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Abstract 

Objective: Many prediction models for Coronavirus Disease 2019 (COVID-19) have been 

developed. External validation is mandatory before implementation in the Intensive Care Unit 

(ICU). We selected and validated prognostic models in the Euregio Intensive Care COVID (EICC) 

cohort.  

Study Design and Setting: In this multinational cohort study, routine data from COVID-19 

patients admitted to ICUs within the Euregio Meuse-Rhine were collected from March to 

August 2020. COVID-19 models were selected based on model type, predictors, outcomes, and 

reporting. Furthermore, general ICU scores were assessed. Discrimination was assessed by 

area under the receiver operating characteristic curves (AUCs) and calibration by calibration-

in-the-large and calibration plots. A random-effects meta-analysis was used to pool results.  

Results: 551 patients were admitted. Mean age was 65.4±11.2 years, 29% were female, and 

ICU mortality was 36%. Nine out of 238 published models were externally validated. Pooled 

AUCs were between 0.53 and 0.70 and calibration-in-the-large between -9% and 6%. 

Calibration plots showed generally poor but, for the 4C Mortality score and SEIMC score, 

moderate calibration.  

Conclusion: Of the nine prognostic models that were externally validated in the EICC cohort, 

only two showed reasonable discrimination and moderate calibration. For future pandemics, 

better models based on routine data are needed to support admission decision-making.   

Keywords: COVID-19, SARS-CoV-2, Critical Care, Intensive Care Unit, Prediction, Prognosis, 

Word count: 197 

Running title: Predicting COVID-19 prognosis in the ICU remains challenging: external validation 

in a multinational regional cohort 
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1 Introduction 1 

During the Coronavirus Disease 2019 (COVID-19) pandemic, many prediction models were 2 

developed for diagnostic and prognostic purposes. The accurate prediction was paramount to 3 

support clinical decision-making, particularly during the early phase of the pandemic when 4 

little was known about the manifestations of the disease caused by the new Severe Acute 5 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, prediction of patient 6 

outcome can improve effective management of bed availability in times of a pandemic where 7 

knowledge and capacity are under pressure. This was especially the case in the Intensive Care 8 

Unit (ICU), as many patients with severe SARS-CoV-2 infection required organ support there 9 

[1, 2].  10 

 11 

A prediction model needs to meet several criteria to be useful in daily clinical practice. In the 12 

third update of the living systematic review by Wynants et al. [3], 238 prediction models for 13 

prognosis and diagnosis in COVID-19 have been identified and assessed for risk of bias. The risk 14 

of bias of all included models was evaluated as being high or, at best, unclear. For a model to 15 

perform well, both discrimination and calibration are important. In addition, model predictors 16 

must be routinely available. Furthermore, models need to be applicable to the population and 17 

settings requiring prediction, such as prognosis in the ICU, particularly during scarce bed 18 

availability. However, external validation of prediction models, which means testing the model 19 

in another sample of patients than it has been developed in, is often omitted, particularly in 20 

the ICU [4]. External validation is essential to generalise results to future patients and should 21 

precede the implementation of models in daily clinical practice [5, 6]. Several external 22 

validation studies of prediction models for COVID-19 patients have been conducted. However, 23 

these studies focused mostly on patients admitted to the hospital ward instead of the ICU [7-24 
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9]. There is still a lack of ICU-specific prediction models, and applicability of general models to 25 

the ICU population is likely possible for some models only [3, 10].  26 

 27 

Therefore, we aimed to evaluate the predictive performance of published prediction models 28 

by selecting promising prognostic prediction models with clinically available predictors for 29 

external validation in our multinational COVID-19 cohort consisting of patients admitted to the 30 

ICUs within the Euregio Meuse-Rhine. As the majority of the 238 evaluated prediction models 31 

were developed at the beginning of the pandemic, we used data from the first pandemic wave 32 

for external validation.   33 
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2 Materials and Methods 34 

The paper is reported according to the TRIPOD clustered data reporting guideline [11-14]. 35 

Every section of the Materials and Methods is detailed in the Appendix A.2.  36 

 37 

2.1 Model selection  38 

Prognostic prediction models for COVID-19 patients in the ICU were identified and extracted 39 

from https://www.covprecise.org/, the international Precise Risk Estimation to optimise 40 

COVID-19 Care for Infected or Suspected patients in diverse settings (COVID-PRECISE) group, 41 

in collaboration with the Cochrane Prognosis Methods Group according to the living systematic 42 

review of Wynants et al. (Figure 1) [3]. Inclusion and exclusion criteria are described in the 43 

Appendix A.2.1 and the selection process is shown in Figure 1. 44 

 45 

2.2 External validation cohort 46 

All patients with PCR and/or chest CT scan confirmed COVID-19 and respiratory failure 47 

admitted to ICUs of any of the seven participating Euregio hospitals were consecutively 48 

included between March 2nd and August 12th, 2020 (Figure 2) [15]. Hence the study sample 49 

size was determined pragmatically. An extensive description of our methods and cohort has 50 

been described in the Appendix A.2.2 and elsewhere [16, 17].  51 

 52 

2.3 Predictors 53 

Using a predefined study protocol [16, 17], predictor data up to 24 hours of ICU admission 54 

were acquired from electronic medical records and manually or electronically collected 55 

depending on the centre. The collected variables used as predictors and outcomes are 56 

described in A.2.3 and Table A.1 of the Appendix [18]. Unknown, inappropriate, and 57 
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inapplicable data were considered missing at random since missingness of data were related 58 

to other variables in the dataset and unlikely to be related to the true value itself [19-21].  59 

 60 

2.4 Outcomes 61 

Follow-up ended when patients were either discharged from the ICU or died in the ICU and 62 

was determined as ICU discharge or death. Patients whose outcome status after transportation 63 

could not be retrieved after re-contacting the hospital were censored (Appendix A.2.4). 64 

Sensitivity analyses were performed without censored patients. 65 

 66 

2.5 Description of included prediction models 67 

The study characteristics of included prediction models and risk of bias are described in more 68 

detail in the Appendix A.2.5 [22-24]. The risk of bias of the individual studies was scored by 69 

Wynants et al. [3] using the Prediction model study Risk Of Bias Assessment Tool (PROBAST) 70 

[25].  71 

 72 

2.6 Ethics approval 73 

Ethical approval was obtained from the medical ethics committee (Medisch Ethische 74 

Toetsingscommissie 2020-1565/3 00 523) of Maastricht UMC+.  75 

 76 

2.7 Statistical analyses 77 

IBM SPSS Statistics version 25 (IBM corporation, NY, USA) and R version 4.0.4 were used for all 78 

analyses. Microsoft PowerPoint version 16.59 was used to create figures. Data are presented 79 

as mean ± SD, median [IQR], or percentages. Descriptive statistics were performed for the 80 

whole cohort as well as for the individual Euregio countries. We included all patients in the 81 
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analyses. In addition, sensitivity analyses were performed without censored transferred 82 

patients who, in the main analysis, contribute to the survived group. Missing data were 83 

imputed using multiple imputation if <50% of values on a variable were missing. Variables with 84 

more missings were omitted from the analysis. The number of imputations was based on the 85 

percentage of patients with missing data [26]. Continuous and categorical predictors were 86 

appropriately handled using the same definitions and cut-off values as the development study. 87 

The prognostic index (PI) was calculated for each patient by the sum of the models’ regression 88 

coefficients, reported in the development studies, multiplied by the individual patient values. 89 

The PI was transformed into a probability score when a model intercept was reported. For the 90 

Sequential Organ Failure Assessment (SOFA) score and the Acute Physiology And Chronic 91 

Health Evaluation II (APACHE II) score, risk scores instead of separate variables were already 92 

available for all patients and therefore directly assessed. The performance of the models was 93 

assessed by both discrimination and calibration measures. Model discrimination, the ability to 94 

separate patients who died in the ICU and those who are discharged, was determined as the 95 

area under the receiver operating characteristic (ROC) curve (AUC). An AUC of 0.5 implies 96 

inability to distinguish between those who die in the ICU and those who are discharged, 97 

whereas one means perfect discrimination. Model calibration refers to the agreement 98 

between observed risk and the predicted risk [27, 28]. Calibration was assessed by calibration-99 

in-the-large (i.e., the difference between the predicted and observed probability of mortality) 100 

and by visual inspection of the calibration plot. Calibration could only be assessed in models 101 

that reported an intercept to calculate a probability instead of a unitless risk score only. The 102 

cohort was divided into deciles according to the estimated probability score, displayed by 103 

points in the calibration plot. Perfect calibration is shown by the diagonal reference line, 104 

indicating agreement between predicted and observed probabilities over the range of 105 
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predictions. Dots located above the reference line indicate underestimation by the model, 106 

while overestimation is reflected by the points below the reference line. Pooled AUCs and 107 

calibration-in-the-large were calculated for the three Euregio country parts using random-108 

effects meta-analysis and 95% confidence intervals were computed [12, 13].   109 
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3 Results 110 

3.1 Model selection 111 

A total of 238 prediction models for COVID-19 were identified by COVID-PRECISE. Firstly, 129 112 

models were excluded because they were diagnostic or not applicable to the ICU population 113 

(Figure 1). Subsequently, 45 models were excluded due to unusable outcome measures such 114 

as ICU admission or severe COVID-19 pneumonia. Forty-three models were excluded as full 115 

information on predictors, intercepts, and coefficients was not present in the original article or 116 

supplement. Of the 21 potential prognostic models, three were not applicable since some 117 

predictors were not relevant for the ICU (e.g., cough, fatigue), four models included predictors 118 

that were not routinely available in Euregio ICUs (e.g., interleukin 6 or pro-calcitonin), and 119 

seven were excluded because it contained predictors that were more than 50% missing in our 120 

cohort. The APACHE II model [29] is widely used in the ICU and was added as prognostic model. 121 

The SOFA and CURB-65 score, models that are also broadly implemented, were already 122 

included in the models selected via COVID-PRECISE. Furthermore, the Spanish Society of 123 

Infectious Diseases and Clinical Microbiology (SEIMC) score [30], which applied to the Euregio 124 

Intensive Care COVID (EICC) cohort, but was not available in COVID-PRECISE, was investigated. 125 

Thus, nine potential prognostic prediction models were selected for external validation. One 126 

model had an unclear risk of bias, five had a high risk of bias, and three models comprised 127 

already established prediction scores (Figure 1 and Table 1). 128 

 129 

3.2 External validation cohort 130 

From March 2nd to August 12th, 2020, 551 patients with COVID-19 pneumonia were admitted 131 

to seven ICUs across the Netherlands, Belgium, and Germany (Figure 2). Demographic and 132 

clinical characteristics and outcome measures are reported in Table 2 for the full EICC cohort 133 
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and in Table A.2 (Appendix) for the individual country parts. Mean age of the cohort was 65.4 134 

± 11.2 years, the mean body mass index was 29.0 ± 5.3 kg/m2, and 29% were female. At ICU 135 

admission, disease severity, as defined by APACHE II and SOFA scores, was 16.1 ± 5.5 and 6.2 136 

± 3.0.  137 

 138 

3.3 Predictors 139 

In our dataset, 309 (56%) of the patients had at least one missing value on any of the variables 140 

from the full set of predictors. Therefore, the number of imputations of the multiple 141 

imputation model was set to 56.  142 

 143 

3.4 Outcomes 144 

The ICU mortality rate was 36%, and the median [IQR] length of stay was 15.2 [6.0-29.9] days 145 

(Table 2). From 27 (5%) transported patients, survival status could not be retrieved after re-146 

contacting individual hospitals and was therefore censored. 147 

 148 

3.5 Model performance 149 

3.5.1 Unclear risk of bias prognostic model for COVID-19 150 

The 4C Mortality score [22] had a pooled AUC of 0.70 (95% CI 0.64-0.76) for the full cohort 151 

(Table 3). Pooled calibration-in-the-large was -1% (95% CI -19-17%) (Table 3). The calibration 152 

plot is shown in Figure 3. Sensitivity analyses (Table A.3 and Figure A.1, Appendix) and country-153 

specific analyses (Table A.4, Appendix) showed highly comparable discrimination. Calibration-154 

in-the-large, however, varied between the three Euregio country parts (Table A.4, Appendix). 155 

 156 

 157 
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3.5.2 High risk of bias prognostic models for COVID-19 158 

The DL-death and DCSL-death model [23] had a pooled AUC of 0.53 (95% CI 0.43-0.64) and 159 

0.53 (95% CI 0.42-0.63), respectively. The pooled AUC of the Clinical model [24] was 0.70 (95% 160 

CI 0.65-0.74), the Mechanistic COVID-19 lethality score [31] 0.67 (95% CI 0.62-0.72), and the 161 

SEIMC [30] 0.70 (95% CI 0.65-0.74) (Table 3).  162 

 163 

Pooled calibration-in-the-large were -2% (95% CI -14-10%) for the DL-death model, 6% (95% CI 164 

-6-18%) for the DCSL-death model, and -5% (95% CI -20-11%) for the SEIMC model (Table 3). 165 

Figure 3 shows calibration plots for the DL-death, DCSL-death, and SEIMC models. Similar 166 

results were observed in sensitivity analyses (Table A.3 and Figure A.1, Appendix). Minor 167 

differences in model discrimination existed between the three Euregio country parts, with the 168 

DL-death and DCSL-death having the lowest AUC in the Belgian part, whereas for the Clinical 169 

model, Mechanistic COVID-19 mortality score and SEIMC lowest AUCs were observed in the 170 

German part (Table A.4, Appendix). Calibration-in-the-large, however, varied largely between 171 

the individual countries (Table A.4, Appendix).  172 

 173 

3.5.3 Established prognostic models to predict mortality for acute respiratory illness and ICU 174 

patients 175 

The pooled AUC was 0.68 (95% CI 0.64-0.73) for the CURB-65 score [32], 0.65 (95% CI 0.60-176 

0.69) for the APACHE II score [29], and 0.62 (95% CI 0.56-0.68) for the SOFA score [33] (Table 177 

3).  178 

Pooled calibration-in-the-large was -9% (95% CI -21-3%) for the APACHE II score, and the 179 

calibration plot is shown in Figure 3. Similar model performance was observed in sensitivity 180 

analyses (Table A.3 and Figure A.1, Appendix). However, the German part had a lower AUC 181 
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than the Belgian and Dutch Euregio parts, whereas calibration-in-the-large was best in the 182 

Belgian part (Table A.4, Appendix).  183 
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4 Discussion 184 

In this study, we reviewed 238 prognostic prediction models for COVID-19 and externally 185 

validated nine using routinely available data in a multinational cohort of COVID-19 patients 186 

admitted to seven ICUs in Belgium, the Netherlands, and Germany during the first pandemic 187 

wave. In addition, established ICU prediction models were added for external validation in 188 

COVID-19 patients. Most studied models, among which prediction models for COVID-19 rated 189 

as high risk of bias and established ICU scores, revealed poor performance regarding both 190 

discrimination and calibration. However, the 4C Mortality score and SEIMC showed reasonable 191 

model performance after external validation in an ICU cohort. Taken together, this shows that, 192 

despite the huge effort to develop many models early in the pandemic, their clinical value to 193 

support decision-making is, overall, poor. This highlights that data infrastructure for high-194 

quality studies on model development, external validation, and implementation are required 195 

to improve data-driven decision support in future pandemics [34]. 196 

 197 

A direct comparison of model performance is hampered as case-mix differences exist between 198 

the model development population and the EICC cohort. These case-mix differences as well as 199 

possible explanations for the observed model performance, are extensively described in A.4 of 200 

the Appendix. Except for the APACHE II score and SOFA score, the included models were 201 

developed and/or validated in hospitalised patients or outpatients, with none of them or only 202 

a small subset of the cohort being admitted to the ICU. All patients included in the EICC cohort, 203 

on the contrary, were admitted to the ICU, indicating more severe illness and/or advanced 204 

disease course. Furthermore, in the ICU, patient selection likely played a role as patients with 205 

a high age and burden of comorbidities were often excluded from ICU admission. The EICC 206 

cohort reflects a case-mix with a relatively homogeneous population compared to model 207 
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development studies on the hospital ward or general population, as patients at highest risk, 208 

who are not accepted for ICU admission, and lowest risk, not requiring intensive organ support 209 

were likely not included. However, considerable heterogeneity was observed in the EICC 210 

cohort [16], also illustrated by differences in model performance between the Euregio country 211 

parts. Since the discriminatory performance depends on case-mix variability, models 212 

developed or validated in hospitalised or outpatient populations showed lower AUCs after 213 

external validation in our relatively homogeneous ICU cohort [27, 28]. Previous validation 214 

studies evaluating prediction models in other cohorts often included general populations, 215 

explaining why higher AUCs are observed compared to the EICC cohort. Therefore, it is 216 

inappropriate to directly compare AUC from validation studies in a general population to the 217 

ICU population. Nevertheless, high-quality prediction models could support a multifactorial 218 

decision when stress on ICU bed availability increases during a pandemic, particularly when 219 

driven by an intervening national healthcare policy [16, 35].  220 

 221 

4.1 Limitations 222 

We evaluated nine prognostic models, including only one model at unclear risk of bias, five 223 

models at high risk of bias, and three established models with moderate to poor performance, 224 

which indicates that there is still a lack of well-performing and valid prediction models for the 225 

ICU population. However, we could not evaluate all high risk of bias prediction models as data 226 

on certain variables were missing, excluding these prediction models. Our analyses cannot 227 

provide evidence that other high risk of bias models should be discouraged, although as a proof 228 

of concept, our study may warrant caution, at the very least. Furthermore, we externally 229 

validated the APACHE II score instead of the more recent and advanced APACHE IV score [36] 230 

as data for the APACHE II score were more complete. Another limitation was the lack of 231 
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information after transport to another ICU for 25 patients. However, we performed sensitivity 232 

analyses without these patients that showed comparable results. In addition, the original 233 

article of certain models did not report an intercept, and calibration could therefore not be 234 

assessed. The included COVID-19 prediction models were developed in the early phase of the 235 

pandemic and externally validated using patient data from the first pandemic wave. The 236 

dynamic development of the virus was not considered and, therefore, our results could not be 237 

generalised to ICU patients admitted later in the pandemic and suffering from other SARS-CoV-238 

2 variants. However, first pandemic wave data were used, since the stress on healthcare 239 

systems and the accompanying need for prediction was highest during that period.  As 240 

considerable heterogeneity is observed between SARS-CoV-2 variants and pandemic waves, 241 

models should be externally validated or updated in other pandemic wave cohorts [37, 38]. 242 

Model updating and extension could further improve model performance which has not been 243 

performed yet [27, 28]. Our study, therefore, sets the stage for model updating and extension 244 

of the promising 4C Mortality score and SEIMC model.  245 
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5 Conclusions 246 

In this study, nine out of 238 available COVID-19 prognostic models were externally validated 247 

in the EICC cohort based on routinely collected data. Only two of these nine models, the 4C 248 

Mortality score and the SEIMC, showed reasonable discrimination and moderate calibration. 249 

For future pandemics, better prediction models based on routine data are essential to improve 250 

data-driven decision support. Therefore, infrastructure for high-quality studies on model 251 

development and external validation are required. 252 
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Table 1 Model characteristics of included prognostic prediction models 253 

Study Model 

Derivation 

and 

validation 

cohort 

Setting 

development 

study 

Patients/disease 
Year, 

country 
Predictors Outcome   

Unclear risk of bias prognostic model for COVID-19 

Knight et al. 

[22]  

4C Mortality 

score 

n = 35,463 

(derivation) 

n = 22,361 

(validation) 

General 

hospital 

ward 

Adults with 

COVID-19  

2020, 

England, 

Scotland, 

and Wales 

Age, sex, number of 

comorbidities, respiratory 

rate, peripheral oxygen 

saturation, Glasgow coma 

scale, urea, CRP 

Mortality  

High risk of bias prognostic models for COVID-19 

Zhang et al. 

[23] 
DL-death 

n = 775 

(derivation) 

n = 226 

(validation) 

General 

hospital 

ward 

Adults with RT-

PCR confirmed 

COVID-19 

2020, China 

and the 

United 

Kingdom 

Age, sex, neutrophil count, 

lymphocyte count, platelet 

count, CRP, creatinine 

Mortality 

(and poor 

outcome)a 
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Zhang et al. 

[23] 
DCSL-death 

n = 775 

(derivation) 

n = 226 

(validation) 

General 

hospital 

ward 

Adults with RT-

PCR confirmed 

COVID-19 

2020, China 

and the 

United 

Kingdom 

Age, sex, chronic lung disease, 

diabetes mellitus, malignancy, 

cough, dyspnea, neutrophil 

count, lymphocyte count, 

platelet count, CRP, creatinine 

Mortality 

(and poor 

outcome)a 

 

Wang et al. 

[24]  

Clinical 

model 

n = 286 

(derivation) 

n = 44 

(validation) 

General 

hospital 

ward 

RT-PCR/genetic 

testing 

confirmed, and 

imaging 

suspected 

COVID-19 cases 

2020, China 

Age, history of hypertension, 

history of coronary heart 

disease 

Mortality  

Bello-

Chavolla et 

al. [31]  

Mechanistic 

COVID-19 

lethality 

score 

n = 41,307 

(derivation) 

n = 10,326 

(validation) 

Outpatients 

and general 

hospital 

ward 

Suspected, 

confirmed and 

negative COVID-

19 cases 

2020, 

Mexico 

Age, diabetes, diabetes*age, 

obesity, pneumonia, chronic 

kidney disease, chronic 

obstructive pulmonary 

disease, immunosuppression 

Mortality  
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Berenguer 

et al. [30]  
SEIMC 

n = 3358 

(derivation) 

n = 1269 

(validation) 

General 

hospital 

ward 

RT-PCR 

confirmed 

COVID-19 cases 

2020, Spain 

Age, low age-adjusted SaO2, 

neutrophil-to-lymphocyte 

ratio, eGFR (CKD-EPI), 

dyspnea, sex 

Mortality  

Established prognostic models  

Lim et al. 

[32]  

CURB-65 

score 

n = 718 

(derivation) 

n = 214 

(validation) 

General 

hospital 

ward 

CAP patients 

2003, 

United 

Kingdom, 

New 

Zealand, 

and the 

Netherlands  

Confusion, urea, respiratory 

rate, systolic or diastolic blood 

pressureb, age 

Mortality   

Knaus et al. 

[29]  

APACHE II 

score 

n = 5815 

(validation) 
ICU  

Patients 

admitted to ICU 

1985, 

United 

States 

Age, history of severe organ 

failure or 

immunocompromise, 

temperature, mean arterial 

Mortality  
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pressure, pH, heart rate or 

pulse, respiratory rate, 

sodium, potassium, creatinine, 

acute kidney failure, 

hematocrit, white blood cell 

count,  

Glasgow coma scale, FiO2 

Vincent et 

al. [33]  
SOFA score 

n = 1643 

(derivation) 
ICU  

ICU patients 

(without short 

stay and 

postoperative 

patients) 

1996, 

Europe and 

the United 

States 

PaO2/FiO2, platelets, Glasgow 

coma scale, bilirubin, mean 

arterial pressure or vasoactive 

agents, creatinine 

Mortality  

 254 

ICU, intensive care unit; COVID-19, Coronavirus disease 2019; RT-PCR, reverse transcription-polymerase chain reaction; CAP, community-acquired 255 

pneumonia; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; FiO2, Fraction of Inspired Oxygen; PaO2/FiO2 ratio, the ratio of 256 

partial pressure of oxygen in arterial blood divided by the fraction of inspired oxygen.  257 
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a. We only included models having mortality as outcome. 258 

b. One point was scored if systolic blood pressure was < 90 mmHg or diastolic BP was ≤ 60 mmHg.259 
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Table 2 Characteristics for the full Euregio Intensive Care COVID cohort  260 

Characteristics 
Full cohort 

n = 551 

Age, year 65.4 ± 11.2 

Female, n (%) 159 (29) 

Height, m 1.73 ± 0.1 

Weight, kg 87.3 ± 17.1 

Body mass index, kg/m2 29.0 ± 5.3 

Obesity, n (%) 175 (32) 

Dyslipidemia, n (%) 149 (27) 

Diabetes mellitus, n (%) 141 (26) 

Hypertension, n (%) 260 (47) 

Smoking, n (%) 112 (20) 

Chronic liver disease, n (%) 4 (1) 

Chronic lung disease, n (%) 101 (18) 

Chronic kidney disease, n (%) 68 (12) 

Myocardial infarction, n (%) 13 (2) 

Chronic cardiac disease, n (%) 118 (21) 

Dementia, n (%) 4 (1) 

Neurological conditions, n (%) 64 (12) 

Connective tissue disease, n (%) 11 (2) 

HIV/ aids, n (%) 0 (0) 

Immunosuppression, n (%) 21 (4) 

Malignancy, n (%) 63 (11) 

APACHE II score 16.1 ± 5.5 
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SOFA score 6.2 ± 3.0 

Admission location  

- Emergency department, n (%) 184 (33) 

- Hospital ward, n (%) 277 (50) 

- Other ICU, n (%) 90 (16) 

Glasgow coma scale at admission 14.7 ± 1.1 

Respiratory rate at admission, /min 24.6 ± 7.1 

SpO2 at admission, % 91.4 ± 6.8 

pH at admission 7.4 ± 0.1 

Lowest PaO2/FiO2 ratio at admission 15.4 ± 10.6 

Highest FiO2 at admission, % 71.2 ± 21.5 

Lowest MAP at admission, mmHg 68.5 ± 18.8 

Heart rate at admission, bpm 93.1 ± 18.9 

Vasopressor use at admission, % 360 (65) 

Creatinine at admission, μmol/l 101.2 ± 82.4 

Urea at admission, mmol/l 11.6 ± 11.1 

Dialysis at admission, n (%) 37 (7) 

Bilirubin at admission, μg/l 10.0 ± 8.6 

Thrombocytes at admission, *109/l 248.7 ± 105.7 

Temperature at admission, º Celsius 37.6 ± 1.2 

CRP at admission, mg/l 184.8 ± 98.0 

Neutrophils at admission, *109/l 8.3 ± 6.0 

Lymphocytes at admission, *109/l 0.89 ± 11.6 

Invasive mechanical ventilation during ICU stay, n (%) 434 (79) 

Reintubation, n (%) 44 (8) 
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Duration of invasive mechanical ventilation, days 11.4 [2.3 – 23.0] 

Mechanical circulatory support, n (%) 32 (6) 

Kidney replacement therapy, n (%) 112 (20) 

ICU mortality, n (%) 196 (36) 

Length of ICU stay, days 15.2 [6.0 – 29.9] 

 261 

Data are presented as mean ± SD, median [IQR], or percentages. HIV, human 262 

immunodeficiency virus; APACHE II, Acute Physiology And Chronic Health Evaluation II; SOFA, 263 

Sequential Organ Failure Assessment; ICU, Intensive Care Unit; SpO2, peripheral capillary 264 

oxygen saturation; PaO2/FiO2 ratio, the ratio of partial pressure of oxygen in arterial blood 265 

divided by the fraction of inspired oxygen; FiO2, the fraction of inspired oxygen; MAP, mean 266 

arterial pressure; CRP, C-reactive protein.   267 
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Table 3 External validation of prognostic prediction models in the Euregio Intensive Care COVID 268 

cohort 269 

Study Model Discriminationa Calibration-in-the largeb 

Unclear risk of bias prognostic model for COVID-19 

Knight et al. [22] 4C Mortality score 0.70 (95% CI 0.64-0.76) -1% (95% CI -19-17%) 

High risk of bias prognostic models for COVID-19 

Zhang et al. [23] DL-death 0.53 (95% CI 0.43-0.64) -2% (95% CI -14-10%) 

Zhang et al. [23] DCSL-death 0.53 (95% CI 0.42-0.63) 6% (95% CI -6-18%) 

Wang et al. [24] Clinical model 0.70 (95% CI 0.65-0.74) -c 

Bello-Chavolla et al. 

[31] 

Mechanistic COVID-

19 lethality score 
0.67 (95% CI 0.62-0.72) -c 

Berenguer et al. [30] SEIMC 0.70 (95% CI 0.65-0.74) -5% (95% CI -20-11%) 

Established prognostic models 

Lim et al. [32] CURB-65 score 0.68 (95% CI 0.64-0.73) -c 

Knaus et al. [29] APACHE II score 0.65 (95% CI 0.60-0.69) -9% (95% CI -21-3%) 

Vincent et al. [33] SOFA score 0.62 (95% CI 0.56-0.68) -c 

 270 

a. Discrimination is reported as the pooled area under the ROC curve with 95% CI for all 56 271 

imputed sets using random-effects meta-analysis. 272 
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b. Calibration-in-the-large is reported as the pooled difference between the predicted and 273 

observed mortality risk with 95% CI for all 56 imputed sets using random-effects meta-analysis. 274 

Positive values suggest overestimation, whereas negative values suggest underestimation. 275 

c. Intercept not reported or risk score.  276 
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Figure 1 Flowchart identifying prediction models 277 

 278 

 279 

 280 

 281 

 282 

 283 

COVID-19, Coronavirus Disease 2019; ICU, intensive care unit; ARDS, Acute respiratory distress 284 

syndrome; ASAT, aspartate aminotransferase. Legend: models for diagnosis and identifying people at 285 

risk in the general population were excluded. The remaining models were mainly prognostic, and 286 

further selection was based on outcome measures. As our cohort was composed of ICU patients only, 287 

in whom severe COVID-19 infection can be assumed, the outcome ICU admission, as well as 288 

progression to severe COVID-19, severe COVID-19, and ARDS, were excluded. Outcome measures 289 

length of hospital stay, in-hospital mortality, and in- or out of hospital mortality were used. Since 290 

reporting of predictors and coefficients are necessary in order to validate prediction models as 291 

specifically assessed in step 4.9 in PROBAST (12), a tool to assess the risk of bias and applicability of 292 

prediction model studies, models which did not report or probably did not report this, or were 293 

machine learning or artificial intelligence studies, were excluded. Finally, predictors included in one of 294 

the final 21 prediction models were evaluated. Again, as we only included ICU patients and our goal 295 

was to validate models containing routinely available data, models including symptoms not relevant 296 

for ICU patients, not routinely available data, or data that were not available in the EICC cohort (e.g., 297 

≥50% missing data) were excluded. Additionally, two promising models, which were not available in 298 

the COVID-PRECISE, were added. 299 
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Figure 2 Flowchart Euregio Intensive Care COVID cohort [16] 300 
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Figure 3 Calibration plots prediction models 324 
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 346 

The cohort was divided into deciles according to the estimated probability score, displayed by points 347 

in the calibration plot. 348 
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What is new 

• External validation of prediction models is often omitted in the ICU 

• Of 238 reviewed prognostic prediction models, 9 were externally validated 

• Only 2 out of 9 models showed reasonable discrimination and moderate calibration 

• Better prediction models based are needed to support admission decision-making 
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