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Abstract: Various stresses derived from both internal and external oxidative environments lead to
the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative
damage and ultimately cell death. The objective of this study was to evaluate the protective effects of
Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and
the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was
evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect
of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm
for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory
effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative
environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated
apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary
injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental
respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE
exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro
and in vivo models.
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1. Introduction

Reactive oxygen species (ROS) are derived from the sequential univalent reductions of molecular
oxygen [1,2]. These agents are inevitably produced by internal metabolic processes associated with
oxygen respiration; in particular, hydrogen peroxide (H2O2) is the most abundant ROS, which is
continuously produced and accumulated intracellularly as a byproduct of the normal course of aerobic
metabolism [3,4]. In addition, various environmental stresses, such as ultraviolet (UV) radiation,
pathogens, and respiratory irritants, including acrolein, also lead to excessive ROS production [5–7].
Oxidative stress is attributed to excessive intracellular ROS formation, which ultimately inflicts
apoptotic cell death via progressive oxidative damage to essential cellular components, such as nucleic
acids, lipids, and proteins [8–10]. Hence, oxidative stress-mediated apoptotic death appears to be the
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main etiological factor in various pathological situations, such as neurodegenerative, cardiovascular,
and lung diseases [11–13].

The incidence of oxidative stress-induced diseases has increased tremendously, and thus, there is
a growing public interest in the supplementation of natural food products with elevated antioxidant
activity and other health-promoting effects [14,15]. Citrus junos Tanaka, known as yuja in Korea
and yuzu in Japan, is a yellow-colored citrus fruit that has been traditionally used to improve blood
circulation and treat the common cold in Northeast Asia [16,17]. Recently, C. junos Tanaka has been
found to be effective in preventing certain diseases, including those associated with oxidative stress
and inflammation [17,18]. Furthermore, C. junos Tanaka has been also reported to reduce cancer
cell growth in HT-29 colorectal cancer cells and in a mouse tumor xenograft model. Interestingly,
the cancer preventive effects of C. junos Tanaka was closely associated with the suppression of COX-2
expression through its antioxidant activity [19]. The fruit, primarily consumed as thin slices of its peel,
contains abundant vitamin C and flavonoids, including rutin, quercetin, tangeritin, and naringin [20].
Of note, the peel of C. junos Tanaka contains almost two-fold higher flavanone content compared to
that in lemon, which ultimately exerts higher antioxidant potency [21,22]. Accordingly, we predicted
that the fruit peel may provide beneficial effects, which are closely related to the improvement of
respiratory health, in the oxidative stress-induced apoptotic death of lung cells owing to its potent
antioxidative activity.

In the present study, we investigated whether C. junos Tanaka peel extract (hereinafter referred
to as CE) protects lung cells against oxidative-stress induced apoptotic death as well as the potential
mechanisms of action of CE when lung cells encounter an environment with high oxidative stress,
such as exposure to H2O2, which is widely accepted to establish an in vitro model of oxidative
stress-induced cellular damage. Furthermore, we investigated the effects and potential protective
mechanisms of CE on acrolein-induced pulmonary apoptotic damages of lung tissues using an in vivo
mouse model of lung disease, given the fact that the inhalation of acrolein, a ubiquitous and highly
oxidizing environmental pollutant, results in the excessive generation of ROS, followed by the apoptotic
death of lung cells associated with pathological pulmonary lesions [18,23]. Thus, our study extends
our knowledge on the beneficial effects of CE and provides a useful model to investigate the potential
application of CE for the prevention of lung disease associated with environmental toxicants, such as
H2O2, in general, and acrolein, in particular.

2. Materials and Methods

2.1. Preparation of CE

C. junos Tanaka was provided by the Goheung County Office (Goheung, Jeolla Province, Korea),
where a voucher specimen was deposited. The peels were freeze-dried, ground with a mill, and passed
through a 50-mesh sieve. The ground powder was extracted in sealed baffle flask 20 times with 50%
ethanol by shaking incubator (JSSI-100C, JS Research Inc., Gongju, Korea) at 200 RPM, 24 h, and at room
temperature. The extract was filtered with Whatman No. 2 filter paper (Whatman Int. Ltd., Maidstone,
Medway, MA, UK), freeze-dried using a programmable freeze dryer (Ilshin Lab Co., Yangju-si, Korea),
and stored at −80 ◦C.

2.2. Chemical Profiling of CE

Chromatographic analytical procedures were performed on an Agilent 1260 series
(Agilent Technologies, Santa Clara, CA, USA). The HPLC system was equipped with a quaternary
pump, online degasser, auto plate-sampler, and photodiode array detector with an Agilent ZORBAX
Eclipse XDB-C18 column (150 × 4.6 mm, 5 µm). The gradient elution system consisted of 0.1% formic
acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B), and separation was achieved
using the following gradient: 10% B at 0–5 min; 10–20% B at 5–13 min; 20% B at 13–20 min; 20–50% B at
20–25 min; 50–80% B at 25–30 min. The composition was next held at 95% B for 5 min, and then returned
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to its initial conditions and maintained for 5 min to equilibrate the column. The detection wavelength
was set at 280 nm. The column temperature was maintained at 28 ◦C with a thermostatically controlled
column compartment. The flow rate was 1.0 mL/min and the injection volume was 10 µL.

2.3. Cell Culture

The biological experiments were performed using a basal epithelial cell line NCI-H460
derived from human lung carcinoma kindly provided by Prof. Song-Kyu Park (Department of
Pharmacy, Korea University, Korea). The cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in
a humidified atmosphere at 37 ◦C and 5% CO2. At approximately 70% confluence, the cells
were pre-incubated with 0.5 mg/mL CE for 1 h and then incubated with 250 µM H2O2 for 24 h.
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine
the cell cytotoxicity as previously described [24,25].

2.4. Animal Protocol

Experiments were performed using 8-week-old male C57BL/6J mice. The animals were
housed in a temperature- and humidity-controlled cage under a 12 h light–dark cycle and had
ad libitum access to a standard diet and water. All animal experiments were performed in
accordance with the protocols approved by the Institutional Animal Care and Use Committee
of Korea University (KUIACUC-2019-0060). The 8-week-old C57BL/6 mice, weighing approximately
21–24 g, were used for the experiments and segregated into four groups, viz., +vehicle, +CE,
+vehicle/acrolein, and +CE/acrolein, with 3–6 mice per group. The mice were subjected to acute
acrolein inhalation (10 ppm for 12 h) in a closed inhalation chamber in accordance with a previously
published method [23,26], wherein CE (200 mg/kg) was administered to mice orally once per day for
10 days prior to acrolein exposure. After treatment with acrolein, the mice were euthanized through an
inhalant anesthetic overdose of 3–5% isoflurane, and the extracted lungs were stored in a deep freezer
until further experiments.

2.5. Hematoxylin and Eosin (H&E) Staining

For morphological assessments of lung injury, lung tissues were harvested from the mice after
acrolein treatment, and then fixed with 4% paraformaldehyde and embedded in paraffin. Subsequently,
3 µm paraffin lung sections were deparaffinized, rehydrated, and stained sequentially with hematoxylin
and eosin (H&E) with the standard protocol to identify air space enlargement in the lungs. The section
slides were assessed by light microscopy for histological analysis.

2.6. DAB Staining

The 3 µm lung tissue sections were deparaffinized with xylene and an ascending ethanol series.
In addition, 1 mg/mL 3,3′-diaminobenzidine (DAB, Sigma, St. Louis, MO, USA) solution (pH7.4) with
0.1M HEPES buffer and 1 mg/mL glucose was prepared for staining. Then, the slides counterstaining
with hematoxylin were dehydrated in an ethanol series and mounted. Stained slides were observed by
Leica light microscopy and microscope software program (Leica Application Suite, V3.3, IL, USA) for
the histological image.

2.7. Immunofluorescence

The deparaffinized slides were incubated with anti-4-hydroxynonenal (4-HNE, Abcam) antibody
at 4 ◦C overnight. After removing the first antibody and washing with PBS, they were incubated
with Alexa Fluor 488 anti-mouse IgG antibody (ThermoFisher, Waltham, MA, USA) for 1 h at
room temperature. The slides were visualized by fluorescence microscopy using the Zeiss Axiovert
200 inverted microscope. Nuclei were counterstained with 4′6-diamidino-2-phenylindole (DAPI).
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2.8. Immunoblot Analysis

Lung tissues from mice and NCI-H460 human lung cells were homogenized with a Dounce
homogenizer in lysis buffer at 4 ◦C. The homogenates were centrifuged at 15,000× g for 20 min at
4 ◦C, and the supernatants were transferred to different tubes, followed by measuring the protein
concentrations. Samples (30 µg of protein) were subjected to 8–12% polyacrylamide gel electrophoresis.
After electrophoresis, the proteins were transferred onto nitrocellulose membranes, which were
incubated with primary antibodies (Cleaved poly (ADP-ribose) polymerase (PARP) (Abcam, Cambridge,
MA, USA); Cleaved caspase 3, p53 upregulated modulator of apoptosis (PUMA) (Cell Signaling
Technology, Danvers, MA, USA); Actin, BAX, Cytochrome c, p53 (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), and Prx-SO3 (AbFrontier, Seoul, Korea)), followed by incubation with HRP-labeled
anti-rabbit IgG (ThermoScientific, Waltham, MA, USA). Immunoreactive bands were visualized using
an enhanced chemiluminescence kit (Amersham Pharmacia Biotech, Amersham, Buckinghamshire,
UK), and band intensities were quantified with ImageQuant 5.2 software (Molecular Dynamics Ltd.,
Cambridge, CB2 8PQ, UK).

2.9. Statistical Analysis

All experiments were repeated three times, and the data are presented as mean ± S.D.
Data were analyzed by one-way ANOVA, followed by Student’s t-test, and p < 0.05 was considered
statistically significant.

3. Results and Discussion

3.1. Chemical Profiling Analysis of CE

C. junos Tanaka, which is primarily consumed as thin slices of its peel, contains abundant vitamin
C and flavonoids, such as hesperidin, quercetin, tangeritin, and naringin [26–28]. Particularly citrus
flavanone glycosides, such as naringin and hesperidin, are the most abundant compounds in CE,
and they are increasingly being recognized as key compounds for its role in antioxidant activities by
conferring protection against oxidative stress-induced cellular damage [17,29]. Hence, the established
chromatographic conditions were applied for the simultaneous determination of the main constituents
in CE. With respect to the high performance liquid chromatography (HPLC) analysis, CE was
standardized based on naringin and hesperidin, which is reported as a major bioactive antioxidant
compound in CE [16,17,30]. As illustrated in Figure 1, naringin and hesperidin were identified as a
major component of 50% ethanolic CE, as indicated by the comparison to the retention time (naringin:
22.2 min; hesperidin: 23.9 min) and absorption profile of its reference standard, and the results
confirmed that CE contained 4.72 mg/g naringin and 7.53 mg/g hesperidin. [31].
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Figure 1. Chemical profile of Citrus junos Tanaka peel extract (CE). Representative HPLC chromatogram
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3.2. CE Protects Lung Cells from Oxidant-Induced Cytotoxicity

H2O2 is well known as a cell-damaging agent that is generated during normal cell metabolism in
aerobic organisms; an excessive production of oxygen metabolites leads to oxidative stress-induced
cellular damage [4,8,9]. Hence, in this study, H2O2 was used as a potentially reactive oxidizing reagent
to promote intracellular oxidative stress. As apparent in Figure 2A, when the NCI-H460 human lung
cell line was exposed to the pro-oxidant H2O2 (250 µM), cell viability declined drastically, resulting in
higher cell mortality, suggesting the imperative role of dietary supplements in mediating a protective
response of the cells against oxidative stress. Moreover, we first examined the effects of CE on the
oxidative stress-induced toxicity of lung cells. To evaluate whether CE exhibits a protective effect,
NCI-H460 cells were pretreated for 1 h with CE (0.5 mg/mL) prior to exposure to H2O2. As shown
in Figure 2A, NCI-H460 cells with exposure to H2O2 exposited a significant decrease in viability
compared to that of control cells. In contrast, the NCI-H460 cells pretreated with CE significantly
exhibited the increase in the percent viability of cells compared to that of respective oxidant-treated
cells, suggesting the protective role of the dietary supplements against oxidant-induced cell death.

Antioxidants 2020, 9, x FOR PEER REVIEW 5 of 12 

H460 human lung cell line was exposed to the pro-oxidant H2O2 (250 μM), cell viability declined 
drastically, resulting in higher cell mortality, suggesting the imperative role of dietary supplements 
in mediating a protective response of the cells against oxidative stress. Moreover, we first examined 
the effects of CE on the oxidative stress-induced toxicity of lung cells. To evaluate whether CE exhibits 
a protective effect, NCI-H460 cells were pretreated for 1 h with CE (0.5 mg/mL) prior to exposure to 
H2O2. As shown in Figure 2A, NCI-H460 cells with exposure to H2O2 exposited a significant decrease 
in viability compared to that of control cells. In contrast, the NCI-H460 cells pretreated with CE 
significantly exhibited the increase in the percent viability of cells compared to that of respective 
oxidant-treated cells, suggesting the protective role of the dietary supplements against oxidant-
induced cell death. 

Recently, it has been reported that lung cell cells undergo apoptotic cell death in an oxidant-
induced environment, which is practically considered as the key reason behind the reduced or lost 
cell viability [32–34]. Therefore, to gain further insights into the molecular mechanisms by which CE 
counteracts against oxidant-induced cytotoxicity, we first examined the apoptotic markers in lung 
cells. As seen in Figure 2B,C, a remarkably enhanced apoptotic response was elicited in H2O2-exposed 
the NCI-H460 cells, as measured by the extent of the proteolytic cleavage of poly ADP ribose 
polymerase (PARP) and caspase 3, and importantly, the increased expression levels of apoptotic 
marker proteins were significantly attenuated in the NCI-H460 cells pretreated with CE. 

 

Figure 2. Protective effect of CE against oxidant-induced cytotoxicity in NCI-H460 human lung cells. 
(A) The viability of untreated (Con, control) NCI-H460 cells and cells treated with 0.5 mg/mL CE upon 
exposure to 250 μM H2O2 for 24 h was evaluated by the MTT assay. Values are represented as the 
mean ± S.D. from three separate experiments. * p < 0.05 compared with H2O2-treated cells; (B) 
immunoblot analysis of apoptosis-related proteins. The cell extracts were electrophoresed on 8–12% 
SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and immunoblotted with 
antibodies against cleaved poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Casp 3). 
Actin was used as the internal control; (C) quantifications of the levels of c-PARP and c-Casp 3 
normalized to actin are shown. Data are represented as the mean ± S.D. from three independent 
experiments. * p < 0.05 compared with the H2O2-treated group. 

To further evaluate the effect of CE on the modulation of the apoptotic signaling pathway in 
lung cells after exposure to H2O2, we examined the activation of p53 transcription factor and the pro-
apoptotic factor cytochrome c and Bax, which plays a central role in regulating apoptosis in response 
to various cellular stressors, such as genotoxic and oxidative stress [35,36]. Figure 3A,B indicate that 
the activation of p53, cytochrome c, and Bax was more pronounced when the NCI-H460 cells were 
exposed to H2O2. However, the increased activities of both proteins observed in the NCI-H460 cells 
with CE pretreatment were drastically reduced compared to that observed in control cells. This 
suggested that the inactivation of the apoptotic factors contributed, at least in part, to the protective 
effect of CE against oxidant-induced apoptotic death of lung cells. 

Excessive ROS is detrimental because it causes nonspecific oxidative damage to cellular 
components, DNA, proteins, lipids, and other macromolecules [37,38]. In addition, elevated ROS 

Figure 2. Protective effect of CE against oxidant-induced cytotoxicity in NCI-H460 human lung cells.
(A) The viability of untreated (Con, control) NCI-H460 cells and cells treated with 0.5 mg/mL CE
upon exposure to 250 µM H2O2 for 24 h was evaluated by the MTT assay. Values are represented
as the mean ± S.D. from three separate experiments. * p < 0.05 compared with H2O2-treated cells;
(B) immunoblot analysis of apoptosis-related proteins. The cell extracts were electrophoresed on 8–12%
SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and immunoblotted with antibodies
against cleaved poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Casp 3). Actin was
used as the internal control; (C) quantifications of the levels of c-PARP and c-Casp 3 normalized to actin
are shown. Data are represented as the mean ± S.D. from three independent experiments. * p < 0.05
compared with the H2O2-treated group.

Recently, it has been reported that lung cell cells undergo apoptotic cell death in an oxidant-induced
environment, which is practically considered as the key reason behind the reduced or lost cell
viability [32–34]. Therefore, to gain further insights into the molecular mechanisms by which CE
counteracts against oxidant-induced cytotoxicity, we first examined the apoptotic markers in lung cells.
As seen in Figure 2B,C, a remarkably enhanced apoptotic response was elicited in H2O2-exposed the
NCI-H460 cells, as measured by the extent of the proteolytic cleavage of poly ADP ribose polymerase
(PARP) and caspase 3, and importantly, the increased expression levels of apoptotic marker proteins
were significantly attenuated in the NCI-H460 cells pretreated with CE.

To further evaluate the effect of CE on the modulation of the apoptotic signaling pathway in
lung cells after exposure to H2O2, we examined the activation of p53 transcription factor and the
pro-apoptotic factor cytochrome c and Bax, which plays a central role in regulating apoptosis in
response to various cellular stressors, such as genotoxic and oxidative stress [35,36]. Figure 3A,B
indicate that the activation of p53, cytochrome c, and Bax was more pronounced when the NCI-H460
cells were exposed to H2O2. However, the increased activities of both proteins observed in the
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NCI-H460 cells with CE pretreatment were drastically reduced compared to that observed in control
cells. This suggested that the inactivation of the apoptotic factors contributed, at least in part, to the
protective effect of CE against oxidant-induced apoptotic death of lung cells.
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Figure 3. Effect of CE on p53 activation in human lung cells exposed to oxidative stress: (A) immunoblot
analysis of p53, cytochrome c (Cyto-C), and Bax with the loading control actin; (B) results of p53, Cyto-C,
and Bax quantification normalized to the expression of actin are shown; (C) immunoblot analysis of
oxidized peroxiredoxin (Prx-SO3) levels in NCI-H460 cell lysates—actin served as the loading control;
(D) the protein levels of Prx-SO3 were normalized to those of actin to quantify the immunoblotting
data. All data are presented as the mean ± S.D. from three independent experiments. * p < 0.05 versus
cells exposed to H2O2.

Excessive ROS is detrimental because it causes nonspecific oxidative damage to cellular
components, DNA, proteins, lipids, and other macromolecules [37,38]. In addition, elevated ROS
modulates redox homeostasis and redox-regulated signaling cascades, thereby causing further oxidative
stress-induced damage to tissues and cellular compartments [10]. Hence, intracellular ROS production,
which exerts oxidative stress on cells, is vital for cellular stress response, including the apoptotic
response. In particular, the transcription factor p53 is the primary activator that promotes apoptosis in
response to intracellular oxidative stress [39]. Therefore, we examined the effect of CE on intracellular
ROS production after the exposure of lung cells to H2O2 by examining the intracellular levels of
oxidized peroxiredoxin (Prx-SO3), a well-known marker for cellular oxidative stress [40]. As depicted
in Figure 3C,D, significantly increased expression levels of Prx-SO3 were observed in the NCI-H460
cells exposed to H2O2 compared to that in control cells, and CE pretreatment markedly reduced the
occurrence of oxidative stress induced by H2O2. Together, these results indicate that the extent of
apoptotic cell death in lung cells exposed to oxidative stress was significantly reduced by treating cells
with CE, which is reflected by the increase in the number of viable cells under the oxidant environment.

3.3. CE Mitigates Acrolein-Induced Pulmonary Apoptosis in an ROS-Dependent Manner

The present study provides substantial evidence that the accumulation of ROS followed by
oxidative stress-induced apoptosis was the major cause for the reduced cell viability of lung cells
in an oxidant environment. More importantly, we also showed that CE supplementation is capable
of decreasing intracellular ROS accumulation and p53-dependent apoptotic death while increasing
the viability of lung cells exposed to the oxidant environment. These results suggested that CE
supplementation could be useful in reducing pulmonary apoptotic damage associated with the
oxidative stress-induced toxicity of lung tissues exposed to environmental prooxidants and toxicants,
such as the inhalation of acrolein [12,23,26].

Hence, as a further proof of principle that CE can be used as a therapeutic modality, the potential
role of CE on acrolein-induced pulmonary apoptosis was investigated using an in vivo mouse model.
The mouse model was established in 8-week-old male C57BL/6J mice orally administered CE (200 mg/kg
once per day) for 10 days prior to acrolein exposure. The mice were then exposed to 10 ppm acrolein
for 12 h. After the administration period, histological analyses were performed to determine the effects
of acrolein inhalation on pulmonary injuries and the efficacy of CE in the treatment of the injuries.
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Notably, compared to the acrolein-treated group, the administration of CE markedly mitigated acrolein
induced-air space enlargement, a hallmark of morphological traits for pulmonary lesion (Figure 4A).
Then, to gain further insights into the mechanisms by which CE counteracts against acrolein-induced
pulmonary injuries, we further examined the events of the apoptotic death by measuring the levels
of apoptotic markers in the lung tissues. As shown in Figure 4B,C, the acute inhalation of acrolein
increased the expression of cleaved caspase 3 and cleaved PARP, apoptotic markers, in lung tissues,
whereas the CE clearly ameliorated the apoptotic signals compared to those in the only acrolein-treated
group. The levels of pro-apoptotic proteins, such as Bax and PUMA, also significantly increased in the
lung tissues of mice exposed to acrolein. However, the increased apoptotic activities observed drastic
reduction in the tissues of acrolein-administered CE-pre-treated mice compared to those in the mice
treated with acrolein alone (Figure 4D,E).
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Figure 4. Protective effect of CE against pulmonary apoptotic injuries of lung tissues exposed to acrolein.
Mice were exposed to filtered air or 10 ppm acrolein for 12 h. CE (200 mg/kg) was orally administered to
mice once per day for 10 days prior to acrolein exposure. (A) Morphometric appearance of pulmonary
tissues. H&E staining was carried out to exam the lung sections. Microscopic observations were
conducted at 20×magnification; (B) immunoblot data comparing the levels of the apoptotic marker
proteins c-PARP and c-Casp 3 in lung tissue extracts from mice. Actin was used as the loading control;
(C) quantifications of the levels of c-PARP and c-Casp 3 normalized to those of actin are shown;
(D) immunoblot analysis of apoptosis-related signal proteins in lung extracts exposed to acrolein
with or without pre-treatment with CE. The immunoblot of actin was included as the loading control;
and (E) the quantifications of the pro-apoptotic proteins BCL2-associated X (Bax) and p53 upregulated
modulator of apoptosis (PUMA) normalized to those of actin are shown. Each value is presented as
the mean ± S.D. from three to six independent experiments. * p < 0.05 versus acrolein-treated group.
Con, control; Acro, acrolein.

To investigate the responsible mechanisms for changes in apoptotic markers, we further assessed
key markers modulating pro-apoptotic signaling pathways, such as the transcription factor p53.
As presented in Figure 5A,B, the p53 protein expression level was reduced significantly by CE treatment.
These results are in good agreement with the expression results of downstream proteins, such as Bax
and PUMA. Previous studies have shown that acrolein induces pulmonary apoptosis via the p53
signaling pathway [26,41]. In contrast, the activation of the p53-mediated apoptotic signaling pathways
is inhibited by treatment with the known antioxidant polyethylene glycol catalase [41]. This indicates
that acrolein-induced intracellular ROS may be responsible for p53 signaling activation. Indeed, it is
now well accepted that the apoptotic signaling pathway is susceptible to an imbalance in intracellular
ROS (oxidative stress) and can be activated by it [42,43] As shown in our study, these apoptotic
processes were activated by acrolein and effectively reversed by CE treatment, indicating that the
apoptotic signaling pathway was blocked by CE supplementation.
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Figure 5. Effect of CE on p53 activation in pulmonary tissues exposed to acrolein: (A) p53 level in the lung
sections was determined by immunoblot analysis. Actin served as an internal control; (B) quantification
of p53 levels normalized to the expression of actin is shown; (C) immunoblot analysis of Prx-SO3 level,
a marker for intracellular reactive oxygen species (ROS) formation, in acrolein-exposed lung tissues
with or without pre-treatment with CE. Actin was used as the loading control; (D) a graph depicting
the quantification of the relative abundance of the Prx-SO3 protein levels is shown. Each protein
sample was subjected to 8–12% SDS-PAGE and immunoblotted with related antibodies as described
in the text; (E) representative histochemical staining of the lung tissues (20× magnification) with
3,3′-diaminobenzidine (DAB) for the measurement of the level of intracellular H2O2; (F) representative
images of immunohistochemical analyses of lipid peroxidation adducts, 4-hydroxynonenal (4-HNE) in
the lung tissues (400×magnification). Nuclei were counterstained with 4′,6-diamino-2-phenylindole
(DAPI). Results are expressed as the mean ± S.D. (n = 3–6 mice per group). p < 0.05 was considered
statistically significant. * indicates statistical significance compared to the acrolein-treated group.
Con, control; Acro, acrolein.

As aforementioned, intracellular ROS levels are closely related with p53-mediated apoptotic
signaling [35,36,39]. Considering that CE has exhibited antioxidative potential in different animal
models [21,28], we examined if acrolein-induced pulmonary apoptotic damages were reversed by CE
treatment through its antioxidative mechanisms associated with the activation of the p53-the dependent
signaling pathway. Our observations depicted in Figure 5C,D are consistent with the hypothesis that
acrolein-induced ROS generation is the main regulator to activate p53 in pulmonary apoptosis, which is
in good agreement with our assessment of the higher oxidized form of peroxiredoxin in mice exposed
to acrolein, as measured by the expression levels of Prx-SO3. In addition, intracellular reactive oxygen
species and oxidative lipid damages were evaluated by measuring the levels of hydrogen peroxide
(H2O2) (Figure 5E) and lipid peroxidation adduct, 4-hydroxynonenal (4-HNE) (Figure 5F), respectively.
In parallel with the results in Figure 5C,D, high levels of cellular oxidative stress were observed in
the lung tissues from the mice exposed to acrolein compared to those in control. More importantly,
CE treatment significantly reduced the oxidative marker in tissues compared to those of mice exposed
to acrolein only, suggesting that acrolein-induced oxidative damages in lung tissues were ameliorated
by CE treatment in mice.

In summary, the present study provides evidence that the accumulation of ROS was a retarding
factor for the overall survival of lung cells in an oxidant environment, such as the exposure to H2O2.
More importantly, oxidative stress followed by apoptotic death was the major cause for reduced
cell viability. Significantly, we also showed that CE supplementation decreased intracellular ROS
accumulation and p53-dependent apoptotic signaling while increasing the viability of lung cells
exposed to such an oxidant environment (Figure 6; left panel). We further investigated the protective
role of CE against oxidative stress by adopting an in vivo mouse model of acrolein-induced lung
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damage as acrolein is known to induce oxidative stress through interactions with other intracellular
molecules, owing to its high reactivity and unstable molecular structure [23,24,26]. In the present
study, we were able to confirm that the apoptotic cell death observed in lung tissues upon the
exposure to acrolein is closely associated with ROS formation and oxidative stress. More importantly,
the antioxidative capacity of CE is primarily responsible for pulmonary protection against acrolein
in mice. Furthermore, these antioxidative properties of CE successfully suppressed p53-mediated
apoptotic signaling pathways, thereby alleviating acrolein-induced pulmonary lesions (Figure 6;
right panel).
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Figure 6. Proposed protective mechanisms of CE against oxidative stress-induced apoptotic death of
lung cells in vitro and in vivo. CE antagonizes oxidative stress-induced apoptosis in lung cells exposed
to the oxidant environment, thereby establishing the potential development of CE as a therapeutic
agent in the treatment or prevention of pulmonary injuries associated with the exposure to highly
oxidizing environmental toxicants, such as acrolein.

4. Conclusions

Taken together, our findings provide the evidence that CE directly antagonizes oxidative
stress-induced apoptosis in lung cells, thereby establishing the potential development of CE as
a therapeutic agent in the treatment or prevention of pulmonary injuries, such as pulmonary edema
and chronic obstructive pulmonary disease (COPD), which are closely associated with the exposure
to general and public environmental toxicants, such as acrolein [5,12,44,45]. Based on our current
observations, further studies are warranted especially with regards to the protective effects of the pure
compound naringin and hesperidin alone or in combination with both the phenolic compounds against
the pulmonary injuries associated with environmental toxicants, such as H2O2, in general, and acrolein,
in particular. Thus, the further studies could provide an insight into the current findings by which
the beneficial role of CE would be clearly represented with regards to the inhibition of pulmonary
apoptotic death induced by the oxidative stress.
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CE: Citrus junos Tanaka peel extract; BAX: Bcl-2-associated X protein; COPD: chronic obstructive
pulmonary disease; DAB: 3,3′-diaminobenzidine; FBS: fetal bovine serum; H&E: hematoxylin and eosin;
H2O2: hydrogen peroxide; 4-HNE: 4-hydroxynonenal; HPLC: high performance liquid chromatography;
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PARP: poly (ADP-ribose) polymerase;
Prx-SO3: peroxiredoxin; PUMA: p53 upregulated modulator of apoptosis; ROS: reactive oxygen species;
UV: ultraviolet
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