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a b s t r a c t

Vitamin A and its metabolite, retinoic acid (RA) play important roles in regulating skeletal muscle
development. This study was conducted to investigate the effects of early intramuscular vitamin A in-
jection on the muscle growth of lambs. A total of 16 newborn lambs were given weekly intramuscular
injections of corn oil (control group, n ¼ 8) or 7,500 IU vitamin A palmitate (vitamin A group, n ¼ 8) from
birth to 3 wk of age (4 shots in total). At 3 wk of age and weaning, biceps femoris muscle samples were
taken to analyze the effects of vitamin A on the myogenic capacity of skeletal muscle cells. All lambs were
slaughtered at 8 months of age. The results suggest that vitamin A treatment accelerated the growth rate
of lambs and increased the loin eye area (P < 0.05). Consistently, vitamin A increased the diameter of
myofibers in longissimus thoracis muscle (P < 0.01) and increased the final body weight of lambs
(P < 0.05). Vitamin A injection did not change the protein kinase B/mammalian target of rapamycin and
myostatin signaling (P > 0.05). Moreover, vitamin A upregulated the expression of PAX7 (P < 0.05) and
the myogenic marker genes including MYOD and MYOG (P < 0.01). The skeletal muscle-derived mono-
nuclear cells from vitamin A-treated lambs showed higher expression of myogenic genes (P < 0.05) and
formed more myotubes (P < 0.01) when myogenic differentiation was induced in vitro. In addition,
in vitro analysis showed that RA promoted myogenic differentiation of the skeletal muscle-derived
mononuclear cells in the first 3 d (P < 0.05) but not at the later stage (P > 0.05) as evidenced by
myogenic gene expression and fusion index. Taken together, neonatal intramuscular vitamin A injection
promotes lamb muscle growth by promoting the myogenic potential of satellite cells.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Lamb meat production is increasing all over the world to meet
the demands of increasing meat consumption (Ponnampalam et al.,
2016). Muscle growth is achieved by the formation of muscle fibers
in the embryo (Yan et al., 2013) and postnatal muscle fiber
Wang), Junxzh@sxau.edu.cn
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hypertrophy (Ontell et al., 1984). It is widely accepted that the
majority of muscle fibers are formed before birth and the postnatal
growth of muscle is through protein synthesis accompanied by the
fusion of satellite cells into existing muscle fibers (Ontell et al.,
1984; White et al., 2010; Yan et al., 2013; Zhu et al., 2004). Nutri-
tional status at the neonatal stage greatly affects satellite cell pro-
liferation which has long-term effects on muscle growth (MacGhee
et al., 2017).

Vitamin A (also known as retinol) is an essential nutrient for
animals. As the most active metabolite of vitamin A, retinoic acid
(RA) is involved in the embryonic development of many tissues and
organs, for instance, adipogenesis (Schwarz et al., 1997), myo-
genesis (Ryan et al., 2012) and neurogenesis (Yu et al., 2012). At the
embryonic stage, RA promotes the development of the limb bud by
recruiting muscle progenitor cells into the limb (S. Reijntjes et al.,
2010). The classical way that RA regulates gene transcription is by
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Ingredients and nutrient levels of the concentrate feed at backgrounding and fin-
ishing stages of lambs (%, DM basis).

Ingredients Backgrounding Finishing

Corn 60 75
Wheat bran 11 0
Soybean meal 15 8
Soya bean cake 8 10
Premix (4%)1 5 5
Baking soda 1 2
Total 100 100
Nutrient level
DM 87.4 87.3
CP 16.72 13.64
RUP 40.3 44.1
NEg, Mcal/kg 1.3 1.32
TDN 78.4 79
NDF 16.6 13.9
ADF 6.1 5.1
EE 3.8 3.9
Ca 1.14 1.12
P 0.49 0.43
Ca:P 2.32 2.6

DM¼ dry matter; CP¼ crude protein; RUP¼ rumen undegraded protein; NEg¼ net
energy of growth; TDN ¼ total digestible nutrients; NDF ¼ neutral detergent fiber;
ADF ¼ acid detergent fiber; EE ¼ ether extract.

1 Premix (4%) contains vitamin A, vitamin D3, vitamin E, FeSO4, Cu2(OH)3Cl,
ZnSO4, MnSO4, Ca(IO₃)₂, Na₂SeO₃, CoCl₂, Na2SO4, NH4Cl, flavoring agent includes
neotame and saccharin sodium (Purchased from Beijing Yinghuier Biotechnology
Co., Ltd).
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acting as a ligand for RA receptors (RARs). RARs form a heterodimer
with retinoid X receptors (RXR), and RA ligation of RAR changes the
transcription factors that bind to the RAR-RXR heterodimer, which
in turn changes the transcription pattern of the target genes
(Chawla et al., 2001; Rochette-Egly and Germain, 2009). Retinoic
acidpromotes myogenic differentiation of mouse myoblast
C2C12 cells by activation of RAR and RXR signaling (Zhu et al.,
2009). Many signaling pathways have been identified to be
involved in RA promotion of myogenic differentiation. For instance,
RA activates myogenesis through FGF8 signaling (Hamade et al.,
2006), and also by antagonizing transforming growth factor-beta
signaling via C/EBPb (Lamarche et al., 2015). In domestic animals,
supplementation of vitamin A to finishing cattle increases the
growth rate but reduces the marbling index (Wang et al., 2007).
Intramuscular injection of vitamin A at the neonatal stage enhances
postnatal muscle growth by promoting myogenesis and increasing
satellite cell density (Harris et al., 2018; Wang et al., 2018). In
addition to the promotion of myogenic differentiation, RA is also
proven to induce the formation of oxidative muscle fibers by
upregulating the expression of PPARGC1A (Wang et al., 2018) and
PPARd (Kim et al., 2018) in bovine satellite cells.

Considering the strong promoting effects that neonatal vitamin
A administration showed on muscle growth in cattle (Harris et al.,
2018; Wang et al., 2018), it could be a simple but effective nutri-
tional strategy to improve animal growth. Thus, in the current
study, we explored the effects of intramuscular vitamin A injection
at the neonatal stage on the muscle growth of lambs.

2. Materials and methods

2.1. Animal ethics statement

All experimental procedures were approved by the Institutional
Animal Care and Use Committee of Shanxi Agricultural University
(sxnd202028).

2.2. Animal treatments and diets

A total of 80 purebred Hu sheep in similar physical conditions
were randomly selected. All ewes had been pregnant twice previ-
ously (third pregnancy for the current experiment). All ewes were
synchronized and inseminated with semen from one Dorper ram.
Three pregnant ewes per stall were provided with free access to
feed and water. The diet was formulated to meet National Research
Council (2007) nutrient requirements for ewes. The number of fe-
tuses was determined at 35 d of gestation using an ultrasound
monitor. Only ewes with 2 fetuses were used for further experi-
ments. At birth, one lamb from each pair of male twins was
selected. A total of 16 lambs (weighing 3.5 ± 0.5 kg) were randomly
assigned to 2 groups.

On the 2nd day of birth, lambs were injected with 7,500 IU
vitamin A palmitate (product no. PHR1235, Sigma, Milwaukee, US)
with corn oil as solvent (product no. C8267, Sigma, Milwaukee, US)
or an equivalent volume of corn oil (control group) into the biceps
femoris muscle. The lambs were injected once a week at a fixed
time point for 3 wk and managed in pairs with ewes. The tem-
perature of the sheep house was kept at about 10 �C and was well
ventilated. On the 10th day of birth, the lambs were vaccinated
against combined ovine/caprine braxy, struck, lamb dysentery and
enterotoxaemia (Harbin Pharmaceutical Group Bio-vaccine Co., Ltd,
Harbin, China), and then vaccinated against sheep pox (Harbin
Pharmaceutical Group Bio-vaccine Co., Ltd, Harbin, China), Peste
des petits ruminants (Tecon Biological Co., Ltd, Xinjiang, China) and
foot-and-mouth disease (Inner Mongolia Bigvet Biotech Co., Ltd,
Inner Mongolia, China) on d 28, 47 and 49, respectively. All lambs
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were weaned at the age of 12 wk and then transferred to finishing
houses for further feeding. After weaning, lambs were fed ad libi-
tum with a backgrounding diet for 55 d then transitioned to the
finishing diet and had free access to clean water and a salt block. In
addition, grass hay (peanut seedlings) for lamb growth was added
during the finishing period. From weaning to harvest, the concen-
trate feed of the finishing diet increased from 0.3 to 1.75 kg
(nutrient composition of the concentrate feed as shown in Table 1)
and the grass hay increased from 0.25 to 0.5 kg per lamb per day
(nutrient composition of the grass hay as shown in Table 2). The
concentrate feed is a commercial diet (Shanxi Guannong Science
and Technology Co., Ltd, China). For grass hay, the content of DM
was determined by AOAC method (AOAC, 2000), and the contents
of NDF and ADF were determined by Van Soest method (Van Soest
et al., 1991). Crude protein and crude fat content were measured by
the Kjeldahl and Soxhlet extraction methods, respectively (Li et al.,
2022). The total ash content was determined by charring the
samples in a crucible at a constant temperature of 600 �C for
40 min. All animals were weighed every week before weaning and
once a month after weaning to record the growth rate of lambs in
different groups. The feed intake and refusal of lambs were recor-
ded every day and all lambs were slaughtered and sampled at the
age of 8 months.

2.3. Collection and analysis of muscle biopsy

Lambs were surgically sampled in the 3rd and 12th wk. A small
area of the biceps femoris of lambs in the right hind leg was
scrubbed with iodophor. Besides, normal saline, 75% alcohol,
epinephrine and surgical instruments were prepared for the sub-
sequent sampling. Lambs were injected with 2% lidocaine and
completely anesthetized, an incision of about 3 cm cut with a
scalpel then about 2 g of skeletal muscle tissue was collected. The
skin was then stitched up and the wound cleaned. Biopsy samples
were divided into 4 parts: (1) the sample was placed in para-
formaldehyde and embedded in paraffin to analyze the structure of
muscle fiber; (2) the sample was ground with liquid nitrogen for



Table 2
Composition of the grass hay (%, DM basis).

Nutrient Amount

DM 87.74
CP 12.32
EE 2.30
Ash 11.26
NDF 63.47
ADF 40.01

DM¼ dry matter; CP ¼ crude protein; EE ¼ ether
extract; NDF ¼ neutral detergent fiber;
ADF ¼ acid detergent fiber.
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RNA extraction (q-RT-PCR) and Western blotting; (3) the sample
was put into cold phosphate buffer saline (PBS) for satellite cell
separation; (4) the sample was processed for cryosection. The
skeletal muscle samples of the slaughtered lambs were treated
with the above methods.
2.4. Hematoxylin-Eosin (H&E) staining and diameter measurement
of myofibers

The trimmed skeletal muscle samples were fixed in para-
formaldehyde, then successively dehydrated in ethanol and xylene,
and finally embedded in paraffin. The embedded samples were cut
to 5 mm thickness using a microtome (Leica, German), and sections
were dewaxed and rehydrated by xylene and gradient ethanol.
After that, H&E staining was used for histological examination.
Finally, the myofiber diameter was measured using Image J soft-
ware (Bethesda, MD, US) after images were taken by a microscope
(DMi8, Leica, Germany). All samples were cut every 50 mm, at least
200 muscle fibers were counted in each visual field, and at least 3
repeats in each sample.
2.5. Immunohistochemical staining

Muscle tissues were frozen in liquid nitrogen, embedded in
optimal cutting temperature and cut into 8 mm sections by a frozen
cryo-microtome (Leica CM1950, Germany). Tissue sections were
blocked with 2% goat serum in tris buffered saline containing 10%
Triton X-100 and 1% bovine serum albumin (BSA) for 1 h, incubated
with anti-PAX7 antibody (RRID: AB_528,428, DSHB, Iowa City, US)
overnight at 4 �C and the corresponding fluorescent secondary
antibody for 1 h at room temperature. Then, sections were moun-
ted with 4’,6-diamidino-2-phenylindole (DAPI) (Vector Lab, Bur-
lingame, CA), and imageswere visualized under a DMi8microscope
(Leica, Germany).
Table 3
Primer sequences for Real-time PCR.

Genes Sequence (5’/30) Product size, bp

PAX7 F: CGGGCATGTTTAGCTGGGAGA
R: TCTGAGCACTCGGCTAATCGAAC

107

MYF5 F: CCCACCAGCCCCACCTCAAGT
R: GTAGACGCTGTCAAAACTGCTGCT

93

MYOD F: GAACTGCTACGACCGCACTTACT
R: GAGATGCGCTCCACGATGCT

111

MYOG F: CTCAACCAGGAGGAGCGCGAC
R: TTGGGGCCAAACTCCAGTGCG

131

b-actin F: CGGCTTTCGGTTGAGCTGAC
R: GCCGTACCCACCAGAGTGAA

159

PAX7 ¼ paired box gene 7; MYF5 ¼ myogenic factor 5; MYOD ¼ myogenic differ-
entiation 1; MYOG ¼ myogenin.
2.6. Sheep primary myoblast isolation

Biopsied muscle tissues were washed sequentially through pre-
cooled 75% alcohol and PBS 3 times, the surrounding non-muscle
tissue was removed, then the samples were cut into small pieces
and 1 mg/mL type I collagenase added, and finally digested for
45 min in a 37 �C shaker at 100 rpm. The digested muscle mixture
was centrifuged at 500� g for 5 min, and then the supernatant was
discarded. The sediment was resuspended and passed through 100
and 40 mm cell strainers in sequence. The filtrates were centrifuged
(500 � g, 5 min) and cell pellets were resuspended with Dulbecco's
modified eagle medium (DMEM), which contained 20% fetal bovine
serum, 0.1% penicillin, and 0.1% streptomycin. Finally, the cells were
seeded onto a cell culture dish precoated with 10% matrigel.
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2.7. Culturing, differentiation, and immunocytochemical staining of
sheep primary myoblasts

Primary cells were purified and cultured for 2 d to reach 100%
confluence, then replaced with a differentiation medium contain-
ing 2% horse serum to induce myotube formation. After 3 and 6 d of
differentiation, cells were fixed in cold 4% paraformaldehyde for
10 min, permeabilized with 0.25% Triton X-100 and blocked with
1% BSA. The cells were incubated with anti-myosin heavy chain
(MHC) (RRID: AB2147781, DSHB, Iowa City, US) antibody at 4 �C
overnight, followed by incubation with corresponding fluorescent
secondary antibody (anti-mouse, no. 4408, Cell Signaling, Danvers,
MA, US) for 1 h at room temperature. Finally, cells were mounted
with DAPI (Vector Lab, Burlingame, CA), and images were visual-
ized under a DMi8 microscope (Leica, Germany).

2.8. Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from skeletal muscle samples or
cultured cells using Trizol reagent (Sigma, Saint Louis, MO) and
cDNA was synthesized by a reverse transcription kit (TAKARA Co.,
Ltd, Dalian, China). Q-RT-PCR was carried out using a CFX RT-PCR
detection system (Bio-Rad, Hercules, CA) and SYBR Green RT-PCR
kit (TAKARA Co., Ltd). The cycle parameters were as follows:
95 �C for 10 min; 45 two-step cycles of 95 �C for 15 s and 60 �C for
30 s. There were at least 3 repeats in each group. All primer se-
quences are listed in Table 3. The relative content of mRNA was
standardized to the internal reference b-actin, and the relative
changes in gene expression by the 2-△△Ct method.

2.9. Western blotting

Protein in skeletal muscle was extracted with the RIPA lysis
buffer (1% NaF (product no. 201154, Sigma, Milwaukee, US), 1%
Na3VO4 (product no. 450243, Sigma, Milwaukee, US), 1% phenyl-
methylsulfonyl fluoride (PMSF, no. P0100, Solarbio, Beijing, China),
2% b-mercaptoethanol (product no. M6250, Sigma, Milwaukee, US),
0.1% protease inhibitor (no. A8260, Solarbio, Beijing, China),
1� loading buffer at 10mL constant volume). The extracted protein
was separated with sodium dodecyl sulfateepolyacrylamide gel
electrophoresis (SDS-PAGE; room temperature, 80 V for 0.5 h, 120 V
for 1.5 h), and then transferred to a nitrocellulose membrane (4 �C,
100 V for 2 h). The nitrocellulosemembranewas blocked in 5% skim
milk powder (Sangon Biotech Co., Ltd, Shanghai, China) for 1 h, and
then incubated with the primary antibody (4 �C, overnight) and the
corresponding secondary antibody (room temperature, 1 h).
Western blotting analysis was carried out with an Odyssey infrared
imaging system (LI-COR Biosciences, Lincoln, NE, US), and the band
density was normalized to b-tubulin content.



Fig. 1. Vitamin A injection promoted muscle growth of lambs. (A) Growth rate. (B) Representative image of loin eye muscle at harvest. (C) Average loin eye area at harvest. (D) H&E
stained longissimus thoracis (LT) muscle in 3-wk-old lambs. (E) Distribution of fiber diameter of LT muscle in 3-wk-old lambs. (F) Average LT muscle fiber diameter in 3-wk-old
lambs. (G) H&E stained LT muscle in 12-wk-old lambs. (H) Distribution of fiber diameter of LT muscle in 12-wk-old lambs. (I) Average LT muscle fiber diameter in 12-wk-old lambs.
(J) H&E stained LT muscle at harvest. (K) Distribution of fiber diameter of LT muscle at harvest. (L) Average LT muscle fiber diameter at harvest. (mean ± SEM; n ¼ 8 in each group,
*P < 0.05, **P < 0.01).

Table 4
Effect of vitamin A injection on growth performance of lambs (n ¼ 8).
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Antibodies against protein kinase B (AKT, no. 92728), phospho-
AKT (Ser473, no. 4060S), mammalian target of rapamycin (mTOR,
no. 2972), phospho-mTOR (Ser2448, no. 2971), 4EBP1 (no. 9644),
phospho-4EBP1 (Thr37/46, no. 2855), p70 S6 Kinase (no. 2708) and
phospho-p70 S6 Kinase (Thr389, no. 9206), Smad2/3 (no. 3102 s) and
phosphor-Smad3 (no. 9520 s) were purchased from Cell Signaling
(Danvers, MA, US). Myostatin (MSTN) (sc-134,345) and MYOD (sc-
760) were purchased from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA, US). Myosin heavy chain 2 (bs-10903R), MYOG (bs-3550R),
and b-tubulin (bsm-33034M) were purchased from Biosynthesis
Biotechnology Co., Ltd. (Beijing, China). Goat anti-rabbit secondary
antibody (926e32,211) and anti-mouse secondary antibody
(926e68,070) were from LI-COR Biosciences (Lincoln, NE, US).
Items Control Vitamin A SEM P-value

Initial BW, kg 3.76 3.85 0.201 0.67
Final BW, kg 47.56b 56.93a 3.347 0.01
ADG, kg/d 0.18b 0.22a 0.014 0.02
DMI, kg/d 1.75 1.78 0.112 0.76

BW ¼ body weight; ADG ¼ average daily gain; DMI ¼ dry matter intake.
a, bDifferent superscripts in each row for each factor differ significantly (P < 0.05).
2.10. Statistical analysis

The data obtained in this experiment were processed using
GraphPad Prism 9 software (Monrovia, CA, US). All data were
analyzed using unpaired Student's t-test. Significance was accepted
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at P < 0.05. All data are expressed as means ± standard errors of the
mean (SEM).

3. Results

3.1. Effects of vitamin A injection on growth performance in lambs

Intramuscular vitamin A injection at the neonatal stage signifi-
cantly increased the growth rate of lambs (Fig. 1A, P < 0.01) and



Fig. 2. Effects of vitamin A injection on Akt/mTOR signaling activity and MSTN content in longissimus thoracis muscle. (A) Total Akt and phosphor-Akt protein abundance in
longissimus thoracis muscle. (B) Total mTOR and phosphor-mTOR protein abundance. (C) Total 4EBP1 and phosphor-4EBP1 protein abundance. (D) Total p70S6K and phosphor-
p70S6K protein abundance. (E) Myostatin (MSTN) protein abundance. (F) Both Smad2/3 and phosphor-Smad3 protein abundance (mean ± SEM; n ¼ 8 in each group).
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increased the loin eye area of lambs at 8 months of age (Fig. 1B and
C, P < 0.05), with no changes in DMI (Table 4, P ¼ 0.76). No differ-
ence was found in the longissimus thoracis (LT) muscle fiber size at
3 wk of age (Fig. 1DeF, P > 0.05), however, vitamin A increased the
LT muscle fiber size at 12 wk (Fig. 1GeI, P < 0.01) and 8 months of
ages (Fig. 1J-L, P < 0.01).

3.2. The effects of vitamin A injection on Akt/mTOR signaling
activity and myostatin content in LT muscle

We first determined whether vitamin A injection promotes
muscle growth by activating signaling pathways involved inmuscle
protein synthesis. There was no difference in the protein content of
AKT, phosphorylated AKT (Fig. 2A, P > 0.05), mTOR, phosphorylated
mTOR (Fig. 2B, P > 0.05), 4EBP1, phosphorylated 4EBP1 (Fig. 2C,
P > 0.05), p70S6K4, or phosphorylated p70S6K4 (Fig. 2D, P > 0.05)
in LT muscle between the control and vitamin A treated lambs. In
addition to AKT signaling, we further analyzed the content ofMSTN,
amyokine that inhibits muscle growth (Langley et al., 2002), and no
difference was detected between the control and vitamin A-treated
lambs (Fig. 2E, P > 0.05). Consistently, total Smad2/3 and phos-
phorylated Smad3 protein abundance were not altered between
groups (Fig. 2F, P > 0.05). The results suggested that vitamin A in-
jection at the neonatal stage did not change signaling involved in
muscle protein synthesis.

3.3. Vitamin A injection increased the number of satellite cells and
promoted myogenesis

We then explored the effects of vitamin A injection on the
myogenic potential of cells residing in the skeletal muscle of lambs.
Vitamin A treated animals had more PAX7þ satellite cells in the
skeletal muscle but the difference was not statistically significant
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(Fig. 3A and B, P > 0.05). In addition, higher expression of PAX7
(Fig. 3C, P < 0.05) was detected in the LT muscle of 3-wk-old lambs.
At 3 wk of age, no difference in the expression of myogenic genes
including MYF5, MYOD, and MYOG was detected (Fig. 3D, P > 0.05).
However, at 12 wk of age, vitamin A-treated lambs had higher
expressions ofMYOD andMYOG in the LT muscle (Fig. 3E, P < 0.01).
There was no difference in protein levels of MYOD (Fig. 3F, P > 0.05)
but MYOG was upregulated by vitamin A (Fig. 3G, P < 0.05). When
compared with the control, mononuclear cells derived from the LT
muscle of vitamin A-treated lambs had higher expression of MYF5,
MYOD, andMYOG and formedmoremyotubes after 6 d of myogenic
differentiation (Fig. 3HeJ, P < 0.05). Consistently, higher MHC
protein content was observed in the cells derived from the LT
muscle of vitamin A-treated lambs (Fig. 3K, P < 0.01). These data
indicated that vitamin A injection at the neonatal stage improved
the myogenic potential of skeletal muscle.

3.4. RA promoted early differentiation of sheep primary myoblasts

We further investigated the effects of RA, the most active
metabolite of vitamin A, on themyogenic differentiation of primary
mononuclear cells at different stages. The cells were treated with
all-trans RA at 0 to 3 d, 4 to 6 d, or 0 to 6 d. Cells treated with RA for
the whole 6 d differentiation period (0 to 6 d) or during 0 to 3 d
formed more myotubes and had higher fusion indices (Fig. 4A and
B, P < 0.05), however, cells treated with RA during the last 3 d of
myogenesis did not affect the formation of myotube or the fusion
index (Fig. 4A and B, P> 0.05). Consistently, cells treatedwith RA for
0 to 6 d (Fig. 4C and F, P < 0.05) and 0 to 3 d (Fig. 4D and G, P < 0.05)
had higher expression of MYOD and MYOG mRNA and higher
expression of MHC protein, but no difference in these genes or
protein was detected when cells were treated with RA for 4 to 6 d
(Fig. 4E and H, P > 0.05). These data proved that retinoic acid played



Fig. 3. Vitamin A injection increased the number of satellite cells and upregulated the expression of myogenic genes. (A) Muscle biopsy stained by PAX7. (B) Quantification of PAX7þ

cells in muscle biopsy. (C) Relative mRNA of PAX7 in lambs at 3 and 12 wk of age. (D) The level of myogenic mRNAs in 3-wk-old lambs. (E) The level of myogenic mRNAs in 12-wk-old
lambs. (F) Protein level of MYOD in 12-wk-old lambs. (G) Protein level of MYOG in 12-wk-old lambs. (H) The level of myogenic mRNAs after 6 d of myoblast differentiation. (I)
Myotubes were visualized by immunostaining using anti-MHC antibody after 6 d of myogenic differentiation. (J) Fusion index. (K) MHC protein abundance (mean ± SEM; n ¼ 8 in
each group, *P < 0.05, **P < 0.01). PAX7 ¼ paired box gene 7; MYOD ¼ myogenic differentiation 1; MHC ¼ myosin heavy chain.
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a key role in the early stage of muscle differentiation but not in the
late stage.
4. Discussion

It is widely believed that muscle fibers of domestic animals are
formed before birth, and postnatal muscle growth is mainly ach-
ieved through the enlargement of existing muscle fibers (Albrecht
et al., 2006; Du et al., 2010; Wegner et al., 2000). Satellite cells
are precursors of skeletal muscle cells which differentiate and fuse
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intomuscle fibers (Kadi et al., 2005), and the number and activity of
satellite cells greatly affect the muscle growth rate of animals (Yin
et al., 2013). The proliferation activity of satellite cells is most active
in neonatal animals than in older animals (Carvajal Monroy et al.,
2017; Velleman et al., 2014), thus nutritional interventions at the
neonatal stage could change the number of satellite cells and affect
later muscle growth to a greater extent.

Retinoic acid is an important regulator of muscle development.
Retinoic acid enhances myogenic differentiation of human em-
bryonic stem cells by increasing the number of myogenic



Fig. 4. Retinoic acid promoted the early differentiation of sheep primary myoblasts. (A) Immunofluorescence staining of myotubes using anti-MHC antibody at 3 stages. (B) Fusion
index at 3 stages. (C-E) The level of myogenic mRNAs at 3 stages. (FeH) MHC protein abundance at 3 stages. (mean ± SEM; n ¼ 8 in each group, *P < 0.05, **P < 0.01). RA ¼ retinoic
acid; MYF5 ¼ myogenic factor 5; MYOD ¼ myogenic differentiation 1; MYOG ¼ myogenin; DAPI ¼ 40 ,6-diamidino-2-phenylindole; MHC ¼ myosin heavy chain.
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progenitors (Ryan et al., 2012). In beef cattle, neonatal vitamin A
injection increases the density of satellite cells and promotes
muscle growth (Wang et al., 2018). Although the increase in
immunofluorescence-labeled satellite cells was not statistically
significant, neonatal vitamin A injection increased the mRNA
abundance of the satellite cell marker, PAX7, a key transcription
factor that is essential for regulating the expansion and differenti-
ation of satellite cells (vonMaltzahn et al., 2013), which is likely due
to enhanced satellite cell proliferation and may have contributed to
the improvement of muscle growth.

Retinoic acid also enhanced myogenic differentiation by acti-
vating RARs bound directly to mesoderm and skeletal muscle
progenitor genes, such as Wnt3a, Pax3, and Meox1, activating b-
catenin function and inhibiting bone morphogenetic protein (BMP)
signaling (Halevy and Lerman, 1993; Kennedy et al., 2009). Retinoic
acid upregulates the expression of myogenic regulatory factors
(MRFs) MYOD (Reijntjes et al., 2010; Ryan et al., 2012), MYF5
(Reijntjes et al., 2010), and MYOG (Kennedy et al., 2009) in
myogenic cells of humans and different animal species. Consis-
tently, we observed that neonatal vitamin A injection upregulated
the expression of MYOD and MYOG in biopsied muscle tissue and
increased the myogenic potential of mononuclear cells isolated
from skeletal muscle of vitamin A-treated lambs.
210
Myogenic differentiation was a highly coordinated sequential
program to generate mature skeletal muscle (Jang and Baik, 2013).
Myoblasts differentiate into mononuclear myocytes at an early
stage of differentiation and fuse into multinucleated myotubes at a
later stage, which expresses many muscle structural proteins such
as MHC, creatine kinase (MCK), and alpha-actin (Lluís et al., 2006).
As a downstream component of IGF1 signaling, AKT and mTOR are
the key regulators that promote skeletal muscle protein synthesis
and prevent muscle protein degradation (Schiaffino and
Mammucari, 2011). However, neonatal vitamin A injection did
not affect Akt/mTOR signaling in lambs. We also observed no
changes in the expression of MSTN and Smad3, proteins involved in
major signaling that inhibits muscle growth (Allen and Unterman,
2007). When analyzed in vitro, RA promoted myogenesis of pri-
mary skeletal muscle-derived mononuclear cells only in the first
3 d of differentiation but not in the later stages. These data indicate
that vitamin A and RA promote muscle growth mainly through
increasing the number of myogenic progenitors and improving
their myogenic potential in the early stage of muscle development
but not by affecting muscle protein synthesis that occurs in the late
stages.

Neonatal vitamin A injection is a promising nutritional strategy
that economically and efficiently promotes muscle growth of
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livestock animals. In beef cattle, 2 shots of 150,000 IU vitamin A at
the neonatal stage increased body weight by 13.1% at weaning and
by 8.8% at 308 d of age (Harris et al., 2018). In the current study, 4
shots of 7,500 IU vitamin A from birth to 3 wk of age caused a 17.5%
increase in slaughter weight and a 16.8% increase in the loin eye
area of lambs at 8 months of age. It is highly effective and easy to
operate for livestock producers.
5. Conclusion

Neonatal intramuscular vitamin A injection upregulates PAX7
expression and promotes the myogenic potential of satellite cells,
which has a long term effective of promoting the muscle growth of
lambs.
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