometric patterns caused by harvesting equipment. Sowing
dates were reported by visual assessment over a 2–5 week date range
(depending on the quality and temporal resolution of the dataset) pre-
ceding the first observed increase in greenness in the soy fields. The final
reference ground dataset consisted of the earliest and latest possible
sowing and harvest dates for the date range 1 August 2016 to 31 July
2017. This dataset was used to evaluate the pixel-level accuracy of the
estimation method over fields which are known to be soy, in the absence
of additional error introduced by the land cover map at the regional level.
We applied the proposed time series analysis method to the Planet Labs
locations over the same date range in order to calculate estimation error;
however, we were unable to generate sowing and harvest date estimates
for all rainfed soy in Mato Grosso after 2014 due to lack of recent irri-
gation maps.

Our reference ground data was compared to a ground survey of 90 soy
properties from 2010 to 2017, which reported sowing and harvest dates
over the MATOPIBA region of Northeast Brazil (comprising the states of
Maranh~ao, Tocantins, Piauí and Bahia) (Figure 4). While this “MATO-
PIBA survey”was the best property level ground truth data available to us
in Brazil, it may have been affected by recall bias as it was conducted only
during the 8th year. Therefore, we introduced large error bars to the
original data if responders reported vague date ranges for sowing and
harvest (such as “early October”). The width of these error bars was
chosen based on the wording of the reported date range; for example, a
report of “2nd week of October” received a range of October 10 þ/- 7
days; “early October” received an error bar of October 10 þ/- 15 days;
and “October” received an error bar of October 15 þ/- 20 days.

MATOPIBA survey data and Planet Labs imagery collections coin-
cided for two properties, enabling a direct comparison between the two
datasets. Existing survey data in MATOPIBA were found to be inadequate
for ground-truthing soy in Brazil due to excessive spatial aggregation and
concerns about farmers’ recall bias. In the survey, a single set of sowing
and harvest dates were reported for each property (on average, 52 km2).
However, significant differences (up to 3 months) in the sowing and
harvest dates across fields within each property were visually evident in
the Plant Labs imagery. One property reported that their sowing and
harvest activity occurred over a period of 1 and 1.5 months, respectively.



Figure 5. Planet Labs images from two locations in Mato Grosso, ranging from the start of the growing season (September) to the end (June) illustrate the visual cues
that were used to estimate sowing and harvest dates for each field. Clouds and cloud shadows impacted the quality of the estimates.
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For the same property, Planet Labs imagery suggested that sowing was
spread over a 2 month period, and harvest activity over a 3 month period,
an increase of 100%. This larger range indicated that at least some fields
were not covered by the values reported in the MATOPIBA survey. For
the other overlapping property, the reported sowing and harvest dates
were not consistent with greenup and browndown observed in Planet
Labs imagery in 3 out of 4 of its fields, with differences of up to 1.5
months.

Additionally, 5% of MATOPIBA survey responses reported identical
dates across all years, suggesting that farmer recall may have impacted
the quality of the results. Our examination of two of these properties
suggested that spatial aggregation could lead to large errors in reported
crop timing. Reference ground datasets may be a worthwhile alternative,
even where survey data are available, because it avoids the greater im-
perfections in some survey datasets.

Given the uncertainties in the sowing and harvest date information,
we computed the RMSE as the difference (in days) between the estimate
and the nearest date in the reported date range if the estimated date fell
outside of the range, or zero when the estimate fell inside the range.

The best calibration RMSE of 2.5 and 1.6 days for sowing and harvest
date across all three Planet Labs imagery sites (Figure 4) was achieved by

setting the sowing date as tfirstpeak;fitted � 1:75q, and harvest as tfirstpeak;fittedþ 1:1q

(Step 2b, Figure 2). Cross-validation, in which one Planet Labs imagery
site was removed per calibration, estimated out-of-sample prediction
RMSE as 2.92 and 1.61 days for sowing and harvest date. We tested the
sensitivity of the estimated sowing and harvest dates to variations in time
series analysis parameters that were settled by trial and error by
Table 2. Sensitivity of sowing/harvest estimate error on timeseries algorithm paramete
to the sowing and harvest calibration parameters, followed by dEVI/dt's smoothing w

Timeseries analysis parameter Effect on sowing date error [days
error per unit change in
parameter]

Peak cutoff date [days] 0

First moving window for EVI smoothing [days] 0.01

Second moving window for EVI smoothing [days] 0.02

Smoothing window for dEVI [days] 0.1

Sowing calibration parameter (p) [-] 21

Harvest calibration parameter n/a
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comparing each version of the estimated dates to the reference ground
dataset. The parameters included in the sensitivity analysis were p and h
(Eqs. (3) and (4)), moving window sizes for smoothing (Step 1), and the

window over which tfirstpeak;num was sought (Step 1).
The parameters used in the method were found through sensitivity

analysis. In Step 1, we used smoothing windows to compensate for cloud-
induced noise in the EVI timeseries, and calibrated parameters that
related two phenological indicators, peak date and quarter period, to
sowing and harvest dates. The size of the smoothing windows and value
of the calibrated parameters were selected to minimize error as compared
to the reference ground dataset obtained from Planet Labs imagery. As
shown in Table 2, of the six parameters chosen through sensitivity
analysis, five had a significant impact on the estimated sowing date. As
expected, the “peak cutoff date” had no effect on the estimate for the first
crop. Here, the peak cutoff date refers to the date after which EVI values
were ignored for first crop estimates, and the date before which EVI
values were ignored for second crop estimates. In other words, EVI values
after the peak cutoff date (second crop) did not make any impact on
estimates based on EVI values before the peak cutoff date (first crop). EVI
observations after the chosen peak cutoff date of April 1 were not
considered for estimating the sowing/harvest dates of the first crop,
regardless of the cropping intensity.

Notably, we found that two smoothing windows were necessary for
EVI. An overly wide smoothing window may merge two separate peaks
into one, falsely increasing the estimated quarter period. An increased
quarter period means that the crop growing season length is over-
estimated, which would result in sowing date estimates that are too early,
rs, and the error-minimizing parameter values. The estimates were most sensitive
indow size.

of Effect on harvest date error [days of error
per unit change in parameters]

Error-minimizing value

0 April 1

0.1 20

0.14 20

0.1 40

n/a 1.75

13 1.1
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and harvest date estimates that are too late. However, an overly narrow
smoothing window would distort the location of the peak and greenup in
unpredictable ways: noise from images impacted by clouds or aerosol
would cause the estimated peak and greenup date to be too late or too
early, causing sowing dates that are either too early (if peak and greenup
are too close together, or if peak is too early) or too late (if peak and
greenup are too far apart, or if peak is too late). The use of two successive
smoothing windows balanced the need for increased smoothing without
blending a double cropped field into a single peak.

2.4.3. Step 3: Apply crop cover and quality control masks
To produce soy sowing and harvest dates over Mato Grosso required

knowing the location and cropping intensity of soy agriculture across
the state (Step 3a, Figure 2). To map soy agriculture and its intensity,
we adapted an existing crop classification technique tested for soy and
corn in Parana State, Brazil (Zhong et al., 2016). We trained a Cartesian
classifier in GEE using topographic, phenological and spectral infor-
mation derived from Landsat and MODIS. All phenological and spectral
input data in our study were derived from the EVI time series calcu-
lated in Step 1b (cloud-filtered and smoothed), while topographic data
(elevation, slope, aspect and hillshade) were derived from the Shuttle
Radar Topography Mission (Farr et al., 2007). While we only report
sowing and harvest dates for the first crop (soy), phenological infor-
mation for the second crop was used as input to the crop cover
classifier.

Training data constraints meant that only three land cover types were
classified: single cropped soy, double cropped soy, and non-soy agricul-
ture. After the classifier labeled all pixels in Mato Grosso as one of these
three classes, we masked out non-agricultural lands using the Mapbiomas
land cover dataset. The phenological and spectral information used to
classify pixels as “single cropped soy”, “double cropped soy”, and “non-
soy agriculture” is shown in Figure 6. The Shuttle Radar Topography
Mission (SRTM) provided topographic information on elevation, slope,
aspect, and hillshade at 30 m resolution that was used in land cover
classification (Farr et al., 2007). Crop cover training data (9,000 points,
2003–2017) was formed by intersecting a Landsat-based crop classifi-
cation produced by Agrosatelite (2017) with a roadside survey of Mato
Grosso's agricultural areas conducted by Embrapa and the Kansas Bio-
logical Survey (Kastens et al., 2017). The classes in this training dataset
were “double cropped soy”, “single cropped soy”, and “non-soy agricul-
ture”, and did not include points separating agriculture from
non-agricultural cover. Therefore we supplemented our classified map
with Mapbiomas v3, a 30 m resolution land cover map of Brazil from
1985 to 2017 that identified row crop agriculture (Mapbiomas, 2019).

Because cloud filtering of the MODIS data in Step 1a introduced
spatial gaps in the EVI images that, if not filled, would be propagated as
gaps in the classifier's training data, the EVI images were gapfilled over
space with a mean square kernel. This ensured that each point in the land
cover dataset contained a full set of input data.

The classifier was trained on spectral information benchmarked on
phenological stages, rather than on calendar dates, to allow the classifier
Figure 6. Input data for the crop classifi
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to align input data across years and locations. This alignment produced a
classifier that was robust to interannual and inter-regional variations in
the sowing and harvest dates, sensitive to physiological and seasonality
differences among crop types and crop intensity levels, and relevant in
extrapolated contexts (Zhong et al., 2016).

In addition to first crop phenology, whose estimation is detailed in the
main text, we also used second crop phenology during classification. The
method to derive second crop phenology was similar to that for the first
crop, with the following changes to Step 1b:

1. Instead of extracting greenup (tgreenup) from the smoothed EVI times-
eries, we extracted the “browndown” date, tsecondbrowndown, defined as the
date of fastest decrease in EVI. The “quarter period”, q, was then
defined as the time difference between the tsecondpeak;num and tsecondbrowndown.

2. The time windows within which the peak and browndown dates
(tsecondpeak;num, t

second
browndown) were identified by searching for maximum EVI or

maximum jdEVI=dtj are listed in Table 3.
3. We fitted the timeseries to the 1st order linearized harmonic using

only EVI values corresponding to the second crop (from tsecondpeak;num � q to

tsecondpeak;num þ 2q).

Our crop cover map achieved an overall accuracy of 82.2 þ/- 0.5%,
calculated via cross-validation with the crop cover dataset in which 10%
of points were eliminated per calibration. Consumer's and producer's
accuracy are displayed in Table 4. The 25 km scale sowing and harvest
date ranges reported for single and double cropped soy in Table 5 ac-
count for this classification error, and as discussed in Section 3.3, dif-
ferences among cropping intensities can be discerned despite crop cover
classification error.

Next, we used a map of center pivot irrigation locations in 2014 to
mask out potentially irrigated pixels from 2004 to 2014 (Step 3a,
Figure 2). Irrigated fields do not conform to the assumptions made in the
time series analysis, and correspond to fundamentally different sowing
dates and adaptation options than rainfed fields. We made the assump-
tion that non-irrigated locations in 2014 were also non-irrigated in pre-
vious years. This was justified because center pivot is a permanent
structure that, once installed, will not be dismantled for several years.
This means that a field that was rainfed in 2014 is unlikely to have been
irrigated in past years. In the absence of center pivot data for all years in
our study period, we created a conservative mask for center pivot by
eliminating all pixels in previous years (2004–2013) that were irrigated
in 2014.

In a final quality control step, we tested the predicted sowing and
harvest dates against a series of rules intended to screen out implausible
results (Step 3b, Figure 2), requiring that:

1. The peaks of the first and second crop were more than 20 days apart.
2. Sowing occurred between August 1 of the sowing year and May 31 of

the harvest year. This rule recognizes that no soy is planted during the
height of the dry season.
cation for a sample pixels and year.



Table 3. The date windows over which phenological stages were sought.

Description Symbol Date Window

Peak date of the second crop tsecondpeak;num
April 1 to July 31 of the harvest year

Browndown for the second crop tsecondbrowndown t2peak;num until July 31 of the harvest year

Table 4. Crop cover accuracy and confusion matrix.

Single
cropped soy

Double
cropped soy

Non soy
agriculture

Producer's
accuracy

Single cropped soy 440 548 3 44%

Double cropped soy 301 4367 53 92%

Non soy agriculture 9 128 107 43%

Consumer's accuracy 59% 86% 66% 82.5%

Table 5. Sowing and harvest date error at aggregated scales. This combines pixel
level errors in sowing and harvest date estimates and land cover classification
errors. Pixel scale errors dominate.

Total
error [days]

Single
cropped soy

Double
cropped soy

All soy
(single þ double cropped)

Sowing 6.9 � 18.7 6.9 � 17.5 6.9 � 17.4

Harvest 1.9 � 21.3 1.8 � 19.9 1.8 � 19.8
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3. The crop cycle of soy (sowing to harvest) was between 60 and 150
days. The average soy crop cycle is 120 days long, 90 days for short
cycle varieties.

4. A soy pixel must have a raw peak EVI of at least 0.8 during the
growing season and a fitted EVI amplitude of at least 0.15. This rule
filters out natural vegetation pixels that are misclassified as soy using
EVI properties of soy that are established in literature. Soy pixels
display a much higher seasonal change in EVI than forest cover and
have a larger peak EVI value than savannah, so pixels can be filtered
by peak EVI and the amplitude of the fitted EVI curve.
Figure 7. Estimated pixel-scale sowing and harvest dates and pixel-scale estimation
maps were quality masked as described in Step 3. Some fields do not contain reported
possible sowing/harvest dates less than 1.5 months long. The errors shown in this fi
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2.4.4. Step 4: Create 25 km sowing and harvest dates and quantify
estimation errors

Steps 1 to 3 allowed us to produce 500 m sowing and harvest date
maps for single and double cropped soy from 2004 to 2014. We then
aggregated our estimates to 25 km cells to match the scale of available
wet season onset data and to visualize broader spatial trends. Our esti-
mates contain errors from two sources: (1) pixel-scale errors associated
with time series analysis and the calibrated equation; and (2) regional-
scale (25 km) errors associated with the crop cover map. Pixel-scale er-
rors apply at field scales, but when these are aggregated to regional
scales, errors associated with the crop cover map must be included.

Errors at the pixel level were quantified with the reference ground
data (Figure 7). However, because the reference ground data were re-
ported as a range of plausible sowing/harvest dates, the calibration data
themselves contain uncertainty. We used the law of total probability to
aggregate the error and its uncertainty at individual pixel scales into an
error distribution that describes all pixels.

We modeled the uncertainty in pixel-level error as a uniform distri-
bution spanning from the difference between the estimate and the lower
bound, and the difference between the estimate and the upper bound of
the reported range. Each pixel in the dataset contained its own unique
pixel-level errors, which were then aggregated into a single pixel-level
error distribution, p(x), describing all pixels, using the law of total
probability (Eq. (5)). The distributions of the error bounds, a and b, were
found by fitting a normal distribution to a and b values found at indi-
vidual pixels. Eq. (5) was solved numerically in R. Sowing and harvest
error distributions were treated separately.

pðxÞ¼
Zþ∞

0

Zþ∞

�∞

Hðx � aÞ � Hðx � y � aÞ
y

*pðaÞ*pðyÞ da dy (5)

Where :
a ¼ estimate� upper bound of reported range
b ¼ estimate� lower bound of reported range

y ¼ b � a
H ¼ Heaviside function

pðaÞ ¼ probability density distribution of a
pðyÞ ¼ probability density distribution of b
errors for Planet Labs data locations (as labeled in Figure 4). The pixels in these
data because there were not enough Planet Labs images to construct a range of
gure are defined following Section 2.4.2.
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At regional scale, our estimates also contain errors due to mis-
classified soy cover. Because the sowing and harvest date estimation
method was independent of land cover classification, the misclassifica-
tion in land cover contributed to sowing and harvest date as a mislabeling
of pixels when aggregating. For example, the sowing date of double
cropped soy within a 25 km region has uncertainties associated with both
the sowing date error at individual pixels and the misclassification of
double cropped soy in the region.

We simulated the error introduced by misclassification through boot-
strapping. We generated a “true” land cover map for a 25 km region con-
taining the average proportion of single cropped, double cropped soy and
non-soy agriculture found in Mato Grosso. From this, we generated many
“erroneous” land cover maps in agreement with the confusion matrix. For
each erroneous land cover map, we calculated the median sowing and
harvest dates for single cropped soy, double cropped soy, and all soy pixels.
The difference between this median and the corresponding median for the
“true” land cover map represented the error introduced to the aggregated
sowing and harvest dates by erroneous land cover classification. The total
error at the 25 km aggregated scale was a simple sum of the pixel level
estimate error and the error introduced by the land cover classification.
Figure 8. Estimated median sowing and harvest dates, in da
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3. Results

3.1. Spatial pattern and variation in sowing and harvest dates

Figure 7 shows quality-controlled estimates of the sowing and harvest
dates for two Planet Labs imagery locations in Mato Grosso. At pixel
scale, the data reveal large differences in the timing of soy agriculture
across adjacent fields, showing that neighboring fields of 1–2 km in size
can differ in their sowing dates by more than one month, and in their
harvest dates by more than two months.

Figure 8 shows median sowing and harvest dates over 25 km cells for
single and double cropped soy for selected years between 2004 and 2014.
The maps display interannual and regional variation in the sowing and
harvest dates.

The long-term spatial pattern of sowing and onset dates, averaged
over 2004 to 2014, is shown in Figure 9. For both cropping intensities,
central Mato Grosso is planted earlier, while areas closer to the state
border are planted later. As we explore in greater depth in a subsequent
paper, Zhang et al. (2021), onset likely plays a large role in determining
these the regional differences in sowing dates, as the spatial patterns in
sowing roughly follow patterns of onset. However, onset cannot explain
ys after August 1 of the sowing year, over 25 km cells.
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all of the regional variability: time-averaged onset is more spatially ho-
mogeneous than time-averaged sowing dates. The difference in spatial
pattern of sowing dates (and of sowing dates after the influence of onset
is removed, Figure 11) between the two cropping intensities also hints at
non-climatic controls on sowing decisions. Single-cropped soy appears to
have a stronger spatial pattern in sowing dates than double cropped soy,
though they experience the same onset. Single cropped soy is both more
spatially autocorrelated and more variable than double cropped soy:
Moran's I is 0.577 and 0.537 for single and double cropped soy, respec-
tively, and standard deviation is 8.24 and 7.77 days. Additionally, in the
central part of Mato Grosso, single and double cropped soy are planted at
very similar times, but sowing dates diverge at the edges of the state.
3.2. Interannual trends and constraints in sowing dates

3.2.1. Sanitary break is not a hard limit for early sowing, but wet season
onset may be influential

Figure 10a shows histograms of sowing and harvest dates for single
and double cropped soy from 2004 to 2014, overlaid on Mato Grosso's
median wet season onset for the corresponding year in blue; Figure 10b
shows the delay between sowing date and onset for single and double
cropped soy from 2004 to 2014. These data reveal that the delay
consistently (with the exception of 2010) decreased from 2004 to 2014
for both single and double cropped soy. During 2010, there was an
anomalously early onset of the wet season, but sowing dates did not shift
to a correspondingly early time. By 2014, the delay for both double and
single cropped soy were both at an all-time low of 19 and 30 days,
respectively.

For most soy agriculture in Mato Grosso, sowing dates occur much
later than either the wet season onset or the sanitary break, indicating
that neither of these constraints is a hard limit on early sowing. Our re-
sults indicate that the mean sowing date for double cropped fields is 89
days after August 1 (late October), while the mean sowing date for single
Figure 9. Estimated mean sowing and onset dates, averaged from 2004 to 2014, in da
in all years of the study period.
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cropped fields is 98 days after August 1 (early November) (Figure 10a).
Thus, the average sowing date for double cropped soy is over a month
after the end of the sanitary break. Similarly, Figure 10a reveals a delay
between sowing and wet season onset of at least 19 days, up to three
months for late-planted single cropped soy, and up to two months for
late-planted double cropped soy. This delay in sowing may indicate that
the onset date used here is estimated too early. However, the onset
definition used here produces mean yearly onset estimates close to
alternative onset definitions. The anomalous accumulation definition
produces onset estimates no more than 2 days later than a definition
based on frequency of rainy days within a 4-week period, and no more
than 5 days later than a definition based on accumulated depth of pre-
cipitation over a 50-day period. The anomalous accumulation definition
more often produces onset estimates that are earlier than the other defi-
nitions. An alternative explanation may stem from the large size of farms:
properties of 10,000 ha may require up to 4 weeks to complete sowing
(Pires et al., 2016). Therefore, observed sowing dates may not reflect
intended sowing dates, especially for larger properties.

Additionally, it is clear that the onset and sanitary break do have
impact on crop timing: sowing dates almost never occur before these two
constraints (Figure 10a). Among the two limits, the wet season onset
appears to exert the more consistent pull on behavior. Except for the
anomalously early-onset year of 2010, onset occurred after the end of the
sanitary break, suggesting that the sanitary break is rarely relevant in
driving sowing behavior compared to onset (Figure 10a). Additionally, as
sowing dates moved closer to the onset, the probability density distri-
bution of sowing dates becamemore concentrated. This “piling up” effect
is most obvious in 2014 and suggests that farmers collectively pay closer
attention to onset as they attempt to plant earlier each year (Figure 10b).

3.2.2. Double cropped soy is planted earlier than single cropped soy
Double cropped soy was consistently planted earlier than single

cropped soy, although this gap shrank over time - the difference between
ys after August 1 of the sowing year. The areas shown represent only soy planted



Figure 10. (a) Histogram of estimated sowing and harvest dates for single and double cropped soy across Mato Grosso from 2004 to 2014. The median wet season
onset across the state is shown in red vertical lines, median sowing and harvest dates in black vertical lines, and the sanitary break in a gray vertical line. (b) The delay
between sowing and onset dates across Mato Grosso. Positive value indicates that sowing occurs after onset. A delay of zero is drawn in the blue vertical line.
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median sowing date for double and single cropped soy across Mato
Grosso decreased from 24 days in 2004 to 10 days in 2014 (Figure 10).
This is mostly associated with earlier sowing of single cropped soy, rather
than later sowing of double cropped soy. The stronger trend for single
cropped soy could indicate farmers sowing early to allow for double
cropping but making a subsequent decision not to plant a second crop.
Double cropped soy sowing dates also appear more sensitive to wet
season onset than single cropped soy. For example, in 2010, double
cropped soy was planted earlier to match the unusually earlier onset,
while single cropped soy did not adjust as strongly to the earlier onset.
The left side of double cropped sowing date histogram in Figure 10
pushes against the wet season onset, while the right side of the histogram
tapers off around 110 days after August 1 - a cutoff consistent with the
need to harvest soy in time for the second crop to be planted. Single
cropped soy, in contrast, is less constricted on both ends and its proba-
bility density distributions are much wider.

3.3. Error analysis and validation

To quantify error at the pixel scale, we compare our estimates to the
sowing and harvest dates observed directly from the high resolution
Planet Labs imagery. These pixel-level errors quantify the accuracy of the
sowing and harvest date estimation method itself, independently of er-
rors in the land cover map. Following Eq. (5), the pixel-level bias and its
confidence interval is 6:9� 16:5 days for sowing and 1:8� 18:7 days for
harvest. This error includes the differences between the estimated and
reported sowing and harvest dates, and the uncertainties in the reported
sowing and harvest dates themselves.

Errors at regional scale represent a of combination errors in land
cover classification and uncertainties in pixel-scale sowing and harvest
date estimates. They are shown in Table 5.

Though we are unable to validate our estimates to a spatially resolved
regional dataset, we ensure that our estimates agree with spatially
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aggregated regional statistics. The estimated sowing and harvest dates
indicate a mean crop cycle length of 112 days, consistent with reported
values (90–120 days) (Abrahao and Costa, 2018). The SAGE dataset in-
dicates that in Brazil, soy is planted in late November and harvested in
late March, equivalent to 120 and 240 days after August 1, respectively
(Sacks et al., 2010). This estimate is closest to sowing and harvest date
estimates for single cropped soy in 2004 (109 and 227 days after August
1) - close to the year during which the SAGE data were collected (circa
2000), and during a time when single cropped soy was the dominant
sowing intensity. Although SAGE data represent both irrigated and
rainfed cropland globally, only 2.5% of Mato Grosso's row crop was
irrigated as recently as 2017 (Hampf et al., 2020). Almost all soy in Mato
Grosso was rainfed during the SAGE period. Finally, a weekly crop
progress report for Mato Grosso's soy is available from the Instituto
Mato-Grossense de Economia Agropecuaria (IMEA) agency (IMEA,
2019). The date at which 50% of Mato Grosso is planted is comparable to
the reported values, as shown in Table 6. The SAGE and IMEA datasets
address potential errors due to differences in seed quality. Differences in
seed quality may impact our estimate of sowing date: poor seeds may
germinate more slowly, or not at all, creating noisy or even absent in-
formation in the time series. This source of error would not otherwise be
captured from Planet Labs as it depends on satellite-visible greening.

The findings must be placed in context of estimation error. This is
especially important because the lack of ground truth crop timing data
introduced large uncertainties in validation, generating imprecise esti-
mates. Our pixel scale errors (RMSE of 6.9 þ/- 16.5 days for sowing and
1.8 þ/- 18.7 days for harvest) are comparable to those from other
satellite-based estimates of soy phenology in the central US (RMSEs be-
tween 3.2 and 6.9 days) that are validated against county-level USDA
NASS Crop Progress Reports (Ren et al., 2017; Urban et al., 2018; Zeng
et al., 2016). The lower precision of the errors in this analysis is due to the
uncertain nature of sowing and harvest dates derived from Planet Labs
imagery. Uncertainties due to error in validation data are not generally
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included in other soy phenology studies, and it is possible that the level of
precision achieved by these studies would be lower if this uncertainty
were included in error analysis.

Fortunately, important features of sowing behavior can be detected
despite error and imprecision in both the pixel scale estimates and the
land cover map. Differences between median sowing dates of single and
double cropped soy (10–24 days, depending on the year), the trend to-
ward earlier sowing (13–20 days over the study period, for double and
single cropped soy), and the delay between sowing date and onset (29–41
days) all appear clearly against the magnitude of RMSE. While impreci-
sion at pixel scale (16.5 days) is sizeable compared to the detected dif-
ferences, the imprecision of aggregated differences is much lower.

4. Discussion

The results suggest that the common assumption that the onset con-
trols the sowing date of tropical rainfed crops is too simplistic, and often
incorrect in Mato Grosso. Instead, Figure 10 reveals a delay between
sowing and wet season onset of up to 3 months for single cropped soy and
up to 2 months for double cropped soy, a window first posited by
Abrahao and Costa (2018) based on soy's photoperiod and climatological
requirements. Averaged across all years, the delay between onset and
sowing date was 41 days for single cropped soy and 29 days for double
cropped soy. The smaller delay over double cropped fields is important
because much of Mato Grosso's agricultural revenue depends on the
feasibility of double cropping (Arvor et al., 2012a). If onset is delayed
sufficiently to make the earlier sowing dates of double cropping impos-
sible, the state may suffer a loss of profit. Further, the magnitude of delay
changed over time for all soy: the delay was larger in earlier years,
suggesting factors that allow farmers to plant closer to the onset each
year. The presence of a delay, and its change over time, means that
sowing and harvest date estimates in this region should not be based
upon precipitation data alone. This also means that global datasets
depicting sowing and harvest dates and which rely on the assumption
that sowing date occurs at the onset of the wet season may be up to 3
months in error.

Importantly, the presence of this delay does not mean that farmers are
insensitive to the wet season onset. Rather, the delay between sowing
dates and the wet season (and occasionally the sanitary break, when it
occurs later than the onset) could be attributed to a variety of non-
climatic factors acting in conjunction with the wet season onset: (1)
the time (up to 4 weeks) needed to complete sowing operations (Pires
et al., 2016), (2) the result of logistical and economic constraints that
delay farmers from sowing at a desired time (Waha et al., 2012), or (3) a
deliberate choice to improve soy yields: simulations suggest that moving
sowing date from Sept 25 to Oct 5 increases soy yields by increasing the
precipitation received by crops (Pires et al., 2016). In addition, a host of
economic, logistical, and social factors may cause farmers to accelerate or
delay sowing depending on the availability of agricultural credit (Abra-
hao and Costa, 2018), crop prices (Borchers et al., 2014), risk aversion
(Bussmann et al., 2016; Feola et al., 2015; Kala, 2015), use of irrigation
(Feola et al., 2015), memory of planting dates in recent years and other
subjective beliefs (Kala, 2015), and/or recommendations from agricul-
tural extension services (Bussmann et al., 2016). Sowing dates therefore
arise as complex decisions made by farmers, based both on climate and
culture. The causes of the deviation between the onset and the observed
sowing dates have significant implications for the future of double
cropping in Mato Grosso, and should be examined further.
Table 6. Comparing the estimated sowing and harvest dates to IMEA's weekly crop pro
cropped soy.

Year IMEA-reported date of 50% planted Estimated date of 50% planted (SC, DC)

2013 October 25 October 25, October 24

2014 October 24 October 29, October 20
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More evidence of the non-climatic constraints on sowing can be found
in the spatial patterns of sowing dates, emphasizing the need for high-
quality sowing data that can isolate these effects. At pixel scale, the
maps of soy sowing and harvest dates reveal that differences in crop
timing between nearby fields are comparable to or greater than inter-
annual and regional differences in the sowing and harvest dates. This
suggests that field-scale knowledge is essential to characterizing sowing
and harvest dates across a property, an insight that should inform future
survey design. For example, soil treatments, such as mineral fertilization
and the application of lime to address soil pH, are a staple of soybean
agronomy in Mato Grosso (Neill et al., 2017). It is possible that delays
due to transportation, equipment and labor required to apply soil treat-
ments may impact available sowing dates, contributing to the large
field-scale variation in sowing dates.

At regional scales, a distinct spatial pattern of sowing dates emerges:
the center of the state is planted earlier than most other areas. This could
be a result of the uniquely favorable climate, soil and topography sur-
rounding the BR163 highway running north and south across the state
(Picoli et al., 2018), or due to differences in average farm size across the
state. While the spatial patterns of sowing for both double and single
cropped soy roughly match the spatial pattern of onset, it is clear from the
spatial patterns remaining in the delay (in which the effect of onset is
taken out) that sowing dates follow a spatial pattern that is independent
of onset. In Figure 11, the presence of a spatial pattern in delay indicates
that onset is not the only factor influencing sowing dates. Importantly,
this pattern differs by cropping intensity: sowing dates and delays for
double cropped soy appear more spatially homogeneous. This discrep-
ancy may stem from differences in resource access or optimal sowing
time. Single cropping practitioners may lack the resources to complete
the more expensive (but more profitable) double cropping operations,
and farmers located away from the central highway network may be
unable to plant as early as they desire due to logistic constraints (Picoli
et al., 2018). On the other hand, the spatial homogeneity in double
cropping may result from the necessity of sowing as early as possible to
allow the second crop to mature before the dry season begins (Abrahao
and Costa, 2018; Pires et al., 2016). Single cropping practitioners have
more flexibility in choosing a yield-optimizing time, which may
contribute to the spatial heterogeneity. In the future, the state's growing
transportation network (including the expansion of the road network
north into the Amazon), improvements in technology that allow farmers
to plant closer to the wet season onset, and shifting cropping practices
may create a changing spatial pattern in sowing dates, highlighting the
importance of spatiotemporally resolved sowing information (Cohn
et al., 2016; Picoli et al., 2018).

Though Mato Grosso is the focus of this study, the insights and
techniques introduced here can be applied to understand climate risks to
rainfed agriculture worldwide. The magnitude of change in the wet
season is expected to be concerning in many rainfed regions: in Malawi,
the RCP8.5 climate scenario will shorten the growing season by 20–55
days by midcentury (Vizy et al., 2015). El Nino events in Indonesia are
expected to increase in the probability of a highly disruptive 30-day delay
in monsoon onset from 9 - 18% in 2007 to 30–40% in 2050 (Naylor et al.,
2007). In Burkina Faso, the rainy season onset will be delayed by an
average of one week in 2021–2050 compared to the 1971–2000 baseline
under the A1B scenario (Ibrahim et al., 2014), and in West Africa the
combined effect of delayed onset and earlier demise will cause a 20%
reduction in the length of the growing season by 2050 (Sarr, 2012).
gress reports. IMEA does not report crop progress separately for single and double

IMEA-reported date of 50% harvested Estimated date of 50% harvested (SC, DC)

February 25 February 27, February 12

February 20 February 28, February 16



Figure 11. Estimated delay between median sowing dates and onset, averaged from 2004 to 2014, in days after August 1 of the sowing year. The areas shown
represent only soy planted in all years of the study period.
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While many studies have highlighted planting dates’ potential as an
adaptation strategy to a shortening wet season, there is still a need for a
realistic understanding of planting behavior and its future trajectory.
Studies that simulate optimal, yield-maximizing planting dates under
climate change scenarios may recommend unrealistic dates, or dates that
prevent intensive cropping systems. In Cameroon, optimized planting
dates were three months later than traditionally observed planting dates
(Laux et al., 2010); in Sudan, the recommended planting date was two to
four weeks earlier than actual practice (Bussmann et al., 2016). The large
gap between actual and optimal dates suggests that the optimized sce-
nario may not be implemented without systematic (and possibly un-
likely) changes in agricultural practice. Additionally, it is implausible
that all farmers, in their various socio-economic contexts, will adapt to an
equal degree. Generation of a similar high-quality sowing date dataset
may be crucial to quantify risk to agricultural productivity, especially in
vulnerable tropical and developing regions.

5. Conclusions

In dynamic areas like Mato Grosso, where climatic, technological, and
economic factors cause sowing dates to shift quickly in time and space,
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spatiotemporally resolved sowing and harvest date information is
essential to forming an effective response to climate change. The dataset
generated in this study demonstrates that the relationship between
sowing date and wet season onset for rainfed crops varies with space,
time, and cropping intensity. Sowing estimates that assume rainfed crops
in tropical regions will be planted at wet season onset, without consid-
ering location, year and cropping intensity, could therefore introduce
errors of up to three months. We also observe that in Mato Grosso, double
cropped soy is planted closer to the start of the wet season onset with
each passing year. Likely the result of improving equipment availability
or crop varieties, this trend suggests that a delay in onset could force
sowing to less favorable dates, reversing at least a decade of logistic and
technological advances. Given the region's heavy reliance on agricultural
revenue, the resulting decline in soy yield across Mato Grosso could be a
significant shock.

These insights could aid efforts to assess the impact of climate change
on Brazilian agriculture in a way that reflects the diverse non-climatic
factors that go into sowing decisions (Hertel et al., 2010; Reidsma
et al., 2010). Crop modeling efforts often resort to approximations in
which sowing is triggered based on precipitation, temperature, or soil
moisture (Hampf et al., 2020; Jones et al., 2003; Stockle et al., 2003;
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Elliott et al., 2015; Schlenker and Lobell, 2010). These rules perform well
on a global or continental scale, but are less appropriate on smaller scales
(Dobor et al., 2016). It would be beneficial to incorporate into these
predictions what we now know about the sizeable and shifting delay
between onset and sowing dates in Mato Grosso.

A realistic understanding of sowing behavior, and consequently an
accurate depiction of future yields, is only possible with updated, highly
resolved sowing data. By introducing an estimation method that closes
the information gap on sowing dates without the need for expensive
ground survey data, we gain insights into sowing behavior for a data-
scarce but agriculturally important area. Similar high-quality data will
be valuable for risk assessment in regions such as southern Asia and
southern Africa, which face not only the most severe consequences of
warming, but also data scarcity and limited adaptive capacity (Laux et al.,
2010; Lobell et al., 2008).
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