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Paludibacter propionicigenes Ueki et al. 2006 is the type species of the genus Paludibacter, 
which belongs to the family Porphyromonadaceae. The species is of interest because of the 
position it occupies in the tree of life where it can be found in close proximity to members of 
the genus Dysgonomonas. This is the first completed genome sequence of a member of the 
genus Paludibacter and the third sequence from the family Porphyromonadaceae. The 
3,685,504 bp long genome with its 3,054 protein-coding and 64 RNA genes consists of one 
circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea 
project. 

Introduction 
Strain WB4T (= DSM 17365 = CCUG 53888 = JCM 
13257) is the type strain of P. propionicigenes, 
which is the type species of the genus Paludibacter 
[1,2]. Currently, there is only one species placed in 
the genus Paludibacter [1]. The generic name de-
rives from the Latin noun palus –udis meaning 
swamp or marsh and the Neo-Latin word bacter 
meaning a rod, referring to a rod living in swamps 
[2]. The species epithet is derived from the Neo-
Latin word acidum propionicum meaning propio-
nic acid and the Greek verb gennao meaning to 
produce, referring to the metabolic property of the 
species [2]. P. propionicigenes strain WB4T was 

isolated together with a number of other strains 
from rice plant residues in an anoxic rice-field soil 
in Yamagata, Japan, and described for the first 
time by Akasaka et al. in 2003 [3]. In 2006 the 
species was formally described by Ueki et al. and 
the genus Paludibacter was introduced [2]. No fur-
ther isolates have been obtained for P. propionici-
genes, however, cultivation-independent 16S 
rRNA-dependent molecular investigations showed 
the presence of P. propionicigenes in the rumen of 
sheep [4]. Here we present a summary classifica-
tion and a set of features for P. propionicigenes 
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WB4T, together with the description of the com-
plete genomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain WB4T was compared using NCBI BLAST un-
der default values (e.g., considering only the best 
250 hits) with the most recent release of the 
Greengenes database [5] and the relative frequen-
cies, of taxa and keywords (reduced to their stems 
[6]) were determined, weighted by BLAST scores. 
The most frequently occurring genus was Dysgo-
nomonas (100%) (8 hits in total). Among all other 
species, the one yielding the highest score was 
Dysgonomonas capnocytophagoides, which corres-
ponded to an identity of 91.9% and a HSP cover-
age of 83.6%. The highest-scoring environmental 
sequence was AY212569 ('water 10 m down-

stream manure clone 118ds10'), which showed an 
identity of 99.6% and a HSP coverage of 100.1%. 
The five most frequent keywords within the labels 
of environmental samples which yielded hits were 
'digest' (11.7%), 'anaerob' (6.2%), 'sludge' (6.1%), 
'wastewater' (6.0%) and 'mesophile' (5.9%) (241 
hits in total). The single most frequent keyword 
within the labels of environmental samples which 
yielded hits of a higher score than the highest 
scoring species was 'downstream/manure/water' 
(33.3%) (1 hit in total). 
Figure 1 shows the phylogenetic neighborhood of 
P. propionicigenes WB4T in a 16S rRNA based tree. 
The three identical 16S rRNA sequences in the ge-
nome differ by one nucleotide from the previously 
published 16S rRNA sequence (AB078842). 
 

 

 
Figure 1. Phylogenetic tree highlighting the position of P. propionicigenes relative to the other 
type strains within the family Porphyromonadaceae. The tree was inferred from 1,400 aligned 
characters [7,8] of the 16S rRNA gene sequence under the maximum likelihood criterion [9] and 
rooted in accordance with the current taxonomy. The branches are scaled in terms of the ex-
pected number of substitutions per site. Numbers above branches are support values from 300 
bootstrap replicates [10] if larger than 60%. Lineages with type strain genome sequencing 
projects registered in GOLD [11] are shown in blue, published genomes in bold [12,13]. 
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The cells of P. propionicigenes are generally rod-
shaped (0.5-0.6 μm × 1.3 -1.7 µm) with ends that 
are round or slightly tapered [2]. Elongated cells 
can also be seen, either as single cells or in short 
chains (Figure 2). P. propionicigenes is a Gram-
negative and non spore-forming bacterium (Table 
1). The organism is described to be nonmotile; 
only eight genes associated with motility were 
identified in the genome. The organism is strictly 
anaerobic and chemoorganotrophic [2,3]. The 
temperature range for growth is between 15°C 
and 35°C, with an optimum at 30°C [2]. The organ-
ism does not grow at 37°C [2]. The pH range for 
growth is 5.0-7.6 with an optimum at pH 6.6 [2]. 
NaCl concentrations from 0-0.5% (w/v) are tole-
rated. P. propionicigenes is able to utilize arabi-
nose, glucose, fructose, xylose, cellobiose, galac-
tose, mannose, maltose, melibiose, glycogen and 
soluble starch as growth substrates [2]. The or-
ganism does not utilize ribose, lactose, sucrose, 
melezitose, raffinose, sorbose, rhamnose, treha-
lose, cellulose, xylan, salicin, dulcitol, inositol, 
mannitol, sorbitol, ethanol, glycerol, fumarate, ma-

late, lactate, succinate or pyruvate [2]. Glucose is 
fermented to propionate and acetate in a molar 
ratio of 2:1 as major products and succinate as a 
minor product [2]. The organism does not reduce 
nitrate, it does not hydrolyze gelatin or urea and 
does not produce indole or hydrogen sulfide [2]. P. 
propionicigenes does not grow in the presence of 
bile salts. Catalase and oxidase are not present in 
the organism [2]. 

Chemotaxonomy 
Little chemotaxonomic data are available for 
strain WB4T. Only the fatty acid composition has 
been elucidated. The major fatty acids found were 
anteiso-C15:0 (30.8%), C15:0 (19.0%) and 3-hydroxy 
anteiso-C17:0 (17.9%) [2]. Also, iso-C17:0 3-OH (6.2%) 
and C16:0 (4.9%) were detected in intermediate 
amounts whereas iso-C15:0 3-OH, iso-C16:0 3-OH, C15:0 3-

OH, C16:03-OH, iso-C15:0, C14:0, C16:0, and C18:0 were 
present in minor amounts (1% to 5% of the total 
fatty acids). Unsaturated fatty acids were not de-
tected [2]. 

 

 
Figure 2. Scanning electron micrograph of P. propionicigenes WB4T 
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Table 1. Classification and general features of P. propionicigenes WB4T according to the MIGS recommendations [14]. 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [15] 

Phylum Bacteroidetes TAS [16] 

Class Bacteroidia TAS [16,17] 

Order Bacteroidales TAS [16] 

Family Porphyromonadaceae TAS [16] 

Genus Paludibacter TAS [2] 

Species Paludibacter propionicigenes TAS [2] 

Type strain WB4 TAS [2] 

 Gram stain negative TAS [3] 

 Cell shape rod-shaped TAS [3] 

 Motility non-motile TAS [2] 

 Sporulation none TAS [3] 

 Temperature range 15°C to 35°C TAS [3] 

 Optimum temperature 30°C TAS [2] 

 Salinity normal NAS 

MIGS-22 Oxygen requirement strictly anaerobic TAS [3] 

 Carbon source carbohydrates TAS [3] 

 Energy source chemoorganotroph TAS [3] 

MIGS-6 Habitat soil TAS [3] 

MIGS-15 Biotic relationship free-living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [18] 

 Isolation rice plant residue in anoxic rice-field soil TAS [3] 

MIGS-4 Geographic location Yamagata, Japan TAS [3] 

MIGS-5 Sample collection time 1994 TAS [3] 

MIGS-4.1 Latitude 38.25 NAS 

MIGS-4.2 Longitude 140.34 NAS 

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [19]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [20], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [21]. The genome project is depo-
sited in the Genomes OnLine Database [11] and 

the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (9 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 337.6 × Illumina; 28.1 × pyrosequence 

MIGS-30 Assemblers 
Newbler version 2 2.3-PreRelease-10-21-2009-gcc-4.1.2-
threads, Velvet, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP002345 

 Genbank Date of Release December 2, 2010 

 GOLD ID Gc01549 

 NCBI project ID 694427 

 Database: IMG-GEBA 2503538024 

MIGS-13 Source material identifier DSM 17365 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
P. propionicigenes WB4T, DSM 17365, was grown 
anaerobically in DSMZ medium 104 [22] at 30°C. 
DNA was isolated from 0.5-1 g of cell paste using a 
MasterPure Gram-positive DNA purification kit 
(Epicentre MGP04100) following the standard 
protocol as recommended by the manufacturer, 
with modification st/DL for cell lysis as described 
in Wu et al. [21]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [23]. Py-
rosequencing reads were assembled using the 
Newbler assembler version 2.3-PreRelease-10-21-
2009-gcc-4.1.2-threads (Roche). The initial Newb-
ler assembly consisting of 26 contigs in one scaf-
fold which was converted into a phrap assembly 
by [24] making fake reads from the consensus, to 
collect the read pairs in the 454 paired end li-
brary. Illumina GAii sequencing data (967 Mb) 
was assembled with Velvet [25] and the consen-
sus sequences were shredded into 1.5 kb over-
lapped fake reads and assembled together with 
the 454 data. The 454 draft assembly was based 
on 93.4 Mb 454 draft data and all of the 454 
paired end data. Newbler parameters are -consed 
-a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed 
software package  was used for sequence assem-

bly and quality assessment in the subsequent fi-
nishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Per-
formance Software, LLC). Possible mis-assemblies 
were corrected with gapResolution [23], Dupfi-
nisher, or sequencing cloned bridging PCR frag-
ments with subcloning or transposon bombing 
(Epicentre Biotechnologies, Madison, WI) [26]. 
Gaps between contigs were closed by editing in 
Consed, by PCR and by Bubble PCR primer walks 
(J.-F.Chang, unpublished). A total of 124 additional 
reactions and one shatter library were necessary 
to close the gaps and to raise the quality of the fi-
nished sequence. Illumina reads were also used to 
correct potential base errors and increase consen-
sus quality using a software Polisher developed at 
JGI [27]. The error rate of the completed genome 
sequence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 365.7 × coverage of the ge-
nome. The final assembly contained 333,397 py-
rosequence and 34,564,373 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [28] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [29]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
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formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [30]. 

Genome properties 
The genome consists of a 3,685,504 bp long chro-
mosome with a GC content of 38.9% (Figure 3 and 

Table 3). Of the 3,118 genes predicted, 3,054 were 
protein-coding genes, and 64 RNAs; 34 pseudo-
genes were also identified. The majority of the 
protein-coding genes (65.8%) were assigned with 
a putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 

 

Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,685,504 100.00% 
DNA coding region (bp) 3,225,817 87.53% 
DNA G+C content (bp) 1,432,064 38.86% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,118 100.00% 
RNA genes 64 2.05% 
rRNA operons 3  
Protein-coding genes 3,054 97.95% 
Pseudo genes 34 1.09% 
Genes with function prediction 2,051 65.78% 
Genes in paralog clusters 325 10.42% 
Genes assigned to COGs 2,005 64.30% 
Genes assigned Pfam domains 2,205 70.72% 
Genes with signal peptides 843 27.04% 
Genes with transmembrane helices 784 25.14% 
CRISPR repeats 2  

 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 149 6.8 Translation, ribosomal structure and biogenesis 
A 0 0 RNA processing and modification 
K 136 6.2 Transcription 
L 101 4.6 Replication, recombination and repair 
B 0 0 Chromatin structure and dynamics 
D 22 1.0 Cell cycle control, cell division, chromosome partitioning 
Y 0 0 Nuclear structure 
V 48 2.2 Defense mechanisms 
T 99 4.5 Signal transduction mechanisms 
M 232 10.6 Cell wall/membrane/envelope biogenesis 
N 8 0.4 Cell motility 
Z 0 0 Cytoskeleton 
W 0 0 Extracellular structures 
U 40 1.8 Intracellular trafficking, secretion, and vesicular transport 
O 80 3.7 Posttranslational modification, protein turnover, chaperones 
C 108 5.0 Energy production and conversion 
G 172 7.9 Carbohydrate transport and metabolism 
E 166 7.6 Amino acid transport and metabolism 
F 61 2.8 Nucleotide transport and metabolism 
H 128 5.9 Coenzyme transport and metabolism 
I 67 3.1 Lipid transport and metabolism 
P 131 6.0 Inorganic ion transport and metabolism 
Q 24 1.1 Secondary metabolites biosynthesis, transport and catabolism 
R 256 11.7 General function prediction only 
S 153 7.0 Function unknown 
- 1,113 35.7 Not in COGs 
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