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Abstract: Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an
immune response. Aggregates are one of the major risk factors for the undesired immunogenicity
of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For
Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting
from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study
was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the
immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using
a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a
standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells
in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary
administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent
activation of MoDC characterized by the enhanced production of cytokines and expression of co-
stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated
IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells,
which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was
administered locally in the airways as compared to a systemic administration but was mitigated by
improving IgG stability during nebulization, through the addition of polysorbates to the formulation.
Conclusion: Although inhalation delivery represents an attractive alternative route for delivering
Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation
during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of
Ab formulation can mitigate adverse effects induced by nebulization.
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1. Introduction

Therapeutic antibodies (Ab), which mainly consist of monoclonal IgG, represent
the fastest growing class of protein therapeutics, accounting for 90% of proteins on the
market [1]. As recently highlighted during the COVID-19 pandemic, Ab have a tremendous
potential to provide a rapid neutralizing response to emerging viral respiratory pathogens,
augmenting vaccines for the control of respiratory infections. Interestingly, both pulmonary
and nasal delivery of therapeutic proteins are receiving increasing interest, as the airways
are a relevant non-invasive entry portal to the respiratory tract for local-acting protein
therapeutics [2–4]. For the treatment of respiratory diseases, several preclinical studies
have demonstrated that inhaled protein therapeutics, including Ab, are efficacious and
display a better pharmacokinetic profile, as compared to other routes [5–7]. Despite the
recent clinical development of oral anti-infective Ab, in the context of the global response
to SARS-CoV2 pandemic, the inhalation route remains unexploited for Ab. One of the
unknowns is the biological consequence of Ab instability during aerosolization. Inhalation
requires transformation of a (bulk) protein formulation in an aerosol, i.e., dispersion
of a solution/suspension or a dry-powder into micron-sized particles suspended in a
gaseous medium. As with 75% of the inhaled protein therapeutics in clinical development,
nebulization of liquid formulations is often the primary technique used for the inhalation
of proteins [5]. Nebulization generates a significant air–liquid interface which, combined
with the potential for nebulization-induced temperature increase and/or shear forces, can
be deleterious for proteins. In response to such stresses, proteins are prone to unfolding,
aggregating and, in some cases, being partly inactivated [8,9]. Aggregation is a key marker
of instability in full-length Ab during nebulization [10,11] and its extent mainly depends
on the type of Ab, the aerosol generator type and the formulation characteristics.

Aggregates are associated with Ab-related adverse immunogenicity [12–14]. Immuno-
genicity refers to the inherent properties of a molecule to stimulate an immune response.
Adverse immunogenicity is due to uncontrolled and protracted immune responses and has
major consequences for product safety and pharmacology [15–17]. For instance, adverse
immunogenicity is associated with patient’s immunization and production of anti-drug
antibodies (ADAs) and affects protein therapeutic pharmacokinetics (PK), pharmacody-
namics, efficacy and safety, sometimes resulting in extremely harmful side effects [18,19].
To date, many factors have been implicated in adverse immunogenicity [20–23] and they
include the content of aggregates and the route of administration, which are important
parameters for Ab inhalation.

After inhalation, aggregates from aerosolized Ab will encounter the airways immune
system, which has evolved over time to recognize and prevent foreign particles, including
aggregates, from penetrating the body. The airway mucosa is sentinelled by a high density
of antigen-presenting cells (APC) that quickly and efficiently orchestrate local immune
responses against inhaled antigens [24]. In the present study, we analyzed, both in vitro and
in vivo, the immunological consequences of Ab aggregates generated during aerosolization
and delivered through the airways. First, we screened the potency of IgG aggregates
generated by nebulization to activate APC in vitro, using a standard human monocyte-
derived dendritic cell (MoDC) assay. Considering the complexity of the immune system
and the lung mucosal environment, we evaluated the impact of nebulization-mediated
IgG aggregates on immune cells in vivo after pulmonary administration. Our findings
show that aggregation attributable to Ab nebulization induced immune cell activation, in a
dose-dependent manner and delivering a high-level of aggregates through the pulmonary
route had a dramatic effect on immune cell homeostasis, but also that this was avoidable
through appropriate formulation approaches.

2. Materials and Methods

Mice
Adult male C57BL/6jrj (B6) mice (5 to 7 weeks old) were obtained from Janvier (France).

All mice were housed under specific pathogen-free conditions at the PST Animaleries
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animal facility (France) and had access to food and water ad libitum. All animal experiments
complied with the current European legislative, regulatory and ethical requirements and
were approved by the local animal care and use committee (reference: APAFIS No.10200-
2017061311352787).

Antibodies
Abs 1, 2 and 3 are full-length IgG1 (named hIgG1-1, hIgG1-2 and hIgG1-3) used

in the clinics, supplied in their commercial formulation with endotoxin levels meeting
acceptance thresholds (according to their certificate of analysis). To avoid any interference
on the aggregation propensity of each Ab, excipients were removed by hydroxyapatite
chromatography and subsequent dialysis against phosphate-buffered saline (1X-PBS).
Protein concentration was then evaluated for each Ab: hIgG1-1 (1.7 mg/mL), hIgG1-2
(1.9 mg/mL) and hIgG1-3 (2.38 mg/mL)

mAb166 (mIgG2b-1) is a murine monoclonal IgG2b,κ Ab against pcrV, a component
of a type three secretion system (T3SS) of Pseudomonas aeruginosa [25]. MPC11 (mIgG2b-2)
is the control isotype of mAb166. Both were supplied as sterile, pyrogen-free solution
in 1X-phosphate-buffered saline (1X-1X-PBS), in accordance with good manufacturing
practice, by BioXcell (New Lebanon, NH, USA) with endotoxin level < 1 EU/mL (according
to their certificate of analysis). They were supplied as follows: mIgG2b-1 (2.5 mg/mL),
mIgG2b-2 (8.5 mg/mL). In some experiments, Ab formulations were supplemented with
Polysorbate 80 (PS80; Sigma–Aldrich, Saint-Quentin Fallavier, France) at 0.01% or 0.05%
(final volume) prior to nebulization.

Antibody nebulization
For sterility purposes, this procedure was performed under a cell-culture hood. All

antibodies were filtered in suspension on a 0.22 µm syringe filter (Millipore, Guyancourt,
France). For in vitro assay, all antibodies were diluted in PBS1X to a final concentration of
~1.7 mg/mL before nebulization. For each Ab, 1 mL were nebulized using the clinically-
relevant Aeroneb ProTM vibrating-mesh nebulizer (Aerogen, Ireland), connected with a
13 mL polypropylene tube (Dutscher, Bernolsheim, France) or the VITROCELL Cloud
12 system (VITROCELL Systems, Waldkirch, Germany), which is the commercial version
of the Air–Liquid Interface Cell Exposure–Cloud (ALICE-cloud) system, described by Lenz
and colleagues [26]. Nebulization duration was measured and lasted ~5 min for each
sample (i.e., 0.4 mL/min liquid output rate). For in vitro aerosol-cell exposures, using
the VITROCELL Cloud 12 system, the aerosol cloud was allowed to settle for 20 min
before removing cells. When necessary, nebulized Ab solutions were filtered on a 0.45 µm
syringe filter (Millipore, Guyancourt, France) prior to further use. Nebulizers were washed
extensively between each nebulization sessions using 0.22 µm autoclaved water and 1X-
PBS. Subsequently, nebulized 1X-PBS was analyzed by flow cell microscopy and the
nebulizer was considered cleaned and operating for Ab nebulization when the nebulized
1X-PBS samples contained less than 300 particles/mL. To rule out that cell activation may
be attributable to contamination released during nebulization, the activation potency of
nebulized 1X-PBS (vehicle solution) was also investigated in vitro. Our analysis revealed
that nebulized 1X-PBS had no impact on MoDC activation (data not shown).

Dynamic Light Scattering (DLS) analysis of antibodies
Native and nebulized Ab were analyzed by dynamic light scattering with a Dynapro

Nanostar® (Wyatt Technology, Goleta, CA, USA) after appropriate dilution to 100 µg/mL
in 1X-PBS in UVette (Eppendorf, Montesson, France). For each sample, the acquisition
was performed 10 times for 7 s each, at a temperature of 25 ◦C with a detection angle
of 90◦. The particle diameter (nm) and polydispersion index (pdi) were analyzed using
DynamicsTM software (Wyatt Technology, Goleta, CA, USA). Samples with less than 70%
of successful analyses were considered multimodal and non-analyzable as recommended
by the manufacturer (depicted as n/a).

Flow cell microscopy (FCM) of antibodies
Native and nebulized Ab were analyzed by flow cell microscopy with an Occhio®

FC200S+ (Occhio, Angleur, Belgium) after appropriate dilution to 100 µg/mL in medium
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in the flowcell. Briefly, 250 µL of each antibody solution passed continuously in the flow
cell, where particles were automatically detected, sized and counted by a camera. Particle
counting, size assessment and distribution were analyzed using CallistoTM software
(Occhio, Angleur, Belgium).

Monocyte-derived dendritic cells (MoDC) preparation
Human peripheral mononuclear cells (PBMC) were purified from cytapheresis, ob-

tained from naïve donors (Etablissement Français du Sang, Centre Hospitalier Régional
Universitaire Bretonneau, Tours, France) by centrifugation on a Ficoll density gradient
(Eurobio, Les Ulis, France). MoDC were prepared from PMBC as previously described [27].
Briefly, CD14+ monocytes were isolated using magnetic cell sorting (Miltenyi Biotec, Ber-
gisch Gladbach, Germany) and cultured during 6 days, at 1 × 106 cells/mL in RPMI1640-
GlutamaxTM (Gibco, Illkirch, France) supplemented with 10% of FCS (Dutscher, France),
1X-Penicillin/Streptomycin (Gibco, Illkirch, France) in the presence of 25 ng/mL of IL-4
(Miltenyi Biotec, Bergisch Gladbach, Germany) and 100 ng/mL of GM-CSF. On day 6,
homogeneity and viability of MoDC population was checked by flow cytometry based on
their physical characteristics (forward scatter (FSC) and side scatter (SSC)) and incorpo-
ration of vital dye (LiveDeadTM, Invitrogen, Illkirch, France). The immature phenotype
of MoDC was checked based on their DC-SIGN+, CD80low, CD83low and HLA-DR low
phenotype.

MoDC stimulation with antibody preparation
On day 6, immature MoDC were harvested and washed in complete medium (RPMI1640-

Glutamax™ supplemented with 10% of FCS (Dutscher, Bernolsheim, France) and 1X-
Penicillin/Streptomycin). For experiments using Ab aerosols collected in a 13 mL polypropy-
lene tube, 1 × 105 cells/well were plated in 75 µL in a U-bottom 96-well plate (Falcon,
Becton Dickinson, France) for 4 h. A total of 75 µL of nebulized or native Ab was then
added to a final concentration of 1, 10, 100 and 200 µg/mL depending on the experiments.
For experiments using the VITROCELL Cloud 12 system, 1 × 105 cells/well were plated in
150 µL on a 24-well plate permeable insert (Corning, Hazebrouck, France) for 18 h. The
insert was then placed in the VITROCELL Cloud 12 system with 200 µL in the basolateral
compartment to prevent cell drying and cells were exposed to Ab aerosol as described
above. Inserts were then put back on a companion 24-well plate.

Cells were incubated in 150 µL of complete medium for 18 h at 37 ◦C with 5% CO2.
Lipopolysaccharide (LPS, from Escherichia coli O111:B5, Sigma-Aldrich, France) was used
at 1 µg/mL as a positive control. Untreated and nebulized -1X-PBS (Gibco, Illkirch, France)
were used as vehicle controls. Each condition was tested in 3–9 replicates.

Analysis of MoDC activation by flow cytometry
After 18 h of stimulation, MoDC were harvested and saturated in -1X-PBS supple-

mented with 2% of FCS, 2 mM EDTA and 1X-human Fc-Block (Becton Dickinson, France)
for 15 min at 4 ◦C. Cells were washed and stained in FACS buffer (1X-PBS supplemented
with 2% FCS and 2 mM EDTA) with antibodies described in Supplementary Table S2, for
20 min at 4 ◦C in the dark. FMO controls were generated for each parameter analyzed.
All antibodies were from Biolegend (London, UK). Data acquisition was conducted on the
8-colors MACSQuant flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany) on a
minimum of 10,000 living cells. MoDC analysis was performed using VenturiOne software
(Applied Cytometry, Sheffield, UK). Analysis was conducted on singlet (FSC-A/FSC-H
gating) and CD45+ live cells (negative for LiveDead staining). Costimulatory protein
expression was expressed as a ratio of the median fluorescence intensity (MFI) of cells
treated with nebulized Ab/MFI of cells treated with native Ab.

Cytokine, chemokine and protein assays
All assays were performed on ImmulonTM 96-well plates (ThermoFischer Scientific, Il-

lkirch, France). Concentrations of CXCL8 (IL-8), human IL-6 in cell-free MoDC supernatants
and TNF, IL6, IL1b and CXCL1 (KC) were measured using specific ELISAs (Biolegend,
London, UK; limit of detection: at 15.6 pg/mL) according to the manufacturer’s instructions
and were normalized based on the mean concentration of total protein. Total protein con-
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centration was determined using a BCA assay (ThermoFischer Scientific, Illkirch, France),
according to the manufacturer’s instructions (limit of detection: 15 µg/mL). Protein expres-
sion was expressed as a ratio of the protein concentration of cells treated with nebulized
Ab/protein concentration of cells treated with native Ab.

Animal experiments
For each experiment, 5 mice per group were used. Animal experiments were per-

formed 2–3 times. Nebulized or native mIgG2b-1 and mIgG2b-2 (100 µg/animal, in 40 µL)
were administered orotracheally or through intravenous injection using a restraining tube
at days 0, 7, 14, 21 and 28. For orotracheal administration, mice were anesthetized with
isofluorane 4% and an operating otoscope fit with intubation specula was introduced both
to maintain tongue retraction and to visualize the glottis. A fiber optic wire threaded
through a 20 G catheter and connected to torch stylet (Harvard Apparatus, Holliston, MA,
USA) was inserted into the mouse trachea. Correct intubation was confirmed using a lung
inflation bulb test and 40 µL of the bacterial solution was applied using an ultrafine pipette
tip. For the acute treatment assessment, animals were euthanized using a lethal dose of
ketamine/xylazine at 4 h, on day 1 and 14 days after a single administration. In the chronic
treatment groups, animals were euthanized at day 29.

At the time of necropsy, blood was recovered by intracardiac puncture. Bronchoalve-
olar lavage fluid (BALF) was then collected by cannulating the trachea and washing the
lung twice with 1.2 mL of 1X-PBS at room temperature. The lavage fluid was centrifuged
at 400× g for 10 min at 4 ◦C, and the supernatant was stored at −20 ◦C until analysis. The
cell pellet was resuspended in FACS buffer and counted in a hemocytometer chamber.
Peripheral blood was washed out by intracardiac perfusion with 10 mL of 1X-PBS. Lung
and spleen homogenates were then prepared in 2 mL of RPMI1640 containing 125 µg/mL of
Liberase (Sigma–Aldrich, France) and 100 µg/mL of DnaseI (Sigma–Aldrich, Saint-Quentin
Fallavier, France) using a GentleMACS tissue homogenizer (Miltenyi Biotec, Bergisch Glad-
bach, Germany). Cells were isolated through a 100 µm cell strainer and purified with a 20%
Percoll (Sigma–Aldrich, Saint-Quentin Fallavier, France) density gradient. Cell preparation
was centrifuged at 400× g for 10 min at 4 ◦C, and the pellet was resuspended in FACS
buffer, and counted in a hemocytometer chamber.

Immune cell phenotyping by flow cytometry
BALF, lung and spleen cells isolated as described above were saturated in 1X-PBS

supplemented with 2% of FCS, 2 mM EDTA and 1X- human Fc-Block (Becton Dickinson,
France) for 15 min at 4 ◦C. Cells were washed and stained with antibodies described in
Supplementary Table S2 for 20 min at 4 ◦C in the dark. Data acquisition was made on the
8-colors MACSQuant flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany) on
a minimum of 100,000 living cells. Analysis was performed using VenturiOne software
(Applied Cytometry, Sheffield, UK). Analysis was made on singlet (FSC-A/FSC-H gating)
and CD45+ live cells (negative for LiveDead staining). Immune cell phenotypes were
determined as described in Supplementary Table S2. Data were normalized based on the
mean concentration of respective native Ab conditions or expressed as a number of cells
calculated as follows: % of the total CD45+ immune cell population x total number of cells.
For Annexin-V/PI staining, data were normalized as follows: % of the positive population
for nebulized Ab/% of the positive population for native Ab.

Histology
Lungs were fixed in 10% buffered formalin (Shandon), dehydrated in ethanol and

embedded in paraffin. Serial sections (3 mm) were stained with hematoxylin and eosin
(HE) or Congo red. Ten HE sections per mouse were randomly evaluated to count the cell
nucleus using a machine-learning pixel classification plugin for Image J (https://imagej.
net/plugins/tws/, as available on 17 March 2022), as described previously [28].

Statistical analysis
Differences between experimental groups were determined using Kruskal –Wallis

or t-test comparing two groups, using one or two-way analysis of variance (ANOVA)
followed by Newman–Keuls or Bonferroni post-test (for comparison between more than

https://imagej.net/plugins/tws/
https://imagej.net/plugins/tws/


Pharmaceutics 2022, 14, 671 6 of 19

two groups), after confirmation that the data were normally distributed. All statistical
tests were performed with GraphPad Prism software (version 4.03 for Windows, GraphPad
Software Inc., San Diego, CA, USA). All data are presented as mean ± standard error of the
mean (SEM). The threshold for statistical significance was set to p < 0.05.

3. Results
3.1. Aggregation of Antibodies Is Heterogeneous during Nebulization

Nebulization promotes Ab aggregation [10,11]. In this study, mesh nebulization
was used since it is less deleterious on Ab and often considered for aerosolization of
proteins [5]. Full-length Ab, commercially available or under preclinical development, were
reformulated in 1X-PBS and nebulized with the Aeroneb Pro™ vibrating-mesh nebulizer.

Ab aggregation results in a broad range of particles, from dimers (several nanometers)
to micron-sized, and even visible particles in some cases [29], requiring the combination
of different complementary analytical techniques. The aggregation profiles of Ab were
assessed using DLS and FCM to report particles at the submicrometric and micrometric
scales, respectively (Figure 1).
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Figure 1. Antibodies were either nebulized using an Aeroneb ProTM vibrating-mesh nebulizer and
collected (Nebulization +) or left untreated (Nebulization −). The total number of particles (with
diameter >2 µm) was quantified using a flow microscope. The data are quoted as the mean ± SEM.
*, **, ***: p < 0.05, p < 0.01 and p < 0.001, respectively, in a one-way ANOVA with Newman–Keuls
correction for multiple comparisons. The results represent three to eight independent nebulizations.

Nebulization led to an increase in the concentration of particles > 2 µm for hIgG1-
1, mIgG2b-1 and mIgG2b-2, as compared to their native counterparts. Conversely, no
significant increase in particle count was observed for hIgG1-2 and hIgG1-3 (Figure 1).
Furthermore, comparing nebulized Ab, we observed that hIgG1-1 and mIgG2b-1 had
significantly more particles than the other human and murine Ab, respectively. In addition
to differences in total particle concentration, there were also differences in particle size
distribution. Nebulized hIgG1-1 and -2 had more than 78% of their particles smaller than
5 µm, while hIgG1-3, mIgG2b-1 and mIgG2b-2 comprised more than 33% of their particles
above 5 µm (Table 1). For murine mIgG2b-1 and mIgG2b-2, aggregation was also observed
at the submicron scale, most notably for nebulized mIgG2b-1, which could not even be
analyzed by DLS due to the large heterogeneity of the particle size distribution (most likely
all-sized Ab aggregates), which cannot be clearly structured in defined size modes—a
prerequisite for DLS measurements. Nebulized mIgG2b-2 exhibited a significant reduction
(7%) in monomeric Ab amount (Supplementary Table S1). Overall, our results highlight
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the substantial heterogeneity of Ab aggregation during mesh nebulization, most likely
depending on Ab sequence/structure.

Table 1. Particle size distribution (%) of nebulized antibodies.

Antibody 2–5 µm 5–25 µm >25 µm

hIgG1-1 84.3 14.7 1.1
hIgG1-2 78.4 21.1 0.4
hIgG1-3 53.8 45.8 0.4

mIgG2b-1 67 32.3 0.7
mIgG2b-2 57.8 40.7 1.6

3.2. Ab Aggregates, Produced during Mesh Nebulization, Activate Antigen-Presenting Cells

The dramatic consequences of adverse immunogenicity have prompted regulatory
authorities to establish a guidance to test the immunogenicity of therapeutic protein prod-
ucts and industry to propose screening approaches [30,31]. They include investigating the
ability of protein aggregates to activate immune cells, in vitro.

Here, we incubated human monocyte-derived dendritic cells (MoDC) overnight with
native or nebulized Abs (hIgG1-1 to -3) and analyzed both the release of pro-inflammatory
cytokines and expression of co-stimulatory proteins involved in the DC-T synapse (CD25,
CD83, CD86 and CD80). Neither the native Ab, nor the nebulized buffer without Ab (data
not shown) promoted IL-6 or IL-8 production by MoDC (Figure 2A,B) and modulated cell
markers as compared to untreated MoDC (Figure 2E–H). Nebulized and aggregated hIgG1-
1 induced a significant and dose-dependent increase in cytokine production (Figure 2A–D)
whereas the other nebulized Ab solutions had only a minor and inconsistent impact on cy-
tokine level. The nebulized and aggregated hIgG1-1 induced a slight but significant increase
in all cell markers, whereas the effect of other nebulized Ab was limited (Figure 2E–H). In-
terestingly, the filtration of Ab solutions after nebulization, removing micrometric particles
(data not shown), resulted in the abrogation of both cytokine release and expression of
co-stimulatory markers by MoDC (Figure 2A–H, gray bars). In addition, when comparing
nebulized antibodies, our analysis revealed that activation potency of hIgG1-1 was higher
than for hIgG1-2 and hIgG1-3. Altogether, our results suggest that activation of APC
was attributable to the presence of aggregates and that the extent of this activation was
correlated to the number of particles (Figure 1). Since the aerosol collection system may
modulate the amount and the size distribution of Ab aggregates after nebulization [11], we
determined whether collection might induce a bias in APC activation. We directly exposed
MoDC to hIgG1-1 aerosols using the VITROCELL Cloud 12 system [26]. As observed in
Supplementary Figure S1, we obtained similar results on MoDC activation independent of
whether the cells were directly exposed to hIgG1-1 aerosols (through use of the VITROCELL
Cloud 12 system) or exposed to them after collection as a bulk solution, supporting our
decision of adopting the latter approach. Collectively, our results showed that nebulized
Ab induced MoDC maturation and activation as compared to native Ab and confirmed the
involvement of Ab aggregates in this response.
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Figure 2. MoDC were stimulated using equal final concentration of Ab at 100 µg/mL, either native
(white bars), nebulized (black bars) or nebulized and 0.45 µm-filtered (gray bars) for 18 h. IL6 (A) and
IL8 (B) were quantified in cell-free supernatant. MoDC were stimulated with 1, 10, 100 or 200 µg/mL
(gray to black bars) of nebulized hIgG1 or 100 µg/mL of nebulized and 0.45 µm-filtered hIgG1
(last bar) or left untreated (white bars) for 18 h. IL6 (C) and IL8 (D) were quantified in cell-free
supernatant. MoDC were stimulated using equal final concentration of Ab at 100 µg/mL either native
(white bars), nebulized (black bars) or nebulized and 0.45 µm-filtered (gray bars) for 18 h. CD25
(E), CD83 (F), CD86 (G) and CD80 (H) expression were measured using flow cytometry. The data
are quoted as the mean ± SEM. *, **, ***: p < 0.05, p < 0.01 and p < 0.001, respectively, in a one-way
ANOVA with Newman–Keuls correction for multiple comparisons. The results are representative of
six independent experiments (n = 6–9 technical replicates/experiment).

3.3. High-Level of Nebulization-Mediated Antibody Aggregates Impair Lung Cell Homeostasis
after Lung Delivery

Historically, in vitro assays have been widely used to describe the potential immuno-
genicity of biotherapeutic aggregates [13]. However, they display several limitations: (i) the
amount of aggregates inducing a response in vitro may not directly translate into in vivo
response and (ii) they may not predict the impact of the pulmonary delivery route. To
gain insight into the broad effects of Ab aggregates produced by aerosolization within the
lung compartment, we selected two murine IgG2b–mIgG2b-1 and mIgG2b-2-producing
different amounts of aggregates during mesh nebulization (Figure 1) which differentially
activate MoDC (Supplementary Figure S2). We administered them through the airways in
naive mice. Remarkably, the nebulized and aggregated mIgG2b-1 resulted in a dramatic
reduction in the total cell number in the airway compartment of mice (BAL), as compared
to native antibodies administered by the same route (Figure 3A). Moreover, nebulized
mIgG2b-2, producing 10-fold fewer aggregates after mesh nebulization than mIgG2b-1
(Figure 1), showed no statistically significant reduction in BAL cell number (Figure 3G). Of
note, the animals that received the native Ab through the airways had similar cell count as
sham animals (data not shown), which implies that the orotracheal application itself did
not obfuscate our results.
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light. Aggregates are identified as apple-green birefringence artifacts. 10 sections/mouse were ob-
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pact on specific lineage as almost all immune cell types were affected after the administra-
tion of aggregated Ab (Supplementary Figure S3A–E). In the lung tissue, nebulized 
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Figure 3. B6 mice received a 40 µL orotracheal instillation of mIgG2b-1 at 100 µg/mL either native
(white bars), nebulized (black bars) or nebulized and 0.45 µm-filtered (gray bars). The total number
of cells (A,C,E) and CD45+ cells (B,D,F) were quantified in BAL (A,B), in the lungs (C,D) and the
spleen (E,F) using flow cytometry, 18 h after the administration. B6 mice received a 40 µL orotracheal
instillation of mIgG2b-2 at 100 µg/mL either native (white bars) or nebulized (black bars). The
total number of cells (G,I) and CD45+ cells (H and J) were quantified in BAL (G,H), in the lungs
(I,J) using flow cytometry, 18 h after the administration. Lung tissues of mice treated with either
native (white bars) or nebulized (black bars) mIgG2b-1 were histologically examined 18 h after the
administration. (K) Hematoxylin-eosin sections were used to quantify cell nucleus (M) by machine-
learning (see material and methods section). (L) Congo red sections were observed under polarized
light. Aggregates are identified as apple-green birefringence artifacts. 10 sections/mouse were
observed at x20 magnification and used for machine-learning quantification. The data are quoted
as the mean ± SEM. *, **, ***: p < 0.05, p < 0.01 and p < 0.001, respectively, in a one-way ANOVA
with Newman–Keuls correction for multiple comparisons. The results are representative of three
independent experiments (n = 5 mice/experiment).

Analysis of the cellular phenotype of the BAL cells revealed an analogous result for
immune (CD45+ leukocytes) cells (Figure 3B,H). Further analysis did not reveal any impact
on specific lineage as almost all immune cell types were affected after the administration
of aggregated Ab (Supplementary Figure S3A–E). In the lung tissue, nebulized mIgG2b-1
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caused a 2-fold reduction in total cell and leukocyte counts relative to controls (Figure 3C,D),
while nebulization of mIgG2b-2 did not modify leukocyte counts (Figure 3I,J). This decrease
affected both myeloid (neutrophils, monocytes/macrophages and dendritic cells) (Supple-
mentary Figure S3F–I) and lymphoid lineages (B, T CD4+/CD8+ cells) (Supplementary
Figure S3J–L). The modification of cell homeostasis in the airway compartment was not
associated with an alteration of the lung epithelial barrier (Supplementary Figure S4),
but was mostly attributable to micron-sized particles as 0.45 µm-filtration of nebulized
mIgG2b-1 prevented these adverse effects (Figure 3A–F, gray bars). The filtration step did
not significantly modify Ab particle size distribution (Supplementary Tables S4 and S5) or
concentration (Supplementary Table S6), as compared to native Ab.

Interestingly, we observed protein aggregates (appearing as apple-green birefringence
structures under polarized light) on Congo red stained lung sections from animals treated
with nebulized mIgG2b-1 (Figure 3L). Unsupervised machine learning, which was used to
quantify the cell nucleus on HE-stained lung section, confirmed that local administration
of nebulized mIgG2b-1 was associated with a significant reduction of lung cells after 18 h
(Figure 3K,M). Unexpectedly, the number of total and immune cells was also diminished,
even though to a lesser extent, in the spleen (Figure 3E,F), indicating that the impairment of
cellular homeostasis reached the systemic compartment. Contraction of cell number 18 h
after a single airway administration of nebulized Ab primarily occurred in the airways,
and then probably extended through the lung tissue and systemically as it was restricted to
the airway compartment after 4 h (Figure 4A–F). Moreover, this effect was sustained for at
least up to 14 days after Ab administration (Figure 4G,H), or after repeated administrations
(Figure 4I–N). For either single or repeated administrations of nebulized mIg2b-1, we did
not observe any sign of general toxicity, including body-weight loss (data not shown). Over-
all, our results suggest that airway administration of aggregated IgG (>0.45 µm) profoundly
affected cellular homeostasis, in a time-dependent manner, both locally and systemically.

3.4. Nebulized Aggregated Antibody Induced Immunologically Silent Cell Death after Lung
Administration

Next, we investigated the mechanisms accounting for host cell contraction and hy-
pothesized that it was associated with cell death. Cell death occurs in multiple forms and
can be divided in accidental cell death (ACD; necrosis) or regulated cell death (RCD; apop-
tosis) [32]. ACD is characterized by a dramatic and instantaneous collapse of cells and can
be triggered in response to different stresses, including chemical, physical or mechanical
insults, whereas RCD relies on committed molecular machinery [33]. Using Annexin-
V/propidium iodide (PI) staining, which allows the discrimination of early apoptotic cells
(Annexin-V+/PI-), late apoptotic cells (Annexin-V+/PI+) and necrotic cells (Annexin-V-
/PI+) [34], we quantified the proportion of each cell death phenotypes in both total cells and
CD45+ leukocytes population, 18 h after a single administration of mIgG2b-1. We observed
that administration of nebulized mIgG2b-1 provoked a significant increase in both late
apoptotic and necrotic spleen cells while lung and airway cells were suffering from necrosis
as compared to mice treated with native Ab (Figure 5A–F) or with nebulized mIgG2b-2
(Supplementary Figure S5). The type of cell death could also be determined by the analysis
of mediators released in the environment. When comparing BALs from animals treated
with native and nebulized mIgG2b-1, we did not observe any significant difference in the
production of TNF, IL-6, IL-1b or CXCL1 (KC) (Figure 5G–J). These data suggest that the
cell contraction occurring after single or multiple airway administration of nebulized and
aggregated IgG was associated with an inflammatory silent cell death process.
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Figure 4. B6 mice received a 40 µL orotracheal instillation of mIg2b-1 at 100 µg/mL either native
(white bars) or nebulized (black bars) through the airways at D0, or D + 0, D + 7, D + 14, D + 21 and
D + 28. The total number of cells (A,C,E,G,I,K,M) and CD45+ cells (B,D,F,H,J,L,N) were quantified
in BAL (A,B,I,J), in the lungs (C,D,G,H,K,L) and the spleen (E,F,M,N) using flow cytometry, 4 h,
14 days or 29 days after the first administration. The data are quoted as the mean ± SEM. *, **: p < 0.05
and p < 0.01, respectively, in a t-test. The results are representative of two independent experiments
(n = 5 mice/experiment).

3.5. The Effect of Nebulization-Mediated Antibody Aggregates on Immune Cell Homeostasis Is
Specific of the Pulmonary Route

Immunogenicity of Ab is also dependent on their route of administration [20–22].
Thus, we investigated the effect of native or nebulized-mIgG2b-1 after intravenous in-
jection. In contrast to what was observed after airway administration, there were no
significant differences in the BAL or lung cell counts in the animals who received native or
nebulized mIgG2b-1 intravenously (Figure 6A–D). Interestingly, these results were substan-
tiated when analyzing cell number after repeated administration of nebulized mIgG2b-1
(Supplementary Figure S6), where no differences were noticed in the airways or lungs of
animals treated by repeated intravenous injections as compared to animals, which received
the IgG in the lungs. Our data suggest that the route of administration played an impor-
tant role on the adverse effect of IgG aggregates produced during nebulization on cell
homeostasis.



Pharmaceutics 2022, 14, 671 12 of 19
Pharmaceutics 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 5. B6 mice received a single 40 µL orotracheal instillation of mIg2b-1 at 100 µg/mL either 
native (white bars) or nebulized (black bars). The proportion of early apoptotic cells (Annexin-
V+/PI-), late apoptotic cells (Annexin-V+/PI+) and necrotic cells (Annexin-V-/PI+) were quantified in 
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TNF (G), IL6 (H), IL1b (I) and KC (J) in BALF were determined 18 h after the administration. The 
data are quoted as the mean ± SEM. *, **: p < 0.05 and p < 0.01, respectively, in a t-test. The results 
are representative of three independent experiments (n = 5 mice/experiment). 

3.5. The effect of Nebulization-Mediated Antibody Aggregates on Immune Cell Homeostasis Is 
Specific of the Pulmonary Route 

Immunogenicity of Ab is also dependent on their route of administration [20–22]. 
Thus, we investigated the effect of native or nebulized-mIgG2b-1 after intravenous injec-
tion. In contrast to what was observed after airway administration, there were no signifi-
cant differences in the BAL or lung cell counts in the animals who received native or neb-
ulized mIgG2b-1 intravenously (Figure 6A–D). Interestingly, these results were substan-
tiated when analyzing cell number after repeated administration of nebulized mIgG2b-1 
(Supplementary Figure S6), where no differences were noticed in the airways or lungs of 
animals treated by repeated intravenous injections as compared to animals, which re-
ceived the IgG in the lungs. Our data suggest that the route of administration played an 
important role on the adverse effect of IgG aggregates produced during nebulization on 
cell homeostasis. 

Figure 5. B6 mice received a single 40 µL orotracheal instillation of mIg2b-1 at 100 µg/mL either native
(white bars) or nebulized (black bars). The proportion of early apoptotic cells (Annexin-V+/PI-), late
apoptotic cells (Annexin-V+/PI+) and necrotic cells (Annexin-V-/PI+) were quantified in total cell
(A,C,E) or CD45+ cell (B,D,F), 18 h after the administration in BAL (A,B), lungs (C,D) and spleen
(E,F) relative to mice treated with native Ab using flow cytometry. The concentrations of TNF (G), IL6
(H), IL1b (I) and KC (J) in BALF were determined 18 h after the administration. The data are quoted
as the mean ± SEM. *, **: p < 0.05 and p < 0.01, respectively, in a t-test. The results are representative
of three independent experiments (n = 5 mice/experiment).

3.6. Reducing Aggregation Limits Pulmonary Cytotoxicity Associated to Lung Administration of
Nebulized Ab

Pharmaceutical development aims to design a high-quality product ensuring an effi-
cacious and safe treatment along the life of the product. Hence, formulation and protein
engineering are often adapted to limit Ab aggregation, especially considering chronic-
based therapies. Different parameters, including addition of surfactant, have a protective
effect, limiting Ab aggregation during nebulization [10]. Here, we added polysorbate
80 (PS80) in mIgG2b-1 formulation which significantly reduced its aggregation during
nebulization (Supplementary Figure S7). The addition of surfactant did not significantly
modify Ab particle size distribution (Supplementary Tables S4 and S5) or concentration
(Supplementary Table S6) as compared to unformulated Ab. Single administration of
nebulized mIgG2b-1 supplemented with 0.05% of PS80 abrogated the reduction of lung
cell number (Figure 7C,D) and to a lesser extent of airway cell (Figure 7A,B) as compared
to non-formulated mIgG2b-1. This was likely attributable to a reduction in cell death in
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the same compartment (Supplementary Figure S8). These results suggest that optimiz-
ing IgG formulation improved its molecular stability and might limit adverse effects on
cell homeostasis.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. B6 mice received a 40 µL orotracheal instillation or 100 µL intravenous injection of 
mIgG2b-1 at 100 µg/mL either native (white bars) or nebulized (black bars). The total number of 
cells (A,C) and CD45+ cells (B,D) were quantified in BAL (A,B) and in the lungs (C,D) using flow 
cytometry, 18 h after the administration. The data are quoted as the mean ± SEM. *, **, ***: p < 0.05, 
p < 0.01 and p < 0.001, respectively, in a t-test. The results are representative of two independent 
experiments (n = 5 mice/experiment). 

3.6. Reducing Aggregation Limits Pulmonary Cytotoxicity Associated to Lung Administration 
of Nebulized Ab 
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plementary Table S6) as compared to unformulated Ab. Single administration of nebu-
lized mIgG2b-1 supplemented with 0.05% of PS80 abrogated the reduction of lung cell 
number (Figure 7C,D) and to a lesser extent of airway cell (Figure 7A,B) as compared to 
non-formulated mIgG2b-1. This was likely attributable to a reduction in cell death in the 
same compartment (Supplementary Figure S8). These results suggest that optimizing IgG 
formulation improved its molecular stability and might limit adverse effects on cell home-
ostasis. 

Figure 6. B6 mice received a 40 µL orotracheal instillation or 100 µL intravenous injection of mIgG2b-1
at 100 µg/mL either native (white bars) or nebulized (black bars). The total number of cells (A,C) and
CD45+ cells (B,D) were quantified in BAL (A,B) and in the lungs (C,D) using flow cytometry, 18 h
after the administration. The data are quoted as the mean ± SEM. *, **, ***: p < 0.05, p < 0.01 and
p < 0.001, respectively, in a t-test. The results are representative of two independent experiments
(n = 5 mice/experiment).
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cessitating high concentration drug products with a higher risk of aggregation. Tracking 
aggregates prior and after Ab bioprocessing is essential to avoid risks for patients, treat-
ment failure and ultimately termination of drug development/commercialization. 

Protein aggregation has been widely demonstrated as an influential factor in the in-
duction of adverse immunogenicity of biotherapeutics [35,36]. However, some of the 
stress conditions used in the literature are not representative of those experienced during 
product development, manufacturing, storage or clinical use, making the generated ag-
gregates far different from those found in marketed products. This may hamper conclu-
sions about the exact potency of protein aggregation in the occurrence of drug immuno-
genicity. Several intrinsic or extrinsic attributes of aggregates might work synergistically 
to induce immunogenicity. Among them, parameters related to the delivery route can af-
fect the immune response associated with the administration of drugs. For example, sub-
cutaneous delivery has been associated with higher immunogenicity than the intravenous 
route, for several biotherapeutics [37,38]. To our knowledge, there has not been any study 

Figure 7. B6 mice received a 40 µL orotracheal instillation of mIgG2b-1 at 100 µg/mL either native
(white bars), nebulized (black bars) or nebulized + 0.05%-PS80(gray bars). The total number of
cells (A,C) and CD45+ cells (B,D) were quantified in BAL (A,B) and in the lungs (C,D) using flow
cytometry, 18 h after the administration. The data are quoted as the mean ± SEM. *, **, ***: p < 0.05,
p < 0.01 and p < 0.001, respectively, in a t-test. The results are representative of two independent
experiments (n = 5 mice/experiment).

4. Discussion

Ab are highly sensitive to stresses encountered during their product development,
manufacturing, storage or clinical use, and they often require high therapeutic doses,
necessitating high concentration drug products with a higher risk of aggregation. Tracking
aggregates prior and after Ab bioprocessing is essential to avoid risks for patients, treatment
failure and ultimately termination of drug development/commercialization.

Protein aggregation has been widely demonstrated as an influential factor in the in-
duction of adverse immunogenicity of biotherapeutics [35,36]. However, some of the stress
conditions used in the literature are not representative of those experienced during product
development, manufacturing, storage or clinical use, making the generated aggregates far
different from those found in marketed products. This may hamper conclusions about the
exact potency of protein aggregation in the occurrence of drug immunogenicity. Several
intrinsic or extrinsic attributes of aggregates might work synergistically to induce immuno-
genicity. Among them, parameters related to the delivery route can affect the immune
response associated with the administration of drugs. For example, subcutaneous delivery
has been associated with higher immunogenicity than the intravenous route, for several
biotherapeutics [37,38]. To our knowledge, there has not been any study conducted so far
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to assess the immunogenicity associated with lung administration of an aerosolized and
aggregated Ab. We set out a dual experimental approach to investigate the quality and the
extent of the immune responses induced by a nebulized and aggregated Ab using both
in vitro and in vivo models. Here, we showed for the first time that the aggregates resulting
from IgG nebulization induced immune cell over-activation and that their delivery to the
lung markedly and durably impaired cell homeostasis.

Protein aggregation is a process of non-specific association of monomers through mul-
tiple physical and chemical pathways, which are well documented [39]. The characteristics
of protein aggregates are variable in terms of particle size, number, morphology, chemical
modifications, reversibility, conformation or hydrophobicity [40]. This phenotypic hetero-
geneity results from the various stresses applied to proteins and require specific analytical
methods [41]. Aerosol generation involves the dispersion of liquid droplets into a gas. This
process may be associated with physical stresses, including temperature variations and the
generation of a massive air–liquid interface, which ultimately induce changes in protein
conformation and lead to its aggregation [10]. We measured the aggregation of several
human IgG submitted to aerosolization using a vibrating-mesh nebulizer, which is expected
to be less deleterious than other nebulizers [42,43]. Flow cell microscopy and dynamic
light scattering revealed that the number and size of aggregates were Ab dependent, con-
firming the results in the literature on the necessity of a case-by-case approach. Moreover,
drastic differences were observed between commercial Abs (hIgG1-1 to 3) and murine
Abs (mIgG2b-1 and -2), where the latter displayed higher aggregation upon nebulization.
This may be explained by the fact that commercial Abs underwent advanced development
programs and were thus selected for their limited aggregation potency. We next determined
whether the aggregates found in the therapeutic product after nebulization may induce
immunogenicity using an MoDC-based assay, which has been widely used to describe
the potential immunogenicity of biotherapeutics or unwanted products [44]. Our analysis
revealed that nebulized and aggregated hIgG1, in particular, hIgG1-1, were able to induce
MoDC activation and maturation, as evidenced by the enhanced secretion in cytokines
and increased expression of co-stimulatory proteins on MoDC. This response correlated
with the fraction of micron-sized aggregates in the Ab aerosol. There are still discrepancies
regarding the size and type of aggregates involved in the generation of immunogenic
responses [45]. This depends on the type and strength of the stress applied and the multiple
experimental protocols, which have been described [21,46]. Here, hIgG1-1 aerosol is mainly
composed of small-sized particles (2–10 µm), which have been shown to enhance the
immune response and be the most immunogenic [45,47].

One potential bias regarding Ab aggregation could be attributed to the aerosol collec-
tion step, which uses a polypropylene tube to re-pool aerosol droplets into a bulk liquid.
Indeed, it has been evidenced that the aerosol collection device could influence protein
stability, generating different aggregation profiles [11,48]. In this context, we used the
VITROCELL technology, which was developed to improve the reliability of toxicological
studies for aerosolized compounds on air–liquid interface cell cultures [49,50]. This system,
which allows the direct deposition of aerosols on cells, avoids the collection step [51]. Our
results showed that direct hIgG1-1 deposition on MoDCs resulted in cell activation, as
evidenced by the similar increase in both cytokine production and expression of costimu-
latory proteins than those obtained with the nebulized-collected Ab. Thus, the collection
system used here was considered relevant for these assays and was kept for the in vivo
experiments.

Considering the complexity of the lung mucosal-associated immune system, it was nec-
essary to use an animal model to predict the immunogenicity of nebulized Ab in vivo [52,53].
We chose murine antibodies to avoid a high immunogenic background response due to
the non-specific activation of the mouse immune system by foreign proteins. In our study,
we observed that single or repeated administration of a nebulized antibody in the lungs
induced a significant contraction of the total and immune cell number in the airways start-
ing quickly after the administration as compared to native Ab or saline controls. This was
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dependent on the number of aggregates as low aggregated Ab, filtered or PS80 preparation
of nebulized Ab did not have any impact on cell number. Interestingly, at later time points,
this contraction reached the lung parenchyma and the spleen, significantly reducing the
number of both myeloid and lymphoid cells. We wondered whether this cell number
reduction induced by the administration of nebulized Ab was associated with cell death.
We observed that apoptosis was significantly increased in lung total cells and in leukocytes
after the airway administration of nebulized Ab. Interestingly, these cellular injuries were
dependent on the presence of aggregates, as Ab formulated with surfactant, known to limit
aggregation [10], and even filtered nebulized Ab preparation did not promote cell death.
These adverse effects were also dependent on the route of administration as nebulized Ab
administered through the intravenous route was not associated with the same reduction
in cell number. The complete understanding of the molecular and cellular mechanism
associated with the massive cytotoxicity of nebulized and aggregated antibodies requires
further investigations.

Protein aggregation underlies many chronic diseases where aggregates are thought
to elicit injury, including cell apoptosis [54,55]. To the best of our knowledge, this is the
first study reporting that extracellular therapeutic protein aggregates may sensitize the
host to cytotoxicity. This cellular injury occurred in the absence of a pro-inflammatory
response, which is contradictory with the current paradigm regarding the induction of
innate immune responses by protein aggregates [13]. This discrepancy may come from the
attributes of Ab aggregates associated with nebulization, as compared to those associated
with other aggregation stresses, including the formation of neoepitopes, the immunomodu-
latory properties of the aggregates, the exposure of post-translational modifications or the
generation of danger signals [56]. A complete understanding of the physical mechanisms
accounting for the immunogenic properties of nebulized Ab aggregates is beyond the scope
of this study. Immunogenicity may also be associated with the breakdown of self-tolerance
rather than an active immune response [56]. It is particularly concordant with repeated
exposure, which may occur during dosing regimens for chronic disease [36].

In conclusion, we demonstrated that aerosolization using a clinically-relevant nebu-
lizer induced Ab aggregation and resulted in immune cell activation and immunocytotoxi-
city in vivo. Although there are still many questions to address to better understand the
relationship between Ab aggregates and immunogenicity, our findings point to a significant
role for the route of administration in the immunogenic/biological response associated
to Ab aggregates. Further investigations will be required to determine the types and the
number of aggregates and the role for the Fc domain in the immunocytotoxic response of
Ab aggregates produced during nebulization. Our findings also highlight the importance
to further explore the different methods (protein engineering, aerosolization process and
formulations) to stabilize Ab during aerosolization to minimize risks for the patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
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immunophenotyping after administration of nebulized mIgG2b-1; Figure S4: Protein content in BALF
after administration of nebulized mIgG2b-1; Figure S5: Apoptosis of lung and airway cells after
administration of nebulized mIgG2b-2; Figure S6: Lung and airway cell count after i.v administration
of nebulized mIgG2b-1; Figure S7: Effect of PS80 on the generation of aggregate after mIgG2b-1
nebulization; Figure S8: Lung cell count after administration of nebulized mIgG2b-1 supplemented
with 0.05%-PS80; Table S1: Dynamic light scattering analysis of nebulized antibodies; Table S2: List
of antibodies used for flow cytometry; Table S3: Phenotype of analyzed cells; Table S4: Particle size
distribution (%) of nebulized antibodies; Table S5: Dynamic light scattering analysis of nebulized
antibodies; Table S6: Nanodrop analysis of antibody concentration.
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