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Abstract: Despite the wide range of clinical and research applications, the reliability of the abso-
lute oxygenation measurements of continuous wave near-infrared spectroscopy sensors is often
questioned, partially due to issues of standardization. In this study, we have compared the per-
formances of 13 units of a continuous wave near-infrared spectroscopy device (PortaMon, Artinis
Medical Systems, NL) to test their suitability for being used in the HEMOCOVID-19 clinical trial
in 10 medical centers around the world. Detailed phantom and in vivo tests were employed to
measure the precision and reproducibility of measurements of local blood oxygen saturation and
total hemoglobin concentration under different conditions: for different devices used, different
operators, for probe repositioning over the same location, and over time (hours/days/months).
We have detected systematic differences between devices when measuring phantoms (inter-device
variability, <4%), which were larger than the intra-device variability (<1%). This intrinsic variability
is in addition to the variability during in vivo measurements on the forearm muscle resulting from
errors in probe positioning and intrinsic physiological noise (<9%), which was also larger than the
inter-device differences (<3%) during the same test. Lastly, we have tested the reproducibility of
the protocol of the HEMOCOVID-19 clinical trial; that is, forearm muscle oxygenation monitoring
during vascular occlusion tests over days. Overall, our conclusion is that these devices can be used
in multi-center trials but care must be taken to characterize, follow-up, and statistically account for
inter-device variability.

Keywords: continuous wave near-infrared spectroscopy; vascular occlusion test; local tissue
oxygenation; multi-center clinical trial; medical optics; light propagation in tissue

1. Introduction

Continuous-wave near-infrared spectroscopy (CW-NIRS) [1,2] is a non-invasive opti-
cal technique that allows the direct determination of local tissue oxy- and deoxy-hemoglobin
concentrations at the microvascular level. An important challenge in interpreting the data
generated by the rapidly expanding number of CW-NIRS devices offered for use in the
clinical environment is the unknown reproducibility of the measurements and the inherent
variability between devices. Past studies have questioned the reliability of absolute oxy-
genation measurements and highlighted differences between different devices and brands,
hence highlighting the need for improved standardization [1,3–7].

Despite this variability, the use of CW-NIRS sensors for tissue oxygenation monitor-
ing is well accepted and established in both clinical and research settings [1,2,8,9]. This
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widespread use is driven by the advantages of CW-NIRS technology; i.e. the measure-
ments are non-invasive and the devices are compact, portable, and relatively low-cost. The
best established clinical uses of CW-NIRS are in the intraoperative detection of cerebral
ischemia [10–12] and in the cerebral and peripheral muscle hemodynamic monitoring of
critically ill patients in the intensive care unit (ICU) [13–19].

During the first peak of the COVID-19 pandemic (April 2020), ICFO—the Institute
of Photonic Sciences (Spain)—and Hospital Parc Taulí de Sabadell (Spain) built upon
the promising results of NIRS studies on critically ill patients undergoing mechanical
ventilation for acute respiratory distress syndrome (ARDS) [18] to establish a study of the
endothelial and microvascular health of COVID-19 patients undergoing intensive care by
monitoring the local muscle hemodynamics through NIRS [15,20]. This study grew into a
multi-center clinical campaign, which is currently being run simultaneously in 10 hospitals
worldwide (HEMOCOVID-19 project [21]; see following section).

Given the exceptional situation during the first pandemic peak and the necessity to
rapidly begin this clinical study, we have opted to use commercially available, research-
grade CW-NIRS devices (PortaMon by Artinis Medical Systems, NL). The choice of Por-
taMon was dictated by the fact that a stock of these devices was immediately available
from the manufacturer and was also within the project budget. In addition, the devices
have characteristics that are particularly useful for this study under protocols to prevent
COVID-19 transmission; i.e., they are battery-operated, wireless and remotely controlled
(e.g., from outside an isolation room), easy-to-operate, disinfectable, and suitable for mea-
suring the hemodynamics of the brachioradialis muscle of the forearm (critical to implement
the HEMOCOVID-19 measurement protocol).

Despite being commercially available and having been used in several research studies,
with particular success in the sport/athletics field [22–27], PortaMon is not certified as a
medical device. For this reason, and as a result of the above-mentioned standardization
issues of CW-NIRS, we have opted to carry on extensive tests on phantoms and in vivo.
Moreover, a multi-center experimental study itself results in a number of issues regarding
the comparison of measurements performed in different conditions, by different operators
and longitudinally over several months of a clinical campaign [28]. These issues drove our
work to accurately assess and compare the performances of these devices, as required by
the structure of the HEMOCOVID-19 clinical campaign.

In this paper, we present how we have addressed the above-mentioned challenges by
characterizing and comparing the performance of all the devices used for the HEMOCOVID-
19 campaign using tissue-stimulating phantom and in vivo experiments on the forearm
muscle of healthy subjects (see the schematics of challenges and tests in Figure 1). The aim
is the assessment of the performance of the devices in terms of measurement precision and
reproducibility and the quantification of any differences between devices. We have tested
the precision of single acquisitions, the reproducibility of probe repositioning in the same
position, measurement reproducibility over time—that is, after hours, days, and months—
and the reproducibility due to different operators. We have also characterized a set of
tissue-simulating phantoms to be used for assessing the day-by-day reliability of each de-
vice, and we have tested the reproducibility of the protocol of the HEMOCOVID-19 clinical
trial; that is, forearm muscle oxygenation monitoring during a vascular occlusion test.



Sensors 2021, 21, 6957 3 of 17

• Training of the operators
• Phantoms for on-site quality control
• Two devices discarded and subs�tuted 

with new units
• Accoun�ng for device differences in the 

analysis of clinical data

Solu�ons

Multi-center study Several operators

Several devices Several months

• Device stability
• Intra-device variability
• Inter-device variability
• Inter-operator variability
• Reproducibility over probe 

reposi�oning
• Reproducibility over �me 

(hours/days/months)

Phantom & in vivo tests

Figure 1. A schematic summary of the challenges of a multi-center clinical study and the actions taken to address them.
Icons taken from [29].

2. HEMOCOVID-19 Clinical Trials

HEMOCOVID-19 [21] is a multi-center, international clinical research project (Clinical-
Trials.gov identifier NCT04689477 and NCT04692129) that aims to use continuous-wave
near-infrared spectroscopy devices in intensive care units to aid in the clinical management
of severely ill COVID-19 patients at multiple stages, supporting a continuum of care.

The objective of the study is to assess the endothelial health of critically ill COVID-19
patients with the long-term aim of providing doctors with new prognostic biomarkers
based on minimally invasive optical measurements. The endothelial health of the subjects
is assessed by the dynamic CW-NIRS measurement of local tissue oxygen saturation and
the total hemoglobin concentration of the forearm muscle during the three phases of a
vascular occlusion test—baseline, ischemic occlusion, and recovery after releasing the oc-
clusion [15]. In addition, as a sub-study, the tissue oxygen saturation and total hemoglobin
concentration of a small group of mechanically ventilated patients was measured before
and after transitioning a patient from a supine to prone position to assess the effectiveness
of this rescue strategy on the local tissue oxygenation.

The project was coordinated by ICFO—the Institute of Photonic Sciences (Spain)—and
Hospital Parc Taulí de Sabadell (Spain) and in the first phase included eight hospitals in four
different countries (Spain, Mexico, the USA, and Brazil). Currently, the HEMOCOVID-19
project includes 10 hospitals recruiting patients in 5 different countries [21].

3. Materials and Methods
3.1. CW-NIRS Devices

For the initial phase of the HEMOCOVID-19 clinical trial (see Section 2), 10 devices
were required to launch the project in 8 clinical centers, and 2 devices were kept in-house at
ICFO for continued quality control testing. Additional partners have joined the consortium
since then. The following characteristics were required when selecting the devices for use:

• Readily available for delivery within 30 days;
• Total cost within the limited project budget;
• Should provide both the trends and an estimate of the absolute value of the blood

oxygen saturation;
• Should be suitable for use at an intensive care unit with regard to the restrictions

introduced by the COVID-19 pandemic, including features such as the following:



Sensors 2021, 21, 6957 4 of 17

– Wireless/remote controlled;
– Disinfectable (with alcohol) between patients;
– Easy-to-operate with remote-training only;
– No disposable parts;
– Can be re-utilized without leaving the containment zone;
– Minimal footprint in contact with the tissue;
– Should come with customer support directly from the company during the

pandemic lock-downs.

• Should be suitable to use at the measurement site—the brachioradialis muscle of the forearm.

These constraints made instrument selection a challenge. For example, none of the
devices in the market with a medical-device authorization (CE, FDA, or other equivalent
approvals) met these requirements. Eventually, we decided to utilize PortaMon (Artinis
Medical Systems, NL) [30] devices for the clinical trial. This device found particular
success during recent years and has been validated and extensively used, primarily in the
sport/athletic field, to monitor local muscle oxygenation [4,22–27].

Briefly, PortaMon is a portable, wireless, battery-operated CW-NIRS system consisting
of three couples of light emitting diodes (LED) as sources at nominal wavelengths of 760
and 850 nm at different distances from the receiver (30, 35, and 40 mm). It is capable of
continuous monitoring with a temporal resolution of 0.1 s, reporting the local tissue oxygen
saturation index (TSI), oxy- and deoxy-hemoglobin concentrations (respectively, HbO2
and Hb), and the total hemoglobin concentration (THC). TSI is an index proportional to
the more commonly utilized StO2. The absolute values are retrieved by using so-called
spatially resolved spectroscopy and the modified Beer–Lambert law [2,4,8,31].

After the initial tests were conducted, we acquired 13 (with 1 device as an additional
back-up) devices. Two additional devices were loaned by the manufacturer and were
added to the tests after the initial order since (as described below) significant inter-device
variability was found, with some units systematically out of the empirically defined
acceptance range. In this manuscript, the devices are identified by their “id” number
(id36, id38, id40, etc.). A photo of two devices is reported in Figure 2a, showing both top
and bottom views.

3.2. Tissue-Simulating Phantoms, Type 1

In our laboratory, a set of commercial tissue-simulating, homogeneous, solid phantoms
(Biomimic Optical Phantoms, INO, Québec, Canada) was available. This type of phantoms
is commonly utilized for testing diffuse optical devices as they provide a relatively well
established prior knowledge of the optical properties, good homogeneity, and stability
over long periods (years) [32,33].

For this part of the study, we utilized two phantoms (Type 1 phantoms): (1) Biomimic
PB300 (INO PB300) with nominal values of reduced scattering coefficient µ′s = 10 cm−1

and absorption coefficient µa = 0.1 cm−1 at 785 nm , (2) Biomimic PB312 (INO PB312)
µ′s = 5.3 cm−1 and µa = 0.14 cm−1 at 785 nm . For all the measurements, the phantoms
were prepared with a custom mask, which assists in the repeatable and reliable placement
of the device on the phantom surface (see Figure 2b).

We note here that the wavelength dependence of the optical properties of these
phantoms were not tuned to provide a specific TSI or THC equivalent value. Since our
goal was not to validate the absolute values of these parameters with these phantoms,
we took an approach whereby we used the mean value from all devices as the expected
nominal value. Two phantoms were utilized to provide two different measured light levels,
partially testing the devices’ dynamic range.
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Figure 2. Experimental setup. (a) Two PortaMon (Artinis Medical Systems) devices used in this study; top and bottom
view. (b) Biomimic PB312 phantom, with the custom mask for PortaMon placement. (c) One of the BioPixS phantoms,
together with the custom mask (left panel, top view) and the PortaMon placed (right panel). (d) PortaMon placement for
forearm muscle measurements. (e) Sketch of the VOT procedure together with a visual representation of the measured
relevant parameters.

3.3. Tissue-Simulating Phantoms, Type 2

After the initial tests, we observed that there was a systematic variability between
different devices. This difference, as discussed below, is quite minimal, but since it has been
detected and as its dependence on environmental conditions, the age of the device, hours
of use, and other factors is unknown, we sought a solution that would involve utilizing
identical phantoms alongside each system. As previously discussed, this is not a trivial
problem since the manufacturing, characterization, and maintenance of such phantoms is a
complex matter that is still being tackled by both academia and the industry [28,33,34].

A further consideration was the availability of such phantoms at short notice and their
cost-effectiveness. The most suitable candidate was identified to be the devices produced
by BioPixS (Cork, Ireland, www.biopixstandards.com, acessed on 6 September 2021). Ten
(nominally) identical phantoms (BioPixS-Matrix-CCB5d, Type 2) from the same class of
solid phantoms as Type 1 (see above) phantoms (8.5× 6× 4.5 cm ) that were manufactured
from the same batch of materials with a nominal reduced scattering coefficient µ′s = 10
cm−1 and absorption coefficient µa = 0.1 cm−1 at 740 nm were produced and characterized
by the manufacturer. The declared inter-phantom difference is 0.8% for the absorption
coefficient and 1.4% for the scattering coefficient at 740 nm.

As for the Type 1 phantoms, we prepared a custom mask for reliable positioning on
Type 2 phantoms as shown in Figure 2c.

3.4. In Vivo Measurements

All the in vivo studies were conducted according to the guidelines of the Declaration
of Helsinki and approved by the local Ethics Committee. Subjects were asked to provide
informed consent.

In these protocols, the goal was to evaluate the repeatability and variability during the
resting condition for each device and also the variability of the vascular occlusion test (VOT)
with a single device. To evaluate the repeatability and variability during the resting condition,
the forearm brachioradialis muscle of the same subject (age: 26; gender: male) was measured.
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To reduce the variability to physiological changes in the muscle, the subject was at rest sitting
on a chair, with the arm resting in a stable position on the arm of the chair.

The vascular occlusion test protocol consisted of continuously monitoring the TSI
during a baseline period of three minutes, a period of complete arterial occlusion of three
minutes, and a period of recovery of five minutes. Arterial occlusion—i.e., ischemia—was
induced by inflating a typical arm blood pressure cuff placed on the biceps at a pressure
of 50 mmHg above the systolic pressure of the subject. This protocol was repeated on a
separate subject for 20 different days during the same month, on the same healthy subject
(age: 41; gender: male) in the supine position. A sketch of the measurement procedure is
reported in Figure 2e together with the visual representation of the relevant parameters that
were evaluated: TSI baseline, deoxygenation slope—DeOx, reoxygenation slope—ReOx,
and hyperemic response—HAUC. HAUC is the area under the hyperemic peak. DeOx is
calculated by linearly fitting the first minute of the curve TSI vs. Time during the occlusion
period. ReOx is calculated by linearly fitting the same curve from the instant the occlusion
is released up to the instant the TSI returns back to its baseline value.

3.5. Description of Tests

A summary of all the tests performed is reported in Table 1. As mentioned above, the
aim of these tests was to assess the performance of the devices in terms of the variability
and reproducibility of the measurements when performed under different conditions. The
tests were devised to match the overall need to acquire data from multiple locations with
different devices, by different operators and over a minimum time-span of a year. Further
considerations included that fact that the tissue of interest—a muscle—is soft; therefore,
the hemodynamics are affected by the probe pressure but cannot be controlled with a
quantitative feedback mechanism in this particular case. In the following sections, we
describe each test in detail. Table 1 uses capital letters as an identifier for each test.

Table 1. Summary of reported tests. See text for details.

# Test Phantom In Vivo

A Warm-up and stability INO PB312 /
B Variability: single acquisition INO PB300 & PB312 Brachioradialis muscle
C Reproducibility: probe repositioning INO PB300 & PB312 Brachioradialis muscle
D Reproducibility over: hours/days/months INO PB300 & PB312 /
E Reproducibility: different operators INO PB300 & PB312 /
F Differences between devices INO PB300 & PB312 Brachioradialis muscle
G Type 2 phantom characterization BioPixS matrix /
H Reproducibility: vascular occlusion test / Brachioradialis muscle

We began by evaluating the the warm-up time of the device (Test A) and stability
of TSI and THC over eight hours of continuous acquisition starting immediately after
turning the device on. Type 1 phantoms were utilized in this test and three different devices
were utilized. We opted not to use the whole set of devices since the results from the first
three were quite similar and due to the urgency of starting the clinical trial. The goal of this
test was to provide instructions for the user about the use of the device. It was important
to identify this point and if there was any variability between different devices, since, as a
battery-operated device, it could not be switched on continuously. The warm-up time was
evaluated by assuming that the measured TSI and THC would stabilize around a mean
value once the device was ready for use.

All the subsequent tests (B to F) also used Type 1 phantoms where each measurement
consisted of five subsequent acquisitions of 20 s each, after removing and rapidly replacing
the device in position. This measurement was repeated for different devices, by different
operators, and in different periods (different days, different months). In addition, to test
the variability at different times of the same day, we repeated one measurement with one
device at the beginning and at the end of the same day.
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Furthermore, as indicated in Table 1, several of these tests (B, C, F) were also performed
in vivo on the brachioradialis muscle, in the forearm, as detailed above. Each device was
placed carefully, as would be done during the clinical trial, and covered with a black
bandage to avoid background light, as shown in Figure 2d. For each device, four subsequent
single acquisitions of 20 s each were repeated by rapidly removing and replacing the device
in the same position. This procedure was repeated two times (two sets of four subsequent
acquisitions per device) by randomizing the order of the devices. This precaution was
taken in order to avoid that changes of muscle hemodynamics over time would not impact
the same device twice in the same manner.

We also characterized (Test G) a set of 10 phantoms of Type 2 (see above) to evaluate
their potential to be utilized with every device for on-site quality control on a day-to-day
basis. These phantoms were characterized with one PortaMon (id50) on three different
days. Each day, five subsequent acquisitions of 20 s each were performed after removing
and replacing the device rapidly in the same position.

Lastly, we tested (Test H) the reproducibility of VOT; that, is the measurement protocol
of the HEMOCOVID-19 clinical trial as described above. This protocol was repeated with
a single device (id63), once per day, for 20 different days of the same month, on a single
healthy subject laying supine for at least 30 min prior to measurement. Please note that
this device (id63) was acquired independently by a HEMOCOVID-19 partner and is not
reported in the other tests.

For all the tests, the variability and reproducibility of a measurement and the dif-
ferences between devices were evaluated by calculating the coefficient of variation CV,
defined as CV[%] = 100 · σx/〈x〉, where x is the measured quantity (i.e., TSI and THC), σx
is the standard deviation, and 〈x〉 is the average.

4. Results and Discussion
4.1. Phantom Measurements: Stability and Warm-Up Time (Test A )

The results of the stability and warm-up time tests (Test A) are reported in Figure 3,
for TSI and THC for all three devices (id38, id40 and id50). After turning on a device, we
notice a first period of warm-up during which the TSI rapidly increases and THC rapidly
decreases towards their average stable values. For all the devices, stability is reached
approximately one hour after switching on the device (CV after the first hour to the end of
the experiment < 0.3% both for TSI and THC). However, this period is prohibitively long
for a battery-operated device to be used at an intensive care unit. Further evaluation shows
that a quite accurate estimation of the stable values is reached after 10 min. At this point,
TSI reaches a value less than 2% lower than the stable value and THC reaches a value less
than 1% higher than the stable value. Since the main goal of the HEMOCOVID-19 trial is to
characterize the VOT-associated dynamics that are described above, we decided to instruct
the users to wait approximately 10 min after the device was turned on before starting the
data acquisition.

If further accuracy with respect to the absolute values is needed, additional care
should be taken. According to the manufacturer, this may be due to the equalization of
the temperature in the opto-electronic components. While this was not explicitly tested to
avoid contamination due to physiological changes, the manufacturer’s and our previous
experience indicates that keeping the device in contact with the body speeds up this
process due to the higher body temperature compared to the typical room temperature. An
additional potential precaution could be to store the devices above a temperature-controlled
phantom during storage close to body temperature.
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Figure 3. Overnight stability of three devices (id38, id40, and id50). In the inset, zoomed image of the TSI and THC during
device warm-up.

4.2. Phantom Measurements: Variability and Reproducibility (Test B to Test F)

TSI and THC values related to the two Type 1 phantoms (Biomimic PB300 and PB312)
were measured with 13 different devices, and the measurements were repeated multiple
times. The results are summarized in Figure 4 together with the average value over all the
devices. As detailed above, these measurements allowed us to retrieve the variability of
the measured parameters over a single acquisition of 20 s, after the immediate replacement
of the device in the same position, and the reproducibility of the measurement after hours,
days, and months (as indicated in the figure legends). In addition, we evaluated the
reproducibility when the measurement was performed by different operators. Finally, the
differences between different devices were measured.

All the results are summarized in Table 2. We note that, in phantoms, the TSI and
THC signals are very stable over a single acquisition of 20 s, with a coefficient of variation
(CV) of <0.1%. The variability due to device repositioning over the phantom is higher
but also very low compared to the expected physiological changes [15,18,20,35] (also in
VOT examples below) with a CV of <0.3%. We note that the custom mask allowed the
reliable placement/re-placement of the device in the same position, which improved the
results. Nevertheless, as expected, the placement/re-placement variability is higher than
the static measurements, demonstrating the importance of the careful characterization of
these parameters for evaluating the capabilities of these devices. As shown below, the in
vivo variability is significantly higher than this value.

The tests also demonstrate a very good reproducibility of the results over hours,
days, and months. In all these cases, we obtained comparable variabilities, with a CV of
<1.5% both for TSI and THC. A slightly higher variability (CV < 3%) was registered when
reproducing the measurements over different months. In addition, the variability due to
different operators was comparable to the variabilities due to probe replacement and over
different hours, days, and months.

Lastly, we detected significant differences between different devices (CV < 5%) which
was significantly larger than all the intra-device CVs in phantoms. These differences can
be ascribed to device components (i.e., detector, laser, electronics), their assembly, and the
manufacturer’s internal calibration. A careful examination of Figure 4 shows that some
devices (e.g., id36 and id48) systematically produced TSI or THC values that were outside
one standard deviation of the mean of the whole set of devices; i.e., outside the dashed
lines. Even though these values reflect problems with the absolute measurements and do
not indicate a problem with the evaluation during the VOT tests, in order to minimize
complications in data analysis, we opted to take some actions to minimize the risks. The
first action was to discard these devices from the clinical trial. The second was to procure
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phantoms of Type 2 to evaluate whether it is feasible to keep track of these systematic
changes on site and over time for each device. Finally, it was decided that these parameters
should be considered as confounders in the statistical analyses of the HEMOCOVID-19
clinical campaign data, whose description is beyond the scope of this paper.
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Figure 4. Device characterization of Type 1 phantoms, performed on different days and months by different operators.
Horizontal lines represent the average (solid line) ± standard deviation (dashed lines) over all the devices.

These findings have both positive and negative implications for CW-NIRS devices. It
is positive that the devices are stable over time and, with the good engineering of the device–
phantom interface, could be utilized in a reproducible manner. However, the intra-device
variability in absolute values is not characterized in advance, and corrective actions are
not implemented. We suggest that all manufacturers take this into account for the quality
control of their devices. We note that previous studies have demonstrated significant
variability between devices from different manufacturers that affect both the absolute
values and the changes in measurements [6,13,36,37]. These findings also highlight the
importance of reliable, durable phantom standards in this field.
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Table 2. Variability of Type 1 phantoms. Apart from the last column, which describes the inter-device variability, all the CVs
reported are intra-device variabilities averaged over all the devices. See text for details.

Parameter Phantom CVsingle acq. CVreplac. CVhours CVdays CVmonths CVoperator CVdevice

(%) (%) (%) (%) (%) (%) (%)

TSI PB300 0.08 0.08 0.8 1.1 0.8 0.09 2.5
TSI PB312 0.09 0.2 0.3 1.3 1.2 0.5 3.8

THC PB300 0.04 0.2 1.3 0.3 2.8 0.1 3.6
THC PB312 0.04 0.3 0.09 0.9 2.1 0.2 4.5

4.3. Phantom Measurements: Towards On-Site Quality Control

As described before, these findings led us to consider the evaluation of the potential
of commercial tissue-simulating phantoms for inclusion in the “kit” that was shipped to
each center. These Type 2 phantoms have been characterized (Test G) by a single device
(id50) whose results are shown in Figure 5 and in Table 3. Different phantoms from the
same batch show slightly different TSI (51.7± 1.6 %, CV = 3.0%) and THC (41.9± 2.3 µM,
CV = 5.5% ). These small differences between phantoms are well within the detectability
range of the device, since the CV over the 10 phantoms (CVTSI < 1.6% and CVTHC < 2.5%)
is well above the intra-device CV reported earlier. The average CV between measurement
in different days was found to be 1.2% for TSI and 1.4% for THC, similar to the values
reported for the measurements on Type 1 phantoms (see Table 2).

Table 3. Type 2 phantoms measured with device id50. See text for details. Values reported for each
phantom are average and standard deviation (and corresponding CV) for the three different days of
measurement.

Phantom TSI CVTSI THC CVT HC

(%) (%) (µM) (%)

#1 50.6 ± 0.8 1.6 42.4 ± 0.4 0.9
#2 50.2 ± 0.4 0.9 44.1 ± 0.4 1.0
#3 50.6 ± 0.7 1.4 44.5 ± 0.6 1.3
#4 51.7 ± 0.9 1.6 41.6 ± 1.0 2.4
#5 51.5 ± 0.6 1.3 41.3 ± 0.7 1.7
#6 52.7 ± 0.5 0.9 39.9 ± 0.1 0.3
#7 51.2 ± 0.4 0.7 42.5 ± 0.3 0.7
#8 54.5 ± 0.4 0.8 37.2 ± 0.8 2.2
#9 50.4 ± 0.6 1.3 44.6 ± 0.7 1.5
#10 54.2 ± 0.7 1.2 40.9 ± 1.0 2.5

These findings led us to conclude that while these phantoms could be useful to
evaluate whether the devices degraded or their performance changed over time, they would
not be reliable enough as a means to correct for the inter-device systematic differences
that were observed from the tests on Type 1 phantoms. Due to the constraints imposed
on us by the on-going COVID-19 pandemic, we opted not to distribute these phantoms to
individual sites. We are now working with the manufacturer to devise reliable means to
produce and evaluate phantoms that are suitable for future use.

However, these findings are also quite encouraging in highlighting the need for profes-
sional phantom suppliers and well-defined standards in the field. We believe that on-going
efforts by us (e.g., the European Commission Horizon 2020 projects LUCA, VASCOVID,
TinyBrains, BitMap) and others (e.g. Acrin trial, SOLUS and NeuroOpt projects, Photon-
ics21 activities) are moving towards establishing robust methods and materials, which
are crucial for the clinical adoption of these technologies. We also encourage the device
manufacturers to undertake additional efforts to provide this type of characterization
information to the users.
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Figure 5. Set of 10 Type 2 phantoms measured with device id50. Horizontal lines represent the average (solid line) ±
standard deviation (dashed lines) over all the phantoms. See text for details.

4.4. In Vivo Repeatability

The results of the in vivo variability measurements (Tests A, C, F) on the forearm
muscle (brachioradialis muscle) are reported in Figure 6 and are summarized in Table 4.
During a single acquisition of 20 s, the average CVs over all the devices was approximately
0.9% for TSI and 2.4% for THC, which are much larger than the values measured on
phantoms (see Section 4.2). This reflects that muscle hemodynamics changed during the
20 s of each acquisition. This may be due to various effects that are beyond the scope of
this paper to evaluate. For example, the placement of the device on the arm introduces
additional, local pressure, which may lead to the redistribution of blood and changes in
the oxygen metabolism.

A higher variability (8.5% for TSI and 17.5% for THC) was observed when replacing
the probe in the same position over the forearm muscle. This large variability is presumably
due to errors in repositioning the device in the same position with the same probe pressure,
in addition to the above-mentioned physiological changes occurring during the period
of the measurement session. We note that the measurement sessions were roughly five
minutes for a single set of four replacements in a single device, with one hour between
the first and second set of four acquisitions. No significant differences were observed
between the variability obtained by considering only the first set, only the second set, and
when considering both sets of for acquisitions. Therefore, in Table 4, we have reported the
value obtained considering all the acquisitions without discriminating between first and
second sets. Overall, the results reported here are in line with previous studies and other
equivalent CW-NIRS devices [4,6].

These measurements have demonstrated that the differences registered between
devices in phantoms (see Table 2) do not affect the reliability of the in vivo measurements,
since the in vivo variability due to probe repositioning is much larger (see Table 4). These
findings once more highlight the difficulty of obtaining reliable absolute measurements
using CW-NIRS devices. This may be remedied by the intensive training of the operators,
better engineering of the device–tissue interface (“probe”)—for example, by controlling the
applied pressure—better definition of the device placement, and a better understanding of
the factors that affect the hemodynamic stability of the underlying muscle. Some of these
limitations are well known for CW-NIRS devices, and the on-going efforts being made
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to reduce the size and cost of time-resolved NIRS systems (TR-NIRS) [13,38–41] are an
important step in this direction.

We also note that HEMOCOVID-19 was undertaken during the height of the pandemic
to obtain what we believe is clinically important and urgent information. Previous studies
in similar critically ill populations have identified some of these problems and utilized
thenar eminence as a measurement location [15,17,42–45], which was not accessible to us
due to the size of these devices. An ongoing project, VASCOVID [41], is attempting to
minimize these confounders by incorporating a TR-NIRS system with a small footprint
probe with different sensors in a multi-modal platform.

Since the patterns of the dynamics of induced hemodynamic changes are affected in a
different manner, we now move onto the final set of in vivo measurements during VOT.
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Figure 6. In vivo replacement tests performed with 10 devices on a single healthy subject. See text for details.

4.5. In Vivo Characterization of the Repeatability of Dynamics

The results of the repeated VOTs that were performed once per day on 20 different
days on the same subject during one month are reported in Figure 7 and summarized in
Table 5. Different parameters were extracted from the response to the VOT, as described
above, and no significant trends were registered during the 30 days of measurement.
Overall, we observe a quite stable baseline level for TSIbaseline (CV = 4%), while for the
other parameters (DeOx, ReOx, HAUC and THCbaseline), the variability is higher and ranges
between 16–27%. This could be expected since the response to VOT is always variable
within an individual. This has been discussed previously and was shown to be less variable
in other, smaller muscles [42,43]. In addition, the VOT protocol adopted could influence the
variability of the retrieved parameters: as discussed in previous studies, maintaining the
ischemia up to a pre-determined minimum value of TSI (ischemia-depth-based protocol)
should reduce the variations with respect to maintaining the ischemia for a fixed time
(ischemia-time-based protocol) [42,45,46].

Table 4. In vivo variability on brachioradialis muscle. See text for details.

Parameter CVsingle acq. CVreplac. CVdevice

(%) (%) (%)

TSI 0.9 8.5 2.4
THC 2.4 17.5 5.7
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Lastly, we comment that the individual variabilities reported here allow researchers to
discriminate the contrast in VOT-related parameters between healthy controls and severe
intensive care unit patients with good and poor outcomes in various situations, such as for
ARDS, septic, trauma, and COVID-19 patients [15,18,44,47,48].
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Figure 7. Parameters extracted from VOT over 20 repeated (once/day) measurements over 30 days. Horizontal lines
represent the average (solid line) ± standard deviation (dashed lines) over all the measurements. See text for details.

Table 5. Vascular occlusion test on a single healthy subject repeated once per day on 20 days over a month, indicating the
average values and the variability. See text for details.

TSIbaseline DeOx ReOx HAUC T HCbaseline
(%) (%/min) (%/min) (%· min) (µM)

69.4 ± 2.7 −8.8 ± 1.4 107 ± 18 10.7 ± 2.8 51.4 ± 8.9
CVTSI = 4% CVDeOx = 16% CVReOx = 17% CVHAUC = 26% CVTHC = 17%
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5. Conclusions

In this paper, we have addressed, through systematic and detailed tests, some of the
possible challenges and critical issues related to utilizing multiple CW-NIRS devices for a
multi-center clinical trial, such as the HEMOCOVID-19 trial, which spans several months.

By characterizing 13 devices from the same manufacturer that are research-grade
devices and are not medical devices, we have observed a very low coefficient of variation
for both TSI and THC (Table 2) when considering single acquisitions, acquisitions after
probe repositioning, performed on different hours, days, and months, and with the device
operated by different operators while using standard tissue-simulating phantoms. In these
terms, all devices were capable of performing precise and reproducible measurements. On
the other hand, in the same phantoms, we have detected significant differences in absolute
values between different devices, which indicates that one should be careful about the
accuracy of these devices.

Similar measurements were performed in vivo, on the brachioradialis muscle of the
forearm, and during a vascular occlusion test. The in vivo measurements confirmed that
the variabilities associated with physiological changes and errors in the repositioning
of the probe are much larger than the inter-device variability, suggesting that in vivo
measurements conducted with different devices are comparable.

Finally, we have characterized a set of 10 nominally identical phantoms that could be
used in the future for day-by-day device assessment. These phantoms are suitable for the
longitudinal assessment of device stability, but not for the evaluation of accuracy of TSI
and THC.

In terms of the goal of this characterization for the HEMOCOVID-19 clinical trial, we
have ruled out two devices from the study and have decided that, due the differences
registered between different devices, operators should proceed in a statistical manner when
analyzing the in vivo data.

In conclusion, the performance assessment tests reported in this paper tried to tackle
the common problems of the reliability of comparing absolute measurements (and not only
relative changes) performed with different CW-NIRS devices. We have provided suggestions
for future improvements and suggest care in the use of these systems in clinical trials.
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