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Simple Summary: The development of nucleic acid drugs has progressed in recent years, especially
in the field of cancer therapy, where there has been considerable progress in the development of
siRNA-, antisense oligonucleotide-, and miRNA-related drugs. Extracellular vesicles are expected
to play a pivotal role as a drug delivery system for nucleic acid drugs. By conjugating EVs with
proteins, antibodies, or chemical antibodies called aptamers that specifically bind to cancer, EVs
can be effectively delivered to tumor tissues and cells. This review summarizes the latest findings,
serving as a bridge to the clinical application of nucleic acid drugs in cancer therapy.

Abstract: Nucleic acid drugs, such as siRNAs, antisense oligonucleotides, and miRNAs, exert their
therapeutic effects by causing genetic changes in cells. However, there are various limitations in their
delivery to target organs and cells, making their application to cancer treatment difficult. Extracellular
vesicles (EVs) are lipid bilayer particles that are released from most cells, are stable in the blood, and
have low immunogenicity. Methods using EVs to deliver nucleic acid drugs to target organs are
rapidly being developed that take advantage of these properties. There are two main methods for
loading nucleic acid drugs into EVs. One is to genetically engineer the parent cell and load the target
gene into the EV, and the other is to isolate EVs and then load them with the nucleic acid drug. Target
organ delivery methods include passive targeting using the enhanced permeation and retention
effect of EVs and active targeting in which EVs are modified with antibodies, peptides, or aptamers
to enhance their accumulation in tumors. In this review, we summarize the advantages of EVs as a
drug delivery system for nucleic acid drugs, the methods of loading nucleic acid drugs into EVs, and
the targeting of EVs to target organs.

Keywords: nucleic acid drug; drug delivery system; extracellular vesicles; exosome; aptamer

1. Introduction

Extracellular vesicles (EVs) are phospholipid bilayer membranous vesicles and are
generated by almost all types of mammalian cells as a cell-to-cell communication tool [1].
EVs carry various nucleic acids, proteins, and lipids inherited from the cell of origin. EVs
have been found in body fluids such as blood [2], urine [3], saliva [4], ascites [5], pleural
effusion [6], cerebrospinal fluids [7], and amniotic fluids [8]. According to the International
Society for Extracellular Vesicles (ISEV), EVs can be categorized into three main subtypes
based on their size and biology: exosomes, microvesicles (MVs), and apoptotic bodies (ABs).
Exosomes are approximately 100 nm in diameter and are the smallest type of EV. Exosome-
specific surface markers, such as tetraspanins (CD9, CD81, CD63, flotillins), integrins, and
heat shock proteins (HSP) 70 and HSP90, have been identified by Western blotting and
enzyme-linked immunosorbent analysis [1,9,10]. Exosomes are formed in multiple steps.
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Early endosomes are formed through invagination of the plasma membrane [11]. The
fusion of early endosomes results in the formation of late endosomes and multivesicular
bodies (MVBs) during the maturation process, and intraluminal vesicles (ILVs) are formed
by the invagination of the endosomal membrane into the lumen [12]. Some of the formed
MVBs bind to lysosomes and are degraded, but other fusions with the plasma membrane
release ILVs into the extracellular space as exosomes [13,14]. MVs are a few hundred
nanometers to a few micrometers in diameter and are formed by direct outward budding
from the plasma membrane [1,15]. Apoptotic bodies are several micrometers in diameter
and are formed when cells undergo apoptosis. Various types of EVs have been reported,
but they are not yet clearly distinguished. ISEV has recommended that particles with lipid
bilayers that have been released from cells be referred to as EVs, but there are no specific
markers yet to distinguish between EV subtypes [1].

EVs have been found to play key roles in homeostasis and in the pathogenesis of vari-
ous diseases, such as atherosclerosis [16,17], metabolic disorders [18], neurodegenerative
disease [19], and malignant progression [20]. Of these, research on malignant tumors has
advanced the most in recent years. Previous studies have shown that EVs are involved in
the mechanisms of cancer angiogenesis, cell proliferation, immune escape, and metasta-
sis [21]. Tumor cells educate surrounding immune system cells, fibroblasts, and noncellular
components to promote tumor progression, and EVs act as a signal for these processes [22].

In addition, evidence has accumulated regarding the early detection of cancer using
liquid biopsy and the treatment of malignant tumors. For example, the Exodx Prostate
IntelliScore test is a noninvasive risk assessment tool for the detection of high-grade prostate
cancer [23]. In addition, Hoshino et al. showed that cancer patients and healthy patients
could be distinguished with a sensitivity of 95% and a specificity of 90% by analyzing
plasma-derived EVs with proteome analysis and machine learning [24]. By using or
controlling EVs related to cancer progression, cancer diagnosis and treatment methods
have been advancing dramatically.

Nucleic acid drugs are therapeutic agents that can cause genetic changes in cells
by using nucleic acids such as DNA and RNA. Nucleic acid drugs are divided into the
following main categories: antisense oligonucleotides (ASOs), RNA interference (RNAi),
microRNAs (miRNAs), and aptamers [25]. These categories represent innovative treatment
options, but there are several problems. First, these materials need to be delivered to the
target cell, and ASOs, RNAi, and miRNAs must be delivered across the cell membrane
into the nucleus, which is a major therapeutic hurdle [25,26]. Second, RNAs can be
phagocytosed by mononuclear macrophages and degraded by RNase in serum. Third,
double-stranded siRNAs are rapidly excreted and cannot be incorporated into cells within
blood vessels due to their polyanionic and hydrophilic nature [27]. Moreover, most nucleic
acid drugs are taken up by the liver, which has a discontinuous sinusoidal endothelium
and is a hyperperfused organ [28], and when administered intravenously, these drugs
can lose their organ-targeting properties. To improve their delivery into cells, chemical
modification of RNAs and their encapsulation in liposomes have been attempted, but some
of the compounds have resulted in undesirable consequences, such as loss of biological
activity [29] and toxicity [30].

Various methods to solve these problems have been developed in recent years; one is
the use of EV-encapsulated RNA as a drug delivery system. EVs have hydrophilic mem-
branes, low aggregation potential, and are decorated with CD47, which prevents phagocy-
tosis by monocytes and macrophages and is known as the “don’t eat me” molecule [31,32].
EVs derived from mesenchymal stem cells or immature dendritic cells are biocompatible
and less immunogenic, and patient-derived EVs can also be generated if required [33]. In
addition, EVs have the innate ability to cross biological barriers such as the blood–brain
barrier, which large molecules cannot cross [34]. Moreover, the bilayer membrane and
nanoscale size of EVs protect their cargo from destruction by complement and macrophages,
extending their circulating half-life and improving their biological activity [35]. By applying
biological and chemical modifications to the lipid bilayer, artificial liposomes and EVs can
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carry a variety of substances and bypass the cell barrier. However, EVs have tetraspanin
proteins, reflecting the origin and target cells of EVs. Further investigation of these proteins
may improve tumor targeting with regard to EV-mediated drug delivery [36].

Therapeutic effects can also be added through biological and chemical modifications
to the lipid bilayer. However, there are issues regarding the EV loading method and the
delivery method to target organs and cells. In this review, we mainly focus on the recent
findings of EV-based nucleic acid drugs, EV loading methods, and EV delivery methods to
target organs in malignant tumors.

2. Therapeutic Ability of Oligonucleotides Encapsulated EVs

Oligonucleotide therapy has focused on downregulating target genes via the transfec-
tion of cells and is a promising therapeutic modality for various diseases [25] (Figure 1).
Some oligonucleotide therapies have been approved by the United States Food and Drug
Administration (FDA) and are mainly used for treating genetic disorders [25], but they
are expected to be applied in cancer treatment in the future. In Section 2, we discuss EV-
related oligonucleotides used for cancer treatment. EV oligonucleotide loading methods
are discussed in Section 3.
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Figure 1. Mechanism of gene regulation by oligonucleotide therapy. SiRNA is a double strand RNA
of about 20 bp, and the passenger strand is degraded followed by the formation of RISC. SiRNA
draws target mRNA into RISC and degrades the mRNA. ASO is a 15–25 nucleotide single strand
RNA that acts alone on mRNA and degrades it. The miRNA is a double strand RNA of about 20 bp.
The passenger strand is discarded followed by the formation of RISC. miRNAs bind to the 3′UTR of
mRNAs to regulate translation and degrade mRNAs.

2.1. siRNAs

siRNAs are double-stranded RNAs of approximately 20 bp that guide the RNA-
induced silencing complex (RISC) to the target sequence. siRNAs then bind to the mRNA
that is complementary to their sequence. As a result, the mRNA is degraded, and specific
gene expression is suppressed [37]. Several studies have investigated the use of siRNA
with EV as a drug carrier for the treatment of malignant tumors. Kamerkar et al. loaded
siRNA against an oncogenic mutation for KRAS (a known driver of pancreatic cancer) into
EVs derived from normal fibroblast-like mesenchymal cells and assessed the therapeutic
effect in vivo [38]. When the EVs were administered to various mouse models of pancreatic
cancer, the cancer was suppressed, and survival rates were improved. Another study
generated a lung cancer xenograft model by transplanting the A549 cell line with the
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KRASG12S mutation into athymic nude mice. When the mice were treated twice per week
with EVs loaded with siKRAS, A549 cell proliferation was inhibited in a dose-dependent
manner [39]. s100A4 is a protein known to be associated with tumor metastasis. When
siRNA against s100A4 was introduced into exosomes and administered to a mouse lung
metastasis model, tumor growth was significantly inhibited [40]. siRNAs loaded into EVs
also have potential as therapeutic candidates for the treatment of chemotherapy resistance
in malignant tumors.

2.2. Antisense Oligonucleotides

ASOs typically consist of 15–25 nucleotide moieties and are single-stranded DNAs
or RNAs with sequence complementary to a target RNA. ASOs bind to their target RNA
according to base-pairing rules to form RNA-DNA heteroduplexes, and mRNA cleavage
by RNase-H causes downregulation of the target gene [41]. There are few studies on the use
of EV-encapsulated ASOs for the treatment of malignant tumors. One of the best-known
studies used a mouse model of Parkinson’s disease to create ASOs encapsulated in exo-
somes and tested the therapeutic effects [42]. In the brains of Parkinson’s disease patients,
a protein called alpha-synuclein shows abnormal accumulation and is thought to play
an important role in the development of the disease. The authors selected four candidate
ASOs targeting SNCA and focused on ASO4, which was the most effective in decreasing
the α-synuclein protein level in vitro. EVs loaded with ASO4 showed high cellular uptake
and low cytotoxicity in vitro and significantly inhibited α-synuclein aggregation. When
ASO4 was administered to α-syn A53T mice, a transgenic mouse model of Parkinson’s
disease, dopaminergic neuronal degeneration was suppressed, and motor function was
significantly improved. In a study on malignant tumors, Xu et al. found that EVs derived
from HepG2 cells and loaded with G3139, which is an ASO of BCL-2, significantly reduced
BCL-2 expression in HepG2 cells [43].

2.3. miRNAs

miRNAs are small RNAs of approximately 20 nucleotides and are involved in a variety
of physiological processes. miRNAs repress gene expression by drawing mRNAs with
target sequences into the RISC in a manner similar to siRNAs. However, in contrast to
siRNAs, the recognition of target mRNA by miRNA mainly occurs through base pairing
between 7 and 8 bases at the 5′ end, called the seed sequence, and through complementary
sequences that are mainly in the 3′ untranslated region (3′UTR) of the target mRNA [44].
miRNAs can recognize the 5′ UTR, introns, and protein-coding regions of mRNAs [45].
Therefore, miRNAs can target a large number of mRNAs, and the same mRNA can be
targeted by multiple miRNAs [25,46]. EV-associated miRNAs play a major role in tumor
progression through mechanisms such as angiogenesis, immune escape, tumor growth,
and premetastatic niche formation [47,48]. Therefore, the regulation of miRNA expression
may help to control tumor progression. In addition, the treatment of malignant tumors
using miRNA-loaded EVs is a highly studied area. Kogure et al. found that EV-associated
miR-584 derived from Hep3B cells downregulated transforming growth factor beta ac-
tivated kinase-1 (TAK-1) [49]. TAK-1 is an upstream member of the mitogen-activated
protein kinase kinase kinase family and has an essential role in tumor progression. The
authors reported that EV-associated miR-584 inhibited tumor progression in hepatocel-
lular carcinoma. Other findings showed that EVs loaded with miR-126 mimic inhibited
cell proliferation, migration, and invasion in non-small-cell lung carcinoma in vitro and
blocked tumor growth in vivo [50]. Mechanistically, miR-126 binds to the integrin alpha-6
(ITGA-6) 3′UTR and suppresses ITGA6. ITGA6 reportedly interacts with RPSA to promote
cell migration and invasion in pancreatic cancer [51].

Evidence supporting the delivery of nucleic acid drugs using EVs has been accu-
mulating in recent years. Table 1 summarizes the current knowledge of EV-associated
oligonucleotide therapy. Nucleic acid drugs are rapidly degraded in the circulation, so
chemical modification is usually necessary. However, some sequence motifs have unde-



Cancers 2021, 13, 6137 5 of 18

sirable immune responses or lead to off-target effects [52]. To avoid them, methods for
efficiently loading therapeutically effective oligonucleotides into EVs and delivering them
to target organs are rapidly being developed, as described below.

Table 1. EV-related nucleic acid therapeutics.

Types of
Oligonucleotide Cargo Mediators Cancer Type Parent Cell Loading Method Function References

siRNA siS100A4 breast cancer breast cancer cell Coincubation and
extrusion

Involved in various
pathways [40]

si-c-Met gastric cancer HEK293T cell
Parental cells

transfection using
Lipofectamine

Reverse chemoresistance
to Cisplatin [53]

siKRASG12S lung cancer Milk Electroporation and
Exo-fect

Antiproliferative effect
via silencing KRASG12S [39]

BCR-ABL siRNA Chronic myeloid
leukemia HEK293T cell

Parental cells
transfection using

Lipofectamine

Chronic myeloid
leukemia cell growth
in vitro and in vivo

[54]

siSurvivin Prostate cancer HEK293T cell

Binding of Cholesterol to
the arrowhead of

pRNA-3WJ fused with
siSurvivin

Inhibition cell apoptosis [55]

ASO G3139 (BCL-2 ASO) Hepatocellular
carcinoma HepG2 cells

Cholesterol-conjugated
ASO was loaded onto

the EVs

Downregulation of
anti-apoptotic Bcl-2 [43]

Antisense miRNA
oligonucleotide
against miR-21

Glioblastoma 293T cells Electroporation
Reduction of tumor size

via upregulation of
PDCD4 and PTEN

[56]

miRNA miR-126 non-small cell lung
carcinoma patient serum Exo-fect

Inhibiting tumor
proliferation and

migration via
downregulation of

ITGA6

[50]

miR-199 Ovarian cancer

Omental fibroblast
derived from

ovarian cancer
patients

Electroporation

Inhibition of cell
proliferation and

invasion via suppression
of c-Met

[57]

miR-21-sponge Glioblastoma HEK293T cells
Parental cells

transfection using
Lipofectamine

Declining cell
proliferation and

elevation in apoptotic
rates via upregulation of

PDCD4 and RECK

[58]

miR-128-3p Colorectal cancer FHC cells
Parental cells

transfection using
Lipofectamine

Upregulation of
E-cadherin and

inhibition
oxaliplatin-induced

epithelial mesenchymal
transition by

downregulation of Bmi1,
and decreasing

oxaliplatin efflux via
suppression of MRP5

[59]

miR-335-5p Hepatocellular
carcinoma LX2 cells

Parental cells
transfection using

Lipofectamine

Inhibition of
hepatocellular
carcinoma cells

proliferation and
invasion through

downregulation of 13
mRNA

[60]

miR-379 Breast cancer cells MSCs Lentiviral transfection of
parental cells

Suppression of tumor
growth via

downregulate
cyclooxygenase-2

[61]

miR-26a HepG2 cells 293T cells Electroporation

Decreasing cell
migration and

proliferation via
downregulation

of CCNE2 and CDK6

[62]

miR-124a Glioblastoma MSCs Lentiviral transfection of
parental cells

Significant reduction in
viability due to
abnormal lipid

accumulation through
silencing FOXA2

[63]

miR-584 Glioma MSCs Lentiviral transfection of
parental cells

Inducing tumor cell
apoptosis and reducing

tumor cell invasion
via enhancing caspase-3

and reducing matrix
metalloproteinase-2

expression

[64]
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Table 1. Cont.

Types of
Oligonucleotide Cargo Mediators Cancer Type Parent Cell Loading Method Function References

miR-122 Hepatocellular
carcinoma

adipose
tissue-derived

MSCs

Parental cells
transfection using

Lipofectamine

Increasing
chemosensitivity

through downregulation
of CCNG1, ADAM10,

and insulin-like growth
factor 1 receptor

[65]

let-7a Breast cancer HEK293 cells
Parental cells

transfection using
HiPerFect reagent

Suppressing tumor
growth in vivo [66]

miR-146b Glioma MSCs
Parental cells

transfection using
electroporation

Reducing tumor size via
suppressing EGFR and

NF-κB
[49]

3. Loading of Nucleic Acid Medicine into EVs

Several studies have reported the usefulness of nucleic acid therapeutics, but loading
them into EVs is challenging. There are two main ways of loading RNA into EVs: pre-
secretion loading and post-secretion loading. This section summarizes the EV loading
methods that have been reported thus far and is divided into these two categories.

3.1. Pre-Secretion Loading

Pre-secretion loading is a method for transfecting target genes into parent cells, which
increases the target gene expression in the cell, consequently leading to the target gene
being loaded into EVs. Several reports have shown that small RNAs such as siRNAs and
miRNAs can be transfected into parental cells using lentivirus vector or Lipofectamine and
then loaded into EVs [58,61,65,67]. These methods are relatively simple ways of loading
RNA into EVs, but their loading efficiencies are unknown. Recently, several new methods
for the efficient introduction of target RNA into EVs via pre-secretion loading have been
reported (Figure 2). Kojima et al. developed a method called EXOtic in which a target
gene is transferred into the parental cell and then efficiently loaded into EVs [68]. In the
EXOtic device, L7Ae, an archaeal ribosomal protein, is conjugated to the C-terminus of
CD63. Next, a C/D box, which is an RNA structure recognized by L7Ae, is introduced into
the 3′UTR of the target mRNA. The target mRNA can then be loaded into EVs isolated
from cells transfected with these genes. This means that CD63 is an EV-specific membrane
protein and that L7Ae bound to CD63 loaded the target mRNA containing the C/D box
into EVs. Methods for loading miRNA have also been reported. Target miRNAs enriched
in cells were shown to be efficiently loaded into EVs [69]. Target miRNA-enriched EVs were
collected from cells in which the target miRNAs were overexpressed and CD9 was fused
with HuR, which strongly binds RNA. In addition to this method, several new methods
of transfecting RNA into cells and loading them into EVs have been reported. Sutaria
et al. introduced the gene encoding pre-miR-199a into an artificial intron of the Lamp2a
fusion protein, and this construct was then introduced into cells. The generated miR-199
could then be introduced into parental cell-derived EVs by using the TAT peptide/HIV-1
transactivation response (TAR) RNA interaction [70]. miR-199a was enriched 65-fold in
EVs obtained using the TAT/TAR interaction compared to those without this interaction.
Zhang et al. described the use of the split-GFP system and a protein called vesicular
stomatitis virus G protein (VSV-G) to introduce shRNA into EVs [71]. The split-GFP system
combines the protein of interest with a small GFP fragment, GFP11, and simultaneously
reacts with the complementary GFP1-10 [72]. VSV-G is a fusiform viral membrane protein
that is incorporated into EVs. When VSV-G-GFP11 and AGO2-GFP1-10 plasmids and
PTEN-induced kinase 1 (PINK1) shRNA were transfected into 293T cells, PINK1 shRNA
was loaded into EVs isolated from culture supernatants. In these methods, the target RNA
is expressed in the parental cell, which produces the EVs. The target RNA is enriched in
the EVs by genetically modifying the EVs to combine the protein expressed in the EVs with
a molecule that has the ability to bind the RNA of interest. These methods more efficiently
encapsulate the target RNA compared with simply increasing the expression of the target
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RNA in parental cells. They are widely used approaches to enrich molecules of interest in
EVs. However, these methods cannot be used with EVs isolated from biological fluids such
as patient-derived serum.
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Figure 2. Unique and recently published pre-secretion loading methods. (A) Methods using tetraspanins. In the left
pathway, L7Ae at the C-terminus of CD63 recognizes and binds to the C/D box of the mRNA, thereby loading the mRNA
into the EV. In the right pathway, the target miRNA is overexpressed in the cell, and HuR fused with CD 9 binds to the
miRNA. (B) Methods using other proteins. In the left pathway, the pre-miRNA loop is replaced with a TAR RNA loop
and incorporated into the TAT-Lamp2A gene, loading the target miRNA into the EV. In the right pathway, VSV-G-GFP11,
AGO2-GFP1-10, and the target miRNA are transfected into the parental cells. VSV-G-GFP11 binds to the lipid bilayer, and
AGO2-GFP1-10 binds to VSV-G-GFP11. AGO2 introduces the overexpressed target miRNA into the EVs.

3.2. Post-Secretion Loading

Post-secretion loading is a method of directly processing EVs and loading them
with therapeutic molecules such as RNA. This method is relatively easy to use compared
to pre-secretion loading and is widely used today. Post-secretion loading methods in-
clude coincubation, electroporation, extrusion, freeze/thaw cycling, and saponin-assisted
permeabilization. Among them, coincubation [73–75], electroporation [34,38,76], and son-
ication [77] have been reported as methods for loading RNA. In addition, Thakur et al.
reported a method of loading EVs with shear stress using a microfluidic device called
Exoload [78]. The most commonly used method at present is electroporation. However,
Wahlgren et al. stated that although electroporation is useful for loading RNA, it requires
optimization of the voltage, capacitance, range between electrodes in the cuvette, and
concentration of siRNA and EVs [26]. Furthermore, the siRNA transfection efficiency of
electroporation is approximately 25% [34]. Kooijmans et al. suggested that when siRNA is
electroporated, it forms a wide range of aggregates and the substantial retention rate in
EVs is less than 0.05% [79]. Owing to these issues, electroporation needs to be carefully
considered, and appropriate controls are required.

As an alternative method, O’Loughlin et al. took advantage of cholesterol’s lipophilic
nature [73]. They showed that siRNAs conjugated with both triethylene glycol and choles-
terol can be efficiently loaded into EVs. They also optimized the method to load EVs with
cholesterol-conjugated siRNA by varying the incubation time, volume, temperature, and
EV/siRNA ratio. In addition to the cholesterol conjugation method, loading nucleic acids
into EVs using proteins that can bind both nucleic acids and EVs has been reported [80].
EVs were incubated with the ASO for Duchenne muscular dystrophy exon-skipping ther-
apy conjugated to CP05, which can bind CD63. As a result, the ASO was attached to the EV
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surface. This method does not involve loading the ASO into the EV but rather conjugates
the therapeutic ASO to the EV surface.

There are several reports on RNA loading using the commercially available Exo-fect
kit [39,55,81,82]. de Abreu et al. compared using the Exo-fect kit to load miRNAs into EVs
with conventional loading methods such as electroporation, heat shock in the presence of
calcium chloride, saponin permeabilization, and miRNA conjugation with cholesterol [82].
Exo-fect was the most efficient among these methods, with >50% transfection efficiency.
Moreover, compared with native EVs, increased uptake of Exo-fect-modulated EVs by
HUVECs was detected. Cellular uptake occurred mainly through endocytosis. In particular,
the dominant pathway was the dynamin-dependent pathway. In addition to cellular
uptake, a decrease in the interaction between EVs and lysosomes was also observed,
indicating significantly more miRNA release in the cells. However, in vivo results are
not yet available for this method. Therefore, even with the abovementioned advantages,
sufficient therapeutic effects may not be achieved in vivo. Although it is not a primary
loading method, it is a simple procedure and can be very useful.

4. Tumor-Targeting EVs

Even if a target molecule is loaded into EVs and found to be effective in vitro, it is
important that EVs are effectively delivered to specific organs without accumulating in
healthy organs. It is also important to effectively deliver the drug to specific cells within an
organ. In the following section, we focus on methods for targeting EVs (Figure 3).
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4.1. EVs Biodistribution

As a prerequisite, it is necessary to understand how EVs are distributed after they are
administered. Wiklander et al. examined differences in organ distribution according to EV
dose, time after EV administration, and route of EV administration [83]. They found that
when EVs were administered to mice by intravenous injection, they primarily distributed to
the liver, followed by the spleen, gastrointestinal tract, and lungs. Higher EV doses resulted
in decreased accumulation in the liver and increased distribution in the intestine and lung.
Compared with intraperitoneal and subcutaneous administration, intravenous adminis-
tration led to more accumulation in the liver and spleen. Conversely, intraperitoneal and
subcutaneous administration showed more accumulation in the pancreas and gastroin-
testinal tract when compared with intravenous administration. In addition, Lázaro-Ibáñez
investigated biodistribution of radiolabeled EVs by nuclear imaging using single-photon
emission computed tomography (SPECT) and computed tomography (CT) [84]. The real-
time monitoring of 111indium-DTPA-labeled EVs demonstrated being the most sensitive
and accurate for in vivo tracking, more so than fluorescent (mCherry) and bioluminescent
(Firefly and Nanoluc luciferase) proteins fused to EVs. According to these results, intra-
venously injected 111indium-DTPA-labeled EVs accumulated mostly in the liver, followed
by the spleen and the kidney. Thus, naïve EVs can still accumulate in the liver, lungs,
and spleen to some extent, and therapeutic effects may be obtained. However, in order to
increase the accumulation of EVs in target organs or target cells, such as tumor cells, it is
necessary to modify EVs in some way.

4.2. Passive Targeting

Passive targeting takes advantage of the physical and chemical properties of EVs as
well as the anatomical and physiological characteristics of organisms. The vasculature of
cancer tissue is different from that of normal blood vessels due to the hypervasculature
and increased vascular permeability. Matsumura et al. reported that molecules tens to
hundreds of nanometers in size, such as small EVs, that had been circulating for a long time
extravasated through the fenestrated vasculature of tumors and accumulated in tumors;
this is called the enhanced permeability and retention (EPR) effect [85]. Well-known
anticancer drugs that utilize this effect are liposomal doxorubicin (Doxil) and nanoparticle
albumin-bound paclitaxel (Abraxane) [86,87]. In other words, one way to effectively deliver
therapeutics into cancer tissue is to achieve a longer circulation time in the blood vessels.
When EVs are administered, they are taken up by the mononuclear phagocyte system
(MPS) in the liver and spleen [88]. Positively charged nanoparticles are rapidly cleared by
the MPS. In contrast, neutral and zwitterionic particles have long half-lives [89]. EVs have
a slightly negative surface charge under physiological conditions [90], which suppresses
their clearance by the MPS in comparison with positively charged nanoparticles [91]. In
addition, small EVs express the glycosylphosphatidylinositol (GPI)-anchored regulators,
CD55 and CD59, which are membrane regulators of complement [92]. This allows small
EVs to escape degradation and immune responses in the blood vessels. Thus, EVs may
have a longer circulation time than other artificial nanoparticles. However, one report
suggested that the half-life of exosomes in circulation is approximately 2 min [93], which is
comparable to that of liposomes [94]. Therefore, compared to artificial nanoparticles, EVs
may have a longer circulation time in the blood, but there are few reports demonstrating
this effect.

One well-known method of reducing the clearance of EVs is polyethylene glycol (PEG)
conjugation, which is called PEGylation. Shi et al. used copper-64 (64Cu)-radiolabeled
EVs to analyze the accumulation of PEG-modified EVs and natural EVs in vivo [95]. The
PEGylated EVs significantly accumulated in the tumor and showed slower clearance by the
liver compared to naive EVs. However, there are some problems with PEGylation. Once
PEG is administered, anti-PEG-IgM antibodies are produced, and the PEGylated EVs are
rapidly cleared by the liver after the second dose [96]. Moreover, when PEGylated EVs are
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administered, most are taken up by the liver and spleen. Therefore, focusing on reducing
the clearance of EVs will help to improve this method of EV targeting.

4.3. Active Targeting

Studies have reported methods for improving tumor targeting and organ/tumor
specificity by adding various modifications to EVs and taking advantage of the charac-
teristics of the tumor microenvironment (TME). The TME is acidic due to dysregulated
energy metabolism, inadequate perfusion, and uncontrolled cell growth [97,98]. One
method of delivering therapeutically effective EVs to the TME has been reported that takes
advantage of this acidic environment [99]. Following Mn2+ activation of RAW264.7 to
M1 macrophages, the M1 macrophage membranes were modified with azide, and EVs
were collected. These EVs were conjugated with dibenzocyclooctyne-modified antibodies
against CD47 and signal regulatory protein alpha (SIRPα) through pH-sensitive linkers.
In the acidic TME, cleavage of the benzoimine bond of the nanobioconjugate released
anti-SIRPα and anti-CD47, which blocked SIRPα on the macrophages and CD47 on the
tumor cells, thereby eliminating the “don’t eat me” signal and improving macrophage
phagocytosis ability. 4T1 tumor-bearing mice treated with these EVs had reduced tumor
volumes and improved survival compared to those treated with normal M1-derived EVs.

Tumor-derived EVs have organotropic tumor-homing properties. Therefore, a homing
effect can be obtained by loading tumor-derived EVs with therapeutic molecules. Qiao
et al. added Dil-labeled EVs derived from HT1080 cells and Dil-labeled EVs derived from
HeLa cells to HT1080 cells, and the uptake of each EV was compared [100]. Compared to
HeLa cell-derived EVs, HT1080 cell-derived EVs exhibited 2-fold higher uptake. Similarly,
a twofold higher uptake of HeLa cell-derived EVs was observed for HeLa cells when
compared with the HT1080 cell-derived EVs. The authors also investigated the cancer-
targeting ability of tumor-derived EVs using nude mice bearing a subcutaneous HT1080
tumor. HT1080-derived EVs showed approximately 2-fold higher tumor accumulation
than HeLa cell-derived EVs. When EVs were loaded with the antitumor agent Doxil and
administered to tumor model mice, a significant decrease in tumor weight was observed.
Additionally, based on the proteome array, the authors suggested that these effects indicate
a link between EV surface integrin and tumor tropism. In support of these findings,
Hoshino et al. showed that the subtype of integrin expressed in EVs can predict the
destination metastasis [101]. Moreover, exosome-mimetic nanosystems expressing integrin
α6β4 and loaded with miR-146 mimic, which have a therapeutic effect on lung cancer, were
effective in vitro and in vivo, respectively [102]. The nanosystems also showed significantly
reduced accumulation in the liver and kidney compared to normal EVs. This report
suggested that cancer-specific integrins on EVs can efficiently reach the tumor and probably
result in lower systemic toxicity. Therefore, if the expression pattern of cancer cell-specific
integrin subtypes can be determined, it has the potential to enable the tumor-specific
delivery of EVs.

In addition to integrins, various other molecules are being investigated for their ability
to effectively deliver EVs to cancer cells. Although not malignancy-related, a well-known
report showed that rabies virus glycoprotein (RVG) (which specifically binds to acetyl-
choline receptors) fused to the N-terminus of Lamp2b (an EV membrane protein) effectively
delivers EVs to neurons, microglia, and oligodendrocytes in the brain [34]. siRNA against
BACE1, a therapeutic target for Alzheimer’s disease, was loaded into this EV by electropo-
ration and administered to wild-type mice, resulting in the effective knockdown of BACE1.
A well-known cancer-related report showed the successful generation of breast cancer-
targeting EVs using the GE11 peptide, which binds to epidermal growth factor receptor
(EGFR) but is less mitogenic than EGF, targeting EGFR [66]. There are other reports on
folate-displaying EVs that target folate receptors, which are known to be expressed on
the surface of various types of cancer cells, and EVs that target HER2-expressing cancer
cells [39,103,104]. As mentioned above, various methods have been reported to conjugate
target peptides and antibodies to EVs for effective targeting (Table 2). However, these



Cancers 2021, 13, 6137 11 of 18

approaches to EV engineering are challenging. Genetically modifying EV parent cells to
express the target protein on the EV surface requires viral transduction, selection, and
large-scale cell cultures. Additionally, it is possible that plasmids and transgenes may be
contained in EVs, and there is a possibility of horizontal gene transmission. It has also been
reported that various other carcinogenic factors can be introduced into EVs when cancer
cells are used as the parent cells of EVs [105]. Additionally, chemical- and affinity-based
conjugation methods do not modify genes but are transient and unstable; furthermore, they
are difficult to carry out because appropriate reaction conditions must be established [106].

Table 2. Tumor-targeting molecules and how to load onto EVs.

Targeting Molecule Target to Cancer Type How to Add Targeting
Molecule References

Antibody

anti-Her2-scFv Her2 Breast cancer
Binding of anti-Her2-scFv to C1C2

domain of lactadherin that can bind to
phosphatidylserine

[104]

A33 antibody A33 Colorectal cancer

EVs isolated from A33 positive
LIM1215 were coated with

surface-carboxyl superparamagnetic
iron oxide particles with A33

antibodies

[107]

somatostatin receptor-2
antibody somatostatin receptor-2 Neuroendocrine cancer

Coincubation of anti-SSTR Ab with
1,2-Distearoyl-sn-glycero-3-

phosphoethanolamine
(DSPE)-PEG-N-hydroxysuccinimide

and mPEG-DSPE-EV

[108]

EGFR targeting nanobody EGFR Lung cancer
Simple enzymatic method to bind

peptides and nanobodies to EVs via
covalent bonds using Sortase

[109]

Peptide or other molecules

c(RGDyK) peptide αVβ3 integrin Glioblastoma Coincubated with micelles formed by
DSPE-PEG2000-c(RGDyK) [110]

Folate Folate receptor Breast cancer Coincubated with folate conjugated
with DSPE-PEG2000 [103]

Folate Folate receptor Lung cancer Covalently conjugation using standard
stable amide chemistry [39]

RGERPPR peptide(RGE
peptide) Neuropilin-1 Glioma

The alkyne group was conjugated with
phosphatidylethanolamine on the

exosome surface, and the RGE peptide
with an azide group was conjugated
with the alkyne group by a triazole

linkages.

[111]

iRGD peptide αv integrin Breast cancer
Parental cells were transfected with the

vector expressing iRGD-Lamp2b
fusion protein

[112]

GE11 EGFR Breast cancer

Parental cells were transfected with the
plasmid containing platelet-derived

growth factor receptor transmembrane
domain fused with GE-11

[66]

Interleukin-3 (IL3) IL3-R Chronic myeloid leukemia
Parental cells were transfected with the

plasmid containing Lamp2b gene
fused with the IL3 gene fragment

[54]

T7 Transferrin receptor Glioblastoma
Parental cells were transfected with the

plasmid containing Lamp2b gene
fused with a T7

[56]

Aptamer

AS1411 aptamer nucleolin Breast cancer
Extrusion of dendritic cells labeled

with Aptamer conjugated with
PEGylated cholesterol

[113]

PSMA aptamer PSMA Prostate cancer Conjugation of aptamer with
pRNA-3WJ fused with cholesterol. [55]
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Table 2. Cont.

Targeting Molecule Target to Cancer Type How to Add Targeting
Molecule References

MUC1 aptamer MUC-1 Colorectal cancer Utilizing amine groups on the surface
of EVs to bind via amide bonds [114]

scgc8 aptamer Protein tyrosine kinase 7 T-cell leukemia

Diacyllipid conjugated aptamer
decorated onto EVs through

hydrophobic interaction between the
diacyllipid tail and the phospholipid

bilayer of EVs.

[115]

Pham et al. developed a simple enzymatic method to bind peptides and nanobodies
to EVs via covalent bonds without genetic or chemical modifications [109]. The authors
used the enzymes sortase A and OaAEP1 ligase to bind proteins of interest to the surface
of erythrocyte-derived EVs. These enzymes did not change the structure of EVs, and the
target protein bound to approximately 80% of them. The authors conjugated EVs derived
from erythrocytes and also EVs derived from THP1 cells, and they were able to conjugate
EVs to proteins involved in EV targeting, such as EGFR-, HER-2-, and CD47-derived self-
peptides. These methods enable the relatively easy and covalent conjugation of antibodies
against tumor-specific proteins to EV surfaces without the need for genetic or chemical
modifications. This may be a very useful method for creating EVs that target tumor-specific
surface proteins.

4.4. Active Targeting Using Aptamers

Aptamers are called chemical antibodies and are single-stranded DNA or RNA
oligonucleotides that fold into a three-dimensional structure to mimic antibodies. They
bind specifically to their targets with high affinity and specificity. Several unique features
of aptamers can be modified by chemical procedures without the need for organisms. They
are suitable for large-scale synthesis, are cost-effective, have low or no immunogenicity,
low batch-to-batch variation, and chemical modifications can easily be incorporated for
enhanced stability and binding capacity [116]. Aptamers are generated by amplifying
selected nucleic acids from a random oligonucleotide library using the polymerase chain
reaction-based method known as systematic evolution of ligands by exponential enrich-
ment (SELEX) [117]. The SELEX method can be used to develop aptamers against various
cell surface molecules that are found on tumor cells and tumor-educated cells in the TME.
In addition, SELEX has the ability to generate specific aptamers against target molecules
without prior knowledge of the signature. The FDA has approved an anti-vascular en-
dothelial growth factor antagonist aptamer called pegaptanib (Macugen) and a drug for
age-related macular degeneration [118]. There has been accumulating evidence of EV
targeting using aptamer properties in recent years. Wan et al. found that EVs conjugated
with the AS1411 aptamer had an antitumor effect in vivo [112]. The AS1411 aptamer can
bind to nucleolin, which is expressed on the surface of various types of cancer cells [119].
The AS1411 aptamer covalently conjugated to cholesterol-poly was grafted onto live mouse
dendritic cell membranes. These cells were then mechanically extruded to generate AS1411
aptamer-conjugated EVs. Paclitaxel was loaded into these EVs by sonication, and the
therapeutic effect was investigated in vivo. AS1411-EVs significantly accumulated in tu-
mors compared to EVs without AS1411 conjugation. Moreover, AS1411-EVs loaded with
paclitaxel significantly inhibited tumor growth and tumor volume. The advantage of this
method is that the extrusion of approximately 107 cells can create tumor-targeting EVs
at an amount of 3 × 1010 in 1 h. Pi et al. reported a unique aptamer conjugation method
utilizing the intrinsic nature of the three-way junction (3WJ) of the bacteriophage phi29
motor pRNA. pRNA-3WJ is arrow-shaped, and when cholesterol is conjugated to its tail
part, RNA is displayed on the EV surface [55]. pRNA-3WJ RNA was incorporated with
a PSMA aptamer, which has the ability to target prostate cancer, and the tumor speci-
ficity of PSMAapt/EVs was investigated. PSMAapt/EVs showed significant EV uptake
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by LNCaP cells, which are PSMA-positive prostate cancer cells. Subsequently, survivin
siRNA, an inhibitor of cell apoptosis, was encapsulated within EVs and its antitumor
effect was examined in a mouse model of prostate cancer. PSMAapt/EV/siSurvivin led
to a significant reduction in tumor size compared with PSMAapt/EV/siScramble. There
have been recent reports of EV drug delivery methods using aptamers that recognize
MUC-1, a transmembrane mucin glycoprotein expressed in epithelial cells and particularly
abundant in cancer cells, as well as an sgc8 aptamer that recognizes a membrane protein
called protein tyrosine kinase 7 (PTK7) [114,115]. There are various known mechanisms
of EV cellular uptake, such as membrane fusion, clathrin-mediated endocytosis, lipid
raft-mediated endocytosis, caveolin-mediated endocytosis, phagocytosis, and micropinocy-
tosis [12]. Zou et al. showed that aptamer-conjugated EVs were internalized via multiple
endocytosis pathways, especially the clathrin-mediated pathway, which plays a major
role in endocytosis; by contrast, uptake through micropinocytosis and caveolin-mediated
endocytosis were not major pathways [115]. It is expected that aptamers will find clinical
applications due to their relatively easy production, low immunogenicity, and high affinity
and specificity. However, to date, pegaptanib is the only aptamer that has been clinically
applied, and this may be due to various limitations to the actual operation of the system.
To conjugate aptamers to EVs, modification of PEG linkers and cholesterol or modification
using chemical reactions is often necessary [55,113–115]. In addition, given that aptamers
may be degraded by nucleases in the serum, it may also be necessary to provide nuclease
resistance to the aptamer through chemical modifications of the phosphodiester bonds
between sugars and nucleotides [116]. Although there are various problems to be solved,
the development of aptamers has been progressing rapidly in recent years. For example,
SOMAscan is a well-known diagnostic platform that recognizes a variety of proteins [120].
By taking advantage of the abovementioned properties of aptamers, EVs conjugated with
aptamers are expected to be a promising nanoplatform for the delivery of therapeutically
effective molecules.

5. Conclusions

EVs have a lipid bilayer structure and express CD47, a membrane protein known as a
“don’t eat me” signal. EVs are more biocompatible and less immunogenic than liposomes
and accumulate more readily in cancer tissues than in normal tissues due to the fenestrated
vascular structure of cancer tissue, known as the EPR effect. Although few studies have
compared EVs with artificial nanovesicles, such as liposomes, the properties of EVs indicate
that they could be useful drug delivery devices in cancer therapy. In addition, various
modifications to EVs can increase their accumulation in tumors. For example, PEGylation
reduces clearance by the MPS, and the addition of tumor-specific integrins or antibodies
to the EV surface has been shown to increase tumor accumulation. Conjugating EVs
with aptamers, also known as chemical antibodies, also increases the tumor accumulation
potential of EVs. There are two methods of loading EVs. Pre-secretion loading involves
the genetic modification of parental cells, while post-secretion loading involves the direct
loading of nucleic acid drugs into EVs. Pre-secretion loading is a simple method, but its
loading efficiency is unknown, and there are concerns about safety because it involves
genetic modification. Electroporation is the most commonly used post-secretion loading
method, but its loading efficiency needs to be carefully considered. Alternatively, Exo-fect
is a commercially available kit that gives good loading efficiency and is a useful loading
method. In general, considering the use of EVs as a drug delivery system for cancer
treatment, there are various problems still to overcome, such as how to produce a large
amount of EVs and how to collect them.

This review discusses the latest research on the combination of nucleic acid drugs and
EVs. These EV-nucleic acid complexes might be future candidates for cancer therapy, and
we hope that the technologies described herein will be used to develop novel nucleic acid
drugs for anticancer therapy in the near future.
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