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Objective: Whole Exome Sequencing (WES) is an effective diagnostic method for
complicated and multi-system involved rare diseases. However, annotation and analysis
of the WES result, especially for single case analysis still remain a challenge. Here, we
introduce a method called phenotype-driven designing “virtual panel” to simplify the
procedure and assess the diagnostic rate of this method.

Methods: WES was performed in samples of 30 patients, core phenotypes of probands
were then extracted and inputted into an in-house software, “Mingjian” to calculate
and generate associated gene list of a virtual panel. Mingjian is a self-updating genetic
disease computer supportive diagnostic system that based on the databases of HPO,
OMIM, HGMD. The virtual panel that generated by Mingjian system was then used
to filter and annotate candidate mutations. Sanger sequencing and co-segregation
analysis among the family were then used to confirm the filtered mutants.

Result: We first used phenotype-driven designing “virtual panel” to analyze the WES
data of a patient whose core phenotypes are ataxia, seizures, esotropia, puberty and
gonadal disorders, and global developmental delay. Two mutations, c.430T > C and
c.640G > C in PMM2 were identified by this method. This result was also confirmed by
Sanger sequencing among the family. The same analysing method was then used in the
annotation of WES data of other 29 neurological rare disease patients. The diagnostic
rate was 65.52%, which is significantly higher than the diagnostic rate before.

Conclusion: Phenotype-driven designing virtual panel could achieve low-cost
individualized analysis. This method may decrease the time-cost of annotation, increase
the diagnostic efficiency and the diagnostic rate.

Keywords: WES, phenotype-driven, virtual panel, rare disease, annotation

INTRODUCTION

Rare Disease is defined as disease affected less than one in 2000 citizens in Europe, or less than
one in 1250 in the United States (Schieppati et al., 2008). Rare diseases often start in childhood
and accompanied by multisystem disorders which affect life quality of patients (Dodge et al.,
2011; Elliott and Zurynski, 2015; Wright et al., 2018). Moreover, 33% of rare disease children
die before 5 years old (Wright et al., 2018). There are now approximately 10,000 rare diseases
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FIGURE 1 | The flow chart of phenotype-driven designing virtual panel.

(Elliott and Zurynski, 2015), about 4 of 5 rare disease patients
are thought to have a genetic base (Plaiasu et al., 2010; Dodge
et al., 2011) especially monogenic disorder (Stolk et al., 2006).
For some rare disorders such as tuberous sclerosis complex,
phenotypes may vary among individuals due to heterogeneous
manifestations. Merely diagnosis based on clinical presentations
could be a great challenge (Bai et al., 2017). Hence, gene
sequencing for the pathogenic genes is vital for understanding the
cause of diseases.

The mainstream of gene sequencing includes genomic
microarrays, Sanger sequencing and Next-Generation
sequencing (NGS). Genomic microarrays are low-resolution
method for detection of 50∼100 kb copy number variation
(Speicher and Carter, 2005). For small insertion or deletion
less than 50 kb, Sanger sequencing and NGS could fulfill the
task. Sanger sequencing, due to limited throughput, is only
used when a specific gene is selected. Different diseases could
have similar clinical presentations such as ataxia and mental
retardation. At the same time, a disease may be caused by

FIGURE 2 | Phenotype of the patients. (a) large ear; (b) internal strabismus;
(c) inverted nipples; (d) fat pad in the buttock.

various genes. It is difficult to determine the pathogenic gene in
every patient to perform Sanger sequencing. NGS offers much
higher throughput that can facilitate sequencing up to 1000s
of gene once. In addition, since sheared DNA is sequenced
parallelly multiple times, therefore lower error rate is achieved
compared to Sanger sequencing. Moreover, the recent study
showed that NGS could also be used to detect Copy Number
variation that larger than 100 kb (de Ligt et al., 2013; Feng et al.,
2017). Therefore, it has been increasingly used in rare disease
diagnosis.

For NGS, the range of detection object could vary from
multiple disease-associated genes (gene panel), whole exome
(Whole-Exome Sequencing) to whole genome (Whole-Genome
Sequencing). For gene panel, various genes affected several
similar diseases or diseases in the same system could be detected
at the same time. Since it focuses on the specific genes, the
data size is generally smaller than Whole-Exome Sequencing
(WES) and Whole-Genome Sequencing (WGS), the result is
easy to analyze and interpret. Although convenient, the gene
list of a particular panel is constant; meanwhile, the discovery
of disease-associated gene is developing. The newly discovered
gene on one hand cannot be added to the already made panel,
and further analysis cannot be performed. On the other hand,
updating gene list every day is, however, impractical, costly and
with less sense. Gene panels is at present insufficient for detection
and is not recommended by most of the genetics and clinicians
(Biesecker and Green, 2014; Wenger et al., 2017; Ewans et al.,
2018; Jin et al., 2018).

WGS, mostly based on Illumina technology, is the sequencing
method covers most part of the human genome. Although easy to
perform, it is costly and time consuming to analyze and interpret
data. On average, 3–4 million mutations could be discovered in
each individual (Ashley et al., 2010; Lupski et al., 2010; Roach
et al., 2010; Sobreira et al., 2010; Bainbridge et al., 2011). In
the meantime, the mutations in the intronic region except for
the ones near splicing sites are hard to predict the relative risk
of phenotype, since the function of the intronic gene is still
mostly undiscovered, and the mutation frequency in the intron
is considerably high (Tabor et al., 2002; Abecasis et al., 2010). It
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FIGURE 3 | MRI result of the patient. (a) Coronal T1W image. Black arrows pointed the anterior limb of the internal capsule. The faint hyperintense signal of T1W
indicated delayed myelination of the patient. (b) Sagittal T1W image. The patient presented cerebellar atrophy.

is hard to estimate which mutation is deleterious. Research also
presented that WGS has limited significance at the present stage
(Alfares et al., 2018). By contrast, the exome represents 1–2%
protein-coding gene of the whole genome thus more exomes
could be sequenced per run (Gilissen et al., 2012). The result
of WES is more accessible to interpret since non-synonymous
mutations in the coding region could directly lead to amino
acid change then affect the protein structure and function.
This method could also help identify not only the unknown
pathological mutations but also the undiscovered mutations
(Liu et al., 2012). Re-analysis of WES data was also proved to
significantly increase the diagnostic rate (Alfares et al., 2018). The
cost of WES is also much lower than WGS (Gilissen et al., 2012) at
present. Although the number of variants is cut down to the range
between 20,000 and 50,000 (Ashley et al., 2010; Lupski et al., 2010;
Roach et al., 2010; Sobreira et al., 2010; Bainbridge et al., 2011;
Gilissen et al., 2012), it is still difficult to analyze and identify the
pathogenicity of every variant, especially for detection of single

FIGURE 4 | Chest CT result of the patient. It is shown that the patient had
spine kyphosis.

case because of lower efficiency and time consuming. Meanwhile,
due to the analysis strategy with less-efficacy, the diagnostic rate
of WES with unspecific analysis was relatively low, approximately
25–30% (Yang et al., 2013; Lee et al., 2014; Shashi et al., 2016).

After carrying out, investigating and studying WES in
clinic for many years, the combination of clinical information
and gene sequencing is increasingly suggested in disease
diagnosis (Jin et al., 2018). Here, we developed a method
called “Phenotype-driven designing virtual panel,” a method that
concentrates in analysing the genes of diseases with related
phenotypes. The gene lists of phenotype-associated diseases were
generated by a system called “Mingjian.” After inputting all
phenotypes of the patient, the system will automatically list the
associated genes and rank the gene by the corresponding number
of phenotypes. This method is proved to improve the diagnostic
rate significantly in our further test.

METHODS

Whole-Exome Sequencing
Proband DNA was sequenced to discover the causal gene. DNA
was isolated from peripheral blood using a DNA Isolation

TABLE 1 | Mass spectrum result of patient’s blood.

Result of
patient

Reference for
children (6 months to

1 year old)

Ratio

His 99.916 ↑ 0.00–79.30 1.260

Tyr 19.083 ↓ 19.40–79.40 0.240

Thr 87.512 ↑ 22.00–64.20 1.363

Phe/Tyr 1.980 ↑ 0.23–1.20 1.650

C5DC 0.099 ↑ 0.00–0.08 1.232

C0/C2 0.568 ↓ 0.82–2.40 0.237

Enhancement of His, Thr, Phe/Tyr, C5DC and regression of Tyr and C0/C2 indicated
liver dysfunction of the patient.
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FIGURE 5 | The mass spectrum result of the metabolite in urine. The result of the urine metabolite indicated liver abnormality of patient.

TABLE 2 | Blood test result of the patient’s serum.

Result Reference Unit

ALT 106 ↑ 9–50 IU/L

AST 107 ↑ 15–40 IU/L

PCHE 3226 ↓ 4300–13200 IU/L

Alleviation of alanine aminotransferase (ALT) and Aspartate aminotransferase (AST)
and deduction of plasma cholinesterase indicated liver dysfunction of the patient.

Kit (Bioteke, AU1802). 1ug genomic DNA was fragmented
into 200–300 bp length by Covaris Acoustic System. The DNA
fragments were then processed by end-repairing, A-tailing
and adaptor ligation, a 4-cycle pre-capture PCR amplification,
targeted sequences capture. Captured DNA fragments were
eluted and amplified by 15 cycle post-capture PCR. The final
products were sequenced with 150 bp paired-end reads on
Illumina HiSeq X platform according to the standard manual.

The raw data converted by HiSeq X were filtered and
aligned against the human reference genome (hg19) using
the BWA Aligner1. The single-nucleotide polymorphisms
(SNPs) were called by using the GATK software (Genome
Analysis ToolKit)2. Variants were annotated using ANNOVAR3.

1http://bio-bwa.sourceforge.net/
2www.broadinstitute.org/gatk
3annovar.openbioinformatics.org/en/latest/

Effects of single-nucleotide variants (SNVs) were predicted
by SIFT, Polyphen-2, and MutationTaster programs. All
variants were interpreted according to the standards for
interpretation of sequence variations recommended by ACMG
and categorized to be pathogenic, likely pathogenic, variants
of unknown clinical significance (VUS), likely benign and
benign. The associated phenotypic features of candidate
genes were analyzed against the patient’s phenotype. Core
phenotypes were extracted and used to acquire a gene list
of the virtual panel by OMIM database4 and Mingjian
(211.149.234.157/login). Re-annotation was conducted
according to the virtual panel. The whole process was shown in
Figure 1.

Sanger Sequencing
The candidate causal genes discovered via WES were then
confirmed by Sanger sequencing, co-segregation analyses among
the family were also conducted. The primers were designed
using Primer Premier 5.0 (Premier Biosoft), PCR was carried
out to amplify the fragments covering the mutated sites.
The PCR products were further purified with Zymoclean
PCR Purification Kit and then sequenced by ABI 3730
DNA Sequencer. Sanger sequencing results were analyzed by

4http://omim.org/

FIGURE 6 | The blood test result of the patient’s serum. Alleviation of alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) and deduction of plasma
cholinesterase indicated liver dysfunction of the patient.
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FIGURE 7 | Pedigree of family members. The elder sister of the patient also
had similar phenotypes.

Chromas Lite v2.01 (Technelysium Pty Ltd., Tewantin, QLD,
Australia).

A CASE OF A DIAGNOSTIC ODYSSEY

The patient is an 8 months old boy who was born to a normal
non-consanguineous Han family by normal vaginal delivery
at full-term. He had tonic seizure epilepsy with sustaining
state when he first came to our hospital. His symptoms get
alleviated obviously after taking levetiracetam 40 mg/kg per day.
The milestone development and comprehensive development
of the patient was also delayed. Physical examination: the
head circumference of the patient was 41 cm, anterior
fontanel was 1∗1 cm. He had internal strabismus but could
chase light, he also presented large ear, low nose, inverted
nipples, low muscle tension with muscle strength-4, weak
tendon reflex, poor head control, round back, fat pad in
buttock, bilateral cryptorchidism and short penis. His body
always leaned forward when sitting (Figure 2). He could not
open his mouth or speak actively. He could neither grab
things initiatively. Laboratory result: MRI result presented
cerebellar atrophy and delayed myelination (Figure 3); chest
CT showed spine kyphosis (Figure 4); EMG result showed
neurogenic damage; the LC-MS/MS result of blood (Table 1),
GC-MS result of urine (Figure 5) and blood test of patient’s
serum (Table 2 and Figure 6) indicated abnormal liver
function.

The elder sister of the patient, 8 years old, also shows
somehow similar phenotypes. At 2 years of age, she started
to have tonic epilepsy and ataxia, mental retardation, so far

can only speak 2–3 words phrase. The pedigree was shown in
Figure 7.

The clinical presentation involved multiple systems
and thus, even he has got treated at many hospitals and
screened by existing detection methods, the disease was still
unclear.

RESULTS

The Gene List of Phenotype-Driven
Virtual Panel
Extracting and inputting the core phenotypes: Ataxia,
Seizures, Esotropia, Puberty and Gonadal disorders, Global

TABLE 3 | Gene list exported by Software Mingjian according to the inputting core
phenotypes.

Number of
consilient
phenotypes

Gene lists

6 PMM2 CEP290

5 GBA, POLG, GP1BB, HSD17B4, PEX1, PEX6, ERCC2
BCS1L, DOCK8, PEX10, TCF4, PEX12, ERCC6, RRM2B,
PEX26, PEX2, ERCC4, PEX16, GRIN2B, PEX5, ERCC1,
WDR73, PEX3, K1F1A, PEX14, PEX19, PEX11B, ADGRG1,
C100RF2

4 ABCD1, SCN1A, ABCC8, PTS, SURF1, BTD, NPC1,GCH1,
ASL, CDKL5, ASS1, ATM, PRF1, GAMT, PDHA1, CPS1,
OFD1, PLA2G6, SOX10, ETHE1, GJA1, ADSL, PROKR2,
FGFR1, PPT1, FKRP, OTX2, POMGNT1, NPC2, SCO2,
SIL1, BBS2, UNC13D, POMT1, TBX1, BBS1, STXBP1,
BBS10, NDUFS4, ALMS1, GJC2, STXBP2, NPHP1,
BRAF,HESX1, NDUFV1, ECHS1, MKKS, ERCC8, GMPPB,
BBS12, NDUFS8, TUBB2B, POLR1C, COQ2, MKS1,
SUCLG1, FMR1, BBS4, POLR3B, SPR, RAB3GAP1,
ADLH5A1, RAF1, NDUFAF2, SDHA, EDNRB, CC2D2A,
RARS2, ARL6, TSEN54, SUOX, SLC17A5, MBD5, POMT2,
SCN2A, MMADHC, SCN9A, MFSD8, NDUFS2, SLC25A1,
BBS7, POLR3A, PCNT, NDUFS6, EDN3, PDHX, PNKP,
BBS9, WWOX, PSAP, DPM1, DYRK1A, NDUFA1, PET100,
TTC8, ALG6, FKTN, DLD, NDUFS1, TMEM216, BBS5,
SDCCAG8, SLC19A3, SYNGAP1, HIBCH, NDUFS7,
COX6B1, NDUFAF1, MTFMT, SLC6A19, ALG1, LARGE,
ERCC3, NOTCH1, CTC1, KCNJ10, GLI2, IFT172, TRIM32,
NDUFS3, LIPT1, DOCK6, DYNC1H1, NDUFAF3, SCO1,
NDUFB9, SLC46A1, NDUFA2, TMEM138, TMEM138,
NDUFB3, DLL4, NDUFAF5, TTC19, GABRA1, COA3,
FOXRED1, STX11, COX10, SLC25A4, DEAF1, ACO2,
NDUFV2, B3GALNT2, GRIN1, APOPT1, NUBPL, TSFM,
CDH15, NDUFA12, CYC1, WDPCP, RAB3GAP2, RFT1,
TACO1, COX14, TMEM231, TMEM237, NDUFA11, GRM1,
NDUFAF6, ZNF423, RPIA, KIRREL3, ATP5A1, NDUFA4,
IFT27, COMT, PDSS2, NDUFAF4, UQCC2, LZTFL1, EOGT,
UQCRQ, NDUFA9, COX15, NDUFA10, UQCRC2, UQCC3,
DHFR, BBIP1, PDP1, CACNG2, PLXND1, COX20,
ARHGAP31, RBPJ, EPB41L1, NIN, CTDP1, MYO5A,
UQCRB, NAT8L, LYRM7, FASTKD2, ZNF592, C5ORF42,
ND3, ND2, TRNV, ND5, ND4, ND1, ATP6, CYTB, ND6,
TRNL1, COX2, COX3, TRNK, RNU4ATAC, COX1, TRNW

3 OTC, DMD, PROC, SDHB. . . altogether 441 genes

2 GLA, PAH, GCK, GALT. . . altogether 543 genes

1 HBB, LDLR, MLH1. . . altogether 1427 genes
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FIGURE 8 | Next-Generation result of patient. The result shows the two heterozygous mutations in the PMM2 gene. (a) c.640G > C; (b) c.430T > G.

FIGURE 9 | Sanger Sequence result of the patient’s family. The result shows that (A) the proband’s father was the heterozygous carrier of the c.430T > C mutation,
while (B) the proband’s mother carried the c.640G > C mutation. The proband’s sister is also the carrier of the compound heterozygous mutations.
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FIGURE 10 | Indicated splicing change by MutationTaster (Schwarz et al., 2014). This mutation might disturb the exon-intron border.

developmental delay, Autosomal recessive (inheritance
pattern). The gene list exported by Mingjian is listed in
Table 3.

Result of Whole-Exome Sequencing
Analysing the gene from gene list generated by
Mingjian according to the core phenotypes, two
heterozygous mutations in PMM2 gene had been found,
c.430T > C in exon 5 (chr16:8905018 T > C) and
c.640G > C in exon 8 (chr16:8941581G > C). These
nucleotide substitutions would result in alterations
in amino acid, F144L and G214R, respectively
(Figure 8).

Further Sanger Sequencing result showed the
proband’s father is the heterozygous carrier of the
c.430T > C mutation, while the proband’s mother
carries the c.640G > C mutation. The proband’s sister
with the same clinical presentation also carries all these
two mutations. Thus, the proband is the compound
heterozygous for the PMM2 p.F144L/p.G214R mutations
(Figure 9).

Mutation p.F144L is a pathologic mutation that has been
reported before. This mutation could create a new site
for restriction enzyme SacI causing extra splicing (Kondo
et al., 1999). Another mutation p.G214R has not been
reported before, however, there is another reported disease-
causing mutation at the same position (c. 640G > A,
G214S) (Schollen et al., 2002; Vicario et al., 2017). Since
this mutation is absent from controls (PM2), detected in
trans with a pathogenic variant (PM3), located at the same
position with a reported pathogenic missense change (PM5),
this variant was classified as “likely pathogenic” according to
ACMG guidelines (Richards et al., 2015). Prediction of this
mutation by MutationTaster, Provean and SIFT also turned
out to be disease causing (probability > 0.99), deleterious
(score = −7.66) and damaging (score = 0), respectively.
The result of MutationTaster (Schwarz et al., 2014) also
indicated splice site change caused by the mutation (Figure 10),
however mRNA experiment was not successfully performed to
prove it.

Result of Other Patients
To assess the diagnostic rate of this method, “phenotype-driven
virtual panel,” we decided to use the same method to analyze more
neurological patients.

Clinical Information of the Patients
The clinical phenotypes of 29 patients were listed in
Table 4.

Patients were collected from the neurology department of
Beijing Children’s Hospital. Of the 29 patients, 19 patients
(65%) are male, 10 patients (35%) are female. The ages range
from 4 months to 17 years 6 months. Most patients have
an intellectual disability. More precise clinical information,
phenotypes and gene sequencing result were available in
Supplementary Material.

Sequencing Results of Patients
The gene sequencing results of these 29 patients was listed in
Table 5.

DISCUSSION

Rare diseases, especially the ones involving multisystem
are challenges for clinical diagnosis. For example, the
PMM2 case described here involves not only the nervous
system but also muscle, gonad, liver, spine, etc. It is hard
to distinguish the fundamental factors of the pathogenesis
by only examine clinical symptoms. Judging merely based
on the clinical information, misdiagnosis was definitely
not a rare event, especially in the generation without gene
detection. A patient in our hospital who was previously
diagnosed as Crouzon syndrome was finally proved to
be Cytochrome P450 oxidoreductase deficiency by NGS
(Hao et al., 2018). Misdiagnosis can result in a completely
different treatment and might have possibility in leading
deterioration. The efficacy of treatment might also be
affected when the optimal treatment time is missed.
Thus, gene sequencing is essential in the diagnosis of rare
diseases.
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TABLE 4 | Phenotype of 29 patients with neurological diseases.

Patient No. Age range Phenotypes

1 2–4 Gait instability, worse in the dark; dystonia

2 0–2 Intellectual disability; hearing abnormity;
congenital cataract; talipes equinovarus; brain
atrophy

3 >4 Intellectual disability; dark skin; abnormal facial
shape

4 2–4 Global development delay; autism; optic
atrophy; gait disturbance

5 0–2 Intellectual disability; abnormal facial shape;
dystonia; muscle weakness

6 >4 Seizures; epileptic encephalopathy; intellectual
disability; microcephaly

7 2–4 Intellectual disability; abnormal facial shape;
autism

8 >4 Intellectual disability; short stature

9 0–2 Seizures; Intellectual disability; microcephaly;
abnormal ear morphology

10 2–4 Seizures; Intellectual disability; abnormality of
metabolism/homeostasis

11 0–2 Intellectual disability; seizures

12 0–2 Intellectual disability; hypertonia; esotropia;
abnormality of metabolism/homeostasis

13 >4 Delayed gross motor development; Intellectual
disability; agenesis of corpus callosum

14 >4 Intellectual disability; cryptorchidism; Short
stature

15 2–4 Intellectual disability; autism

16 2–4 Intellectual disability; autism

17 0–2 Intellectual disability; elevated urine
guanidinoacetic acid

18 2–4 Delayed gross motor development; Intellectual
disability, ulnar claw

19 0–2 Seizures; global development delay; high palate

20 2–4 Seizures

21 >4 Intellectual disability; autism

22 >4 Seizures; glutaric aciduria

23 0–2 Seizures (VB6 improvement); intellectual
disability; dyspepsia

24 0–2 Intellectual disability; microcephaly; abnormality
of metabolism/homeostasis

25 0–2 Seizures; intellectual disability; vitamin B6
deficiency

26 2–4 Intellectual disability; cerebellar atrophy

27 2–4 Seizure; arachnoid cyst

28 0–2 Intellectual disability; autism

29 0–2 Multiple-malformation; dystonia

Core phenotypes of patients with the neurological inherited
disease are similar, i.e., ataxia, seizures, esotropia, global
developmental delay, puberty and gonadal disorders in
this case. It is almost impossible to only rely on clinicians’
experience to diagnose and determine candidate genes.
Evaluating pathogenicity of the candidate mutations,
confirming the gene function, excluding not associated
mutations, choosing the clinically meaningful variants
for Sanger Sequencing according to the similarity of

clinical presentation is the traditional way to annotate
(Jin et al., 2018). However, it is unavoidable that
the function and related diseases of the redundant
phenotype-unrelated mutants will be analyzed. Here,
the phenotype-driven designing “virtual panel” method
could automatically filter the genes that is unrelated to
the patient’s symptoms, so that the analyser could only
focus on the mutations in phenotype-related genes. This
method can decrease the genes that should be analyzed,
shorten the analysing time and make a more efficient
annotation.

Moreover, designing traditional gene panel is a manual
work, there might be bias occurring when selecting the
gene list in the panel. Also, gene list in produced panel
is constant, updating panel aligning with new discoveries
is expensive and time-consuming. The virtual panel we
run is designed by computer software “Mingjian,” which
could avoid the bias due to personal cognition and
judgement. In addition, “Mingjian” is according to the
database of HPO, OMIM, and HGMD which includes
all the known possible genes related to the phenotypes.
Since it is actually “virtual,” updating the gene list is
not an obstacle. Thus, it could contain all the present
discovered, phenotype-related genes. Besides, all the
undiagnosed cases can be re-analyzed when more disease-
causing mutations are discovered and more linkages
between disease and variations are established. Also, every
patient has distinct phenotypes, a designed panel may
not be applicable for every patient. Phenotype-driven
“virtual panel” is based on the phenotypes of the patients,
it may simply achieve low-cost individualized analysis
when typical and standardized core phenotypes are
extracted.

Consequently, we carried out this method in the
diagnosis of more patients with neurological diseases to
access the diagnostic rate. In 29 cases of patients, 21 of
29 patients were found carrying mutations in related
genes. However, according to the inheritance pattern of
genes, 2 heterozygous mutations of autosomal recessive
genes were excluded. Other 19 of 29 patients were all
confirmed with corresponding mutations by Sanger
Sequencing.

For the rest of 10 patients who didn’t confirm with the
relevant mutations, it may fit one of the following conditions.
First, the disease-causing mutations may locate in the undefined
genes or genes that have not been experimentally proved to
be associated with such neurological diseases. For example,
we have found that NCAM1 polymorphisms is associated
with autism in a previously undiagnosed case in year 2014
(Zhang et al., 2014). This kind of cases may be solved in
the future due to development of research. Secondly, some
mitochondrial gene mutations may also be involved but are
outside the detection range of Whole Exome Sequencing.
The symptoms of most mitochondrial diseases include seizures,
mental retardation, developmental delay, metabolic disorders,
muscle problems and visual disorders as well (Fang et al., 2017).
Both mitochondrial DNA and nuclear DNA mutations may
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TABLE 5 | Gene sequencing result of 29 patients with neurological diseases.

Patient No. Gene Position Nucleotide
variant

Protein
variant

Inheritance
pattern

1 COMP chr19:18896846 c.1418A > G p.D473G AD

2 DYNC1H1
CRYBB2

chr14:102499762
chr22:25627591

c.10354G > A
c.470C > G

p.A3452T
p.P157R

AD

3 ADNP chr20:49520469 c.64dupA p.I22fs AD

4 SYNE2 chr14:64675492 c.18218T > C p.I6073T AD

5 COL6A3 chr2:238245098
chr2:238275918

c.8645C > T
c.4912G > A

p. P2882L
p.A1638T

AD/AR

6 CHD2 chr15:93498742 c.1809G > T p.K603N AD

chr15:93498743 c.1809+1G > T Splicing

7 HCFC1 chrX:153220254 c.3596G > C p.R1199P XR

8 SUCLG1 chr2:84652709
chr2:84660557

c.884G > A
c.592A > G

p.V282I
p.I198V

AR

9 SMARCAL1 chr2:217285085 c.926G > A p.S309N AR

chr2:217332750 c.2225C > T p.T742M

10 MTHFR chr1:11856378 c.665C > T p.A222V AR

chr1:11863038 c.136C > T p.R46W

11 CDKL5 chrX:18582616 c.119C > T p.A40V XD

12 PDGFRB chr5:149512504 c.936G > C p.E312D AD

13 TUBA1A chr12:49579133 c.1016G > T p.R339L AD

14 SMC1A chrX:53441721 c.331T > G p.F111V XD

15 HUWE1 chrX:53578276 c.9047A > C p.E3016A Unknown

MAPT chr17:44060834 c.664C > G p.R222G AD

16 MECP2 chrX:153296153 c.1162C > T p.P388S XD/XR

KCNC1 chr11:17793707 c.1066G > A p.V356M AD

17 DYNC1H1 XDH chr14:102463472
chr2:31596756
chr2:31598377

c.3665A > G
c.1669G > A
c.1471G > A

p.N1222S
p.D557N
p.A491T

AD AR

18 IGHMBP2 chr11:68702842
chr11:68704545

c.1708C > T
c.2598_2599del

p.R570X
p.K866Sfs

AR

19 CHD2 chr15:93563380 c.5045A > G p.D1682G AD

CSF1R chr5:149433641 c.2909_2910insATCA p.Q970fs AD

EZH2 chr7:148544336 c.55G > A p.V19I AD

20 ND ND ND ND ND

21 ND ND ND ND ND

22 ND ND ND ND ND

23 ALDH7A1 chr5:125919644 c.454A > G p.I152V AR

24 ND ND ND ND ND

25 ND ND ND ND ND

26 SLC22A5 chr5:131728257 c.1400C > G p.S467C AR

27 ND ND ND ND ND

28 ND ND ND ND ND

29 ND ND ND ND ND

Twenty one of Twenty nine patients have been sequenced with a suspected gene, however, 2 of them have not corresponded with the inheritance pattern, i.e., autosome
recessive gene with only one mutation. AD, autosomal dominant; AR, autosomal recessive; XD, X-linked dominant; XR, X-linked recessive; ND, not detected with related
mutations.

contribute to dysfunction in mitochondria (Liu et al., 2014,
2015; Fang et al., 2017). Therefore, the disease-causing variants
in these undiagnosed cases may be located in mitochondrial
DNA. Moreover, insertion or deletion which is larger than
50 kb or chromosomal inversion may also cause disease.
However, these mutations could not be identified by NGS due
to technical limitations. This may not be a rare event since
we previously diagnosed a novel DDC gene deletion in the

patients who was suspected to carry mutations in DDC gene
but only diagnosed with single missense variant (Dai et al.,
2018).

Overall, the diagnostic rate in this study was 19/29 = 65.52%,
which far exceeds the known diagnostic rate of Whole–Exome
Sequencing (25–30%). Therefore, the phenotype-driven virtual
panel is an effective method to analyze WES data of neurological
disease.
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