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Abstract: In the current study, our research group proposed an asymmetric lower extremity exoskele-
ton to enable above-knee amputees to walk with a load. Due to the absence of shank and foot, the
knee and ankle joint at the amputation side of the exoskeleton lack tracking targets, so it is difficult
to realize the function of assisted walking when going up and downstairs. Currently, the use of
lower-limb electromyography to predict the angles of lower limb joints has achieved remarkable
results. However, the prediction effect was poor when only using electromyography from the thigh.
Therefore, this paper introduces hip-angle and plantar pressure signals for improving prediction
effect and puts forward a joint prediction method of knee- and ankle-joint angles by electromyog-
raphy of the thigh, hip-joint angle, and plantar pressure signals. The generalized regression neural
network optimized by the golden section method is used to predict the joint angles. Finally, the
parameters (the maximum error, the Root-Mean-Square error (RMSE), and correlation coefficient (γ))
were calculated to verify the feasibility of the prediction method.

Keywords: asymmetric lower extremity exoskeleton; electromyographic signals; artificial neural
network; joint-angle prediction; going up and downstairs

1. Introduction

The number of patients with lower-limb disabilities has been rapidly increasing. Most
of them have lost their lower limbs due to natural disasters, traffic accidents and wars [1,2].
Currently, prostheses are the most significant tools to compensate for the walking function
of lower-limb amputees [3–7]. However, most prostheses on the market, either passive
or semiactive, cannot realize the joints’ active swinging, and thus fail to achieve assisted
walking [8]. The lower extremity exoskeleton (LEE) assists amputees in rehabilitation
training [9–11]. The LEE wearer can move around safely and flexibly for a long time at
high speed under heavy load. The LEE has been widely used in marching, weight-bearing
combat, and medical rehabilitation proposes [12,13].

Considering the desire of above-knee amputees to walk like healthy persons and even
walk with a load, as shown in Figure 1, our research group designs an asymmetric LEE [14]
with two working modes, including the active mode and the semiactive mode. Under the
active mode, the LEE motor provides a driving torque, enabling the wearer to walk with a
load. When the prosthesis part is detached from the LEE, the prosthesis part can work as a
normal prosthesis in the semiactive mode.

There are many problems that need to be solved in the research on asymmetric LEE.
Additionally, this paper focuses on the study of how the prosthesis can better assist the
patient to go upstairs and downstairs, when the prosthesis is disassembled from the LEE
and worn on the patient’s residual limb to work alone. Therefore, it is important to
obtain the joint angle of human lower limbs when controlling the prosthesis. Previous
researchers have used electromyography (EMG) for joint-angle prediction. Chen et al. [15]
and Zhang et al. [16] used the BP network to map the relationship between joint angles
and EMG signals. Du et al. [17] used the least-squares extreme learning-machine algorithm
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based on the golden section to establish a nonlinear prediction model between surface
electromyography (sEMG) and lower-limb joint angle. However, they used the EMG signals
from the thigh and the calf. They did not evaluate the corresponding relationship between
joint angles and EMG signals when walking up and downstairs, nor did they use the plantar
pressure signals for the joint-angle prediction. Gaudet et al. [18] achieved the classification
of upper limb phantom movements in transhumeral amputees using electromyographic
and kinematic features. Previous scholars have proven that sEMG signals of residual limbs
of amputation patients could be used for motion intention recognition, which verified the
feasibility of sEMG signals in motion control for the prosthesis [19–21]. The muscles on
the thigh stump could also be activated when amputee moves. The weak signals could be
amplified and then be filtered, therefore the effective function could be obtained. Because
of the lack of above-knee amputees to help with our research, the volunteers in this work
were healthy people. A previous paper [22] demonstrates the feasibility and applicability
of using healthy human body signals to study amputees. sEMG signals collected in the
experiment were all from the muscles on the thigh related to the hip joint swing, to simulate
the case of above-knee amputees as much as possible. In this study, we found that the
existing prediction methods based on angle and sEMG signals are slightly less accurate
during the support period. Considering that the plantar pressure signal is closely related to
the support period and has the characteristics of periodic changes, this natural repeatability
was exploited to improve the accuracy of the estimation method, which is the novelty
of this paper. The research content is shown in Figure 2. This paper is organized as
follows. Section 2 starts by the establishment of a data acquisition system, the collection
and processing of sEMG, joint angle and plantar pressure signals. It ends with the design
of an artificial neural network that focus on the angle estimation. The obtained results
are presented and analyzed in Section 3, while Section 4 discusses them. Conclusions are
presented in Section 5.
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Figure 2. Flow chart of joint-angle prediction.

2. Experiment and Methods
2.1. Data Acquisition System Establishment

To obtain EMG, joint angle, and plantar pressure signals synchronously, a data acqui-
sition system was designed in this paper, as shown in Figure 3. This system was composed
of thin-film pressure sensors, EMG sensors, six-axis angle sensors, a data acquisition card,
an ARDUINO MEGA microcontroller, etc. To acquire the pressure signals under the big
toe, forefoot, and heel in real-time, three thin-film pressure sensors were placed in an insole,
as shown in Figure 4. Due to the limitation of sensors, different signals were collected
by different devices. In order to ensure data synchronization, we figured out a way to
solve the problem of synchronization. Angle signals and plantar pressure signals were
collected by Arduino synchronously, while sEMG signals and plantar pressure signals
were collected by the data acquisition card synchronously. During the data acquisition
process, plantar pressure signals were the same. Pressure signal data were generated si-
multaneously although they were collected by different equipment. Based on the pressure
signals, the angle and the sEMG signals could be time-synchronized. The frequency of
sEMG collected by the data acquisition card was very stable. Additionally, the effective
part of the sEMG signal was mainly distributed in the range of 0–500 Hz. According to
the sampling theorem, the frequency is finally set as 2000 Hz. Band-pass filtering was
performed on sEMG signals to remove interference, and the root-mean-square eigenvalues
were extracted at every 20 data points. So, the final frequency of processed sEMG signals
is 100 Hz. The frequency of raw plantar pressure is also 2000 Hz. Then, the averages of
plantar pressure signals were extracted as the eigenvalues of pressure data every 20 points.
After processing, the frequency of the pressure signal is 100 Hz. In the process of collecting
angle signals, due to equipment problems, the sampling frequency of the angle signal was
affected. In order to ensure that the frequency of the angle signal was consistent with
the sEMG and pressure signal, the angle signal was first fitted and then resampled, and
the final frequency was 100 Hz. As a result, angle, pressure, and sEMG signals could be
frequency-synchronized.
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Figure 4. Position of pressure sensors.

2.2. Data Acquisition

The data in this paper were collected from three healthy males (aged 25 ± 2 years).
Each one walked upstairs and downstairs 20 times. Before the experiment, no vigorous
exercise was done by the technicians, and alcohol was used to clear the skin and increase
the conductance. The EMG signals were measured in the rectus femoris, biceps femoris
and semitendinosus muscles of the thigh. Furthermore, the angle signals and plantar
pressure signals were simultaneously acquired. As examples, two data acquisition photos
are shown in Figure 5.
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2.3. Surface EMG Signal Preprocessing

According to the Nyquist sampling theorem, the sampling frequency of EMG signals
in this paper was set at 2000 Hz. The raw EMG signals were then collected, and signals
were filtered by a bandpass filter with a frequency range of 20–500 Hz. The parameters of
filter is shown in Table 1. One of the filtered signals is shown in Figure 6.
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Table 1. Main parameters of band-pass filter.

Parameters Value

Pass-band Upper Cutoff Frequency (Hz) 20
Pass-band Lower Cutoff Frequency (Hz) 500
Pass-band Maximum Attenuation (dB) 3

Stop-band Upper Cutoff Frequency (Hz) 10
Stop-band Lower Cutoff Frequency (Hz) 570
Stop-band Minimum Attenuation (dB) 20
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Next, the characteristic values of sEMG signals that were filtered were extracted. There
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RMS values were calculated every 20 data points by:
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2.4. Joint-Angle Signal Processing

The angle signals were sampled twice to unite the sampling frequency of sEMG
signals, so the final frequency of the angle was 100 Hz. In this paper, piecewise polynomial



Sensors 2021, 21, 7199 6 of 16

curve fitting was used for resampling of joint-angle signals. Figure 8 shows one of the
piecewise curve-fitting results during going up the stairs.
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2.5. Plantar Pressure Signal Processing

The plantar pressure signals were processed by taking the time windows because
the pressure signal and sEMG signals were collected synchronously. Each window has
20 points, and the average value of the data in each window is calculated as the charac-
teristic value of pressure signals. The raw plantar pressure signals and the characteristic
values are shown in Figures 9 and 10, respectively.
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2.6. GS-GRNN Network for Angle Estimation

In the machine-learning algorithm, the support vector machine (SVM) performs efficiently
in pattern recognition [23,24]; however, it is not effective in dealing with nonlinear mapping
problems. This paper used an artificial neural network to map the joint angles [25–27]. Gener-
alized regression neural network (GRNN) is a network developed from radial basis function
neural network, as shown in Figure 11.
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Suppose the joint probability density of random variable x and random variable y
is f (x, y), and the observed value of x is X, then the regression of y relative to X is the
prediction output of the neural network as follows:

Ŷ(X) =

n
∑

i=1
Yi exp[− (X−Xi)

T(X−Xi)
2σ2 ]

n
∑

i=1
exp[− (X−Xi)

T(X−Xi)
2σ2 ]

(2)

where Ŷ is the prediction result of Y under the condition that the input is X, Xi and Yi
are the observed values of X and Y, n is the number of samples, σ is the smoothing factor
(σ > 0), D2

i = (X− Xi)
T(X − Xi) is the square of Euclidean distance between X and Xi.

The transfer function of the hidden layer is:

pi = exp[− (X− Xi)
T(X− Xi)

2σ2 ] (3)

The units in the summation layer are the denominator and numerator of Equation (2),
respectively:

SD =
n

∑
i=1

Pi (4)

SN =
n

∑
i=1

YiPi (5)

Therefore, the result of the output layer is:

Ŷ =
SN
SD

(6)

The smoothing factor affects the network performance, which has a significant in-
fluence on the network. In this paper, the generalized regression neural network was
optimized by golden section algorithm (GS-GRNN). The objective function is the mean
square error between the predicted value Yi of the joint angle and the measured value of Y:

E =
1
N

N

∑
i=1

(Yi −Y)2 (7)
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where N represents the number of predicted samples. The flow chart of the golden section
algorithm is shown in Figure 12, where ϕ(t) is the objective function, ε is the termination
limit, and σ is the value range of (a, b).
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2.7. Data Normalization Processing

Before the training of an artificial neural network, the data was normalized to avoid
singular sample data. In this paper, the data were normalized by:

x′ =
x−minA

maxA−minA
(8)

where x is the original data, x′ is the corresponding value after normalization, maxA is the
maximum value set, and minA is the minimum data set.

3. Analysis of Results

GS-GRNN was used to predict the joint angles during the going upstairs and down-
stairs processes. The inputs were EMG signals of the thigh (IN1), EMG signals and angle
signals of the hip joint (IN2), EMG signals, angle signals of the hip joint and plantar pres-
sure signals (IN3). The outputs were angle signals of the hip joint, knee joint, and ankle
joint. Among them, one third of that data was used for validation and testing, and two
thirds of that data was used for training. We take one set of experimental data during going
upstairs and downstairs as examples. Figures 13–18 show the prediction results of each
joint angle.
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To further analyze the prediction results, the maximum error, the Root-Mean-Square
error (RMSE), and correlation coefficient (γ) were calculated as shown in Figures 19–24.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (9)
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γ =

1
N

N
∑

i=1
(xi − x)(yi − y)√

1
N

N
∑

i=1
(xi − x)2

√
1

Na

Na
∑

i=1
(yi − y)2

(10)

where, xi is the predicted value, yi is the actual value, N is the number of samples, x and y
are the mean values of the predicted value, and the actual measured value, respectively.
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4. Discussion

We found that the addition of plantar pressure signals can effectively improve the
prediction effect of knee and ankle angles. The prediction effect was the best when imputing
EMG signals, hip-joint angle signals, and plantar pressure signals synchronized with each
other. During going upstairs, the correlation coefficients of the hip-, knee-, and ankle-joint
angles can reach 0.9986, 0.9649 and 0.9771, respectively. The root-mean-square errors are
1.1530, 3.0077 and 2.8407, respectively. During going downstairs, the correlation coefficients
can reach 0.9921, 0.9893 and 0.9635, and the root-means-square errors are 1.1725, 3.5974 and
3.3239, respectively. As discussed in the results above, based on the GS-GRNN network,
lower-limb-joint angle prediction is realized in this paper. When only the hip-joint angle
was used as an input, low accuracy and high error were achieved. When the input included
angle and EMG signals, the accuracy and the correlation coefficients were significantly
improved. When the angle, EMG, and plantar pressure signals were simultaneously
imported into GRNN together, the accuracy and the correlation coefficient were further
improved. The addition of plantar pressure signals expands the sample data. Generally,
when the input signals and data samples increase, the neural network becomes more
trained, and more accurate results could be obtained.
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5. Conclusions

This paper optimizes the joint-angle prediction method by integrating hip-joint angle
signals, sEMG signals, and plantar pressure signals to solve the problem of online gait
planning of asymmetric lower extremity exoskeletons. Furthermore, each joint follows
a periodic trajectory in the function of the gait phase. Therefore, the plantar pressure
signal that contains gait phase information improves this work and enriches the motion
information of the input data, improving the prediction accuracy.

GS-GRNN used for joint-angle prediction performs well in this paper. The prediction
results confirmed the optimization method’s feasibility, and finally, a joint-angle prediction
method for above-knee amputees was developed, which provided a favorable reference
for LEE’s movement control.

To ensure the patients’ safety, we have been recently practicing these techniques on
healthy people. However, with the development of research, we will try to recruit amputees
so that we can to make this algorithm more adaptable.
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