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Abstract

Background: Transcription factors (TFs) are important regulatory proteins that govern transcriptional regulation.
Today, it is known that in higher organisms different TFs have to cooperate rather than acting individually in order to
control complex genetic programs. The identification of these interactions is an important challenge for
understanding the molecular mechanisms of regulating biological processes. In this study, we present a new method
based on pointwise mutual information, PC-TraFF, which considers the genome as a document, the sequences as
sentences, and TF binding sites (TFBSs) as words to identify interacting TFs in a set of sequences.

Results: To demonstrate the effectiveness of PC-TraFF, we performed a genome-wide analysis and a breast cancer-
associated sequence set analysis for protein coding and miRNA genes. Our results show that in any of these sequence
sets, PC-TraFF is able to identify important interacting TF pairs, for most of which we found support by previously
published experimental results. Further, we made a pairwise comparison between PC-TraFF and three conventional
methods. The outcome of this comparison study strongly suggests that all these methods focus on different
important aspects of interaction between TFs and thus the pairwise overlap between any of them is only marginal.

Conclusions: In this study, adopting the idea from the field of linguistics in the field of bioinformatics, we develop a
new information theoretic method, PC-TraFF, for the identification of potentially collaborating transcription factors
based on the idiosyncrasy of their binding site distributions on the genome. The results of our study show that
PC-TraFF can succesfully identify known interacting TF pairs and thus its currently biologically uncorfirmed predictions
could provide new hypotheses for further experimental validation. Additionally, the comparison of the results of
PC-TraFF with the results of previous methods demonstrates that different methods with their specific scopes can
perfectly supplement each other. Overall, our analyses indicate that PC-TraFF is a time-efficient method where its
algorithm has a tractable computational time and memory consumption.

The PC-TraFF server is freely accessible at http://pctraff.bioinf.med.uni-goettingen.de/

Background

Transcription factors (TFs) are a special class of gene reg-
ulatory proteins binding to short DNA motifs, known as
transcription factor binding sites (TFBS). These TFBSs
are located in promoters, which are found around the
transcription start site (TSS). The binding of TFs fre-
quently occurs in a cooperative manner due to their func-
tional collaboration which leads to cis-regulatory modules
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(CRMs). These modules are important for an effective
regulation of the transcriptional machinery, even if they
are not enriched in the corresponding promoter regions.
The collaboration of TFs might stem from synergistic or
antagonistic interactions between homotypic as well as
heterotypic TFs. Such collaborations are likely to have
effect on gene specificity and flexibility of the controlling
of gene transcription during, for instance, tissue devel-
opment and differentiation [1-3]. Thus, identification of
collaborating TFs is as crucial as the determination of
enriched TFs in genomic sequences for understanding the
molecular mechanisms of cellular regulation [1].
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Until now, several groups have published different stud-
ies for the identification of cis-regulatory modules, and
based on those studies, a variety of computational algo-
rithms have been developed to determine potential inter-
actions between TFs according to their binding sites
[4-15]. However, many of these studies require negative
and/or positive control sets and demand prior knowl-
edge about TF pairs [3, 5, 8, 11]. Further, most of these
studies often use simple organisms or restricted genes or
focus only on statistically overrepresented TFBSs in DNA
sequences. As a result, they usually have limited success,
and thus only detect a small number of all interacting
TFs (see the review [16] for the success rates of different
CRM-methods).

Large efforts have been made in the last few years
to overcome the limited success of existing methods. In
these cases, different methods have been utilized such
as searching the DNA for clusters of binding sites, com-
paring function conservation between related species,
and applying association rules as well as statistical meth-
ods like the hypergeometric or the permutation test
[4, 7, 8, 17]. Navarro et al. [4] have presented the Fuzzy
Clustering approach, which has been already applied by
Pickert et al. [18], in association with the Top-Down
Fuzzy Frequent-Pattern Tree algorithm to detect signif-
icantly co-occurring TFBSs based on their locations on
the DNA. Na et al. [8], have published in their study
a co-occurring pattern search (COPS) combining asso-
ciation rules with a Markov model and only focusing
on a predefined TF in simple organisms. However the
scope of applicability of both methods is strongly lim-
ited due to their very high running time and memory
consumption. As an example, the examination of the
human genome is problematic with these methods due
to its considerably large size, its huge repetitive content
and its complicated as well as complex transcriptional
network [2]. On the other hand, Nandi et al. [7] have
introduced the randomized occurrence frequency (OF,)
as the average number of positive predictions in the ran-
dom shuffled promoter sequences and determined muscle
specific TFs which occur together with the transcrip-
tion factor MyoD within a certain distance of 100bp. Hu
et al. [17] have used in their work the hypergeometric
test to identify synergistic TF interactions in tissue spe-
cific genes. While the approach of Nandi et al. mainly
takes into account tissue specific properties of interact-
ing TFs, the approach of Hu et al. principally considers
the enriched TFBS combinations in overlapping ortholo-
gous genes of human and mouse which leads to ignoring
the detection of non-enriched but interacting TF-pairs.
Further, these methods require user specified parameters
such as the level of significance of the test performed or
a background random set which is likely to affect their
performance.
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Recently, a novel method called MatrixCatch has been
introduced by Deyneko et al. [6] to identify CRMs in
promoter sequences. Mainly focusing on the experimen-
tally verified CRMs, MatrixCatch recognizes in individual
sequences the known TF pairs from the TRANSCompel®
[19] database. Although this method significantly outper-
forms several statistical methods, it clearly disregards the
pairs which are not included in TRANSCompel®. As a
result of this, MatrixCatch reaches an improved perfor-
mance in identifying CRMs with a significantly higher
nucleotide-level correlation coefficient (nCC) value in
comparison to other methods, but it is not able to detect
novel TF pairs which can be also crucial for understanding
gene regulation.

In this study, we propose a method called Potentially
Collaborating Transcription Factor Finder (PC-TraFF) to
detect interactions between homotypic and heterotypic
transcription factor pairs using pointwise mutual infor-
mation (PMI). PMI is a very useful association measure
in the field of linguistics for document summarization
processes as well as for the detection of combinations of
words in a corpus indicating that those words have some
idiosyncrasy in their linguistic distribution [20-23]. We
adopt the PMI in the field of bioinformatics replacing
words in a document with TFBSs in a set of sequences to
develop our new method, which includes following main
steps. First, we replace the Term-Sentence-Matrix, sug-
gested by Aji S et al. [20] for document summarization,
with a TFBS-Sequence-Matrix (TSM) to characterize the
importance of each TFBSs in a sequence with respect
to the entire set of sequences. Thereafter, according to a
predefined distance between TFBSs, PC-TraFF builds all
possible TFBS-pairs and calculates their weighted point-
wise mutual information scores. Unlike previous methods
[6-8, 17], PC-TraFF estimates for each TFBS pair the
expected levels of background PMI arising from the ran-
dom noise of false positive TFBSs using the average
product correction (APC) suggested by Dunn et al. [24].
Finally, the weighted PMI values of each TFBS pair are
corrected by the APC theorem.

The aim of this study is to identify collaborating TFs
that frequently bind in a cooperative manner in a set of
genomic sequences. Our results show that a large major-
ity of significant pairs found by PC-TraFF in promoter
sequences of different RefSeq genes and miRNA genes
are in agreement with previous experimental studies. In
addition to finding biologically characterized TF pairs,
PC-TraFF is able to identify additional potentially collab-
orating TFs which could provide new targets for future
works.

Results
In this study, we introduce PC-TraFF, a computational
method that aims to identify potential collaborating
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transcription factors based on their binding sites. Our
method comprises the following steps. For a given set
of sequences, we first determine the transcription factor
binding sites (TFBSs) applying the Match™ program [25]
with vertebrate position weight matrices (PWMs) from
TRANSFAC [26]. Second, we construct a TFBS-sequence
matrix to display the occurrence of unique TFBSs in each
sequence and then filter this matrix in order to elimi-
nate highly over- and/or underrepresented TFBSs in all
sequences. Third, by calculating the pointwise mutual
information (PMI) between each sequence and each TFBS
in the filtered TFBS-sequence matrix , we identify the
important TFBSs indicating that they occur in the cor-
responding sequences more than by chance. Afterwards,
considering these important TFBSs in our further anal-
ysis, we build TFBS pairs based on predefined minimal
and maximal distances between their coordinates on the
DNA. Next, the weighted cumulative pointwise mutual
information PMI,, between TFBSs of a pair is calcu-
lated to define their collaboration level in the entire set
of sequences. Employing the average product correction
(APC) theorem [24] to reduce the background noise due
to false positive TFBSs, we correct the PMI,.-values of
TFBS pairs. Finally, transforming the corrected PMI,,.-
values into z-scores, we define a pair to be significant if it
has a z-score > 3.

The Results section of this work comprises three parts.
First, to investigate the performance of PC-TraFF we made
a pairwise comparison with the previous methods Matrix-
Catch [6], CPModule [9], and CrmMiner [27]. Second,
to further test the functionality of PC-TraFF significant
TEBS pairs we performed for human promoters of Ref-
Seq genes and miRNA genes: i) a genome-wide gene set
analysis where each promoter region is represented by the
1000 bp upstream of the TSS of all annotated genes; ii) a
breast cancer subtype-associated gene set analysis whose
promoter regions are defined by Joshi et al. [28] as 500
bp upstream to 100 bp downstream relative to the corre-
sponding TSSs. Third, we present the computational time
and memory consumption of PC-TraFF in comparison to
MatrixCatch [6], CPModule [9], and CrmMiner [27].

As a prerequisite for our approach, we had to define
for the TFBSs in a pair minimal distance and maximal
distance constrains. However, we only demonstrate in
this section results for minimal distance> 5, maximal
distance< 20. The remaining results can be found in
Additional file 1.

After predicting PC-TraFF significant TEBS pairs in the
corresponding set of sequences, we validate those pairs
mainly focusing on the TRANSCompel® (release 2014.2)
[19], BioGRID interaction database (version 3.2.119) [29]
and STRING database [30] since all of them contain
experimentally proven pairs. Further literature search is
done if we cannot validate a pair in those databases.
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Comparisons with existing methods

To investigate the state-of-the-art prediction quality of
pointwise mutual information measure proposed in this
work, we were interested to determine the overlap
between the TFBS pairs predicted by different meth-
ods. Thus we made pairwise comparisons between our
new PC-TraFF, MatrixCatch [6], CPModule [9], and Crm-
Miner [27]. For this comparison study, we applied PC-
TraFF using different distance measures. It is impor-
tant to note that we only selected the methods which
are applicable to the human genome and the software
implementation of which is ready-to-use. All four meth-
ods take as input a sequence set and a PWM library
satisfying certain admissibility criteria. As a result, PC-
TraFF, CPModule, and CrmMiner output a set of signif-
icant TFBS pairs, but MatrixCatch outputs all predicted
pairs without any significance threshold for a sequence
set. To make MatrixCatch results comparable with the
results of these three methods, we determined the fre-
quency of each pair in MatrixCatch outcomes and then
took the top ranking pairs whose frequencies are equal
or bigger than average. Further, there is a fundamen-
tal difference between these methods: while PC-TraFF
and MatrixCatch do not require any background set,
to apply CPModule and CrmMiner a background set is
needed.

The results of this comparison are threefold. First, we
applied these methods to the promoter sequences of Ref-
Seq genes in the genome-wide analysis as well as the
breast cancer analysis to determine the overlap of their
predictions. Second, we randomly selected 200 promoter
sequences (-1000 bp relative to the TSSs) from chromo-
some 21, hence it has in average similar GC content to
human genome. In these 200 sequences, we inserted the
TFEBS pair (V$IRF1_01 - V$USF_01) which represents the
interaction between transcription factors IRF1 and USF1.
The minimal and maximal distances between these TFBSs
are defined as at least 5 bp and at most 20 bp, respectively.
Further, the TFBS pair was sampled in each sequence
between two to twelve times, randomly (see Additional
file 2). Third, we computed the sensitivity, specificity, and
Matthews correlation coefficient (MCC) values to assess
the performance of PC-TraFF and the three previous
methods.

Let Npc-TrarF = (VpC-TraFF» EC-Trark) denote the pre-
dicted collaboration network of TFBS pairs where any
two elements of ANpc.rrarr are connected by an undi-
rected edge belonging to Epc.trapr if and only if the
corresponding TFBS pair is PC-TraFF significant. By
extending this concept in full analogy, we observed for
each of these methods the predicted collaboration net-
works Npc-TraFFz0 Npettsy» NPC-TraFE100» Natc, Nepus and
Ncrmms where NpC-TraFFygs50,100 indicate the application
of PC-TraFF with different distance measures and MC,
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CPM, CrmM stand for the abbreviation of MatrixCatch,
CPModule, and CrmMiner, respectively.

First, we performed the overlap comparison between
methods edge-oriented using the number of over-
lapping edges as measure. Applying these methods
to the sequences of RefSeq genes in the genome-
wide analysis and breast cancer analysis, the number
of predicted TFBS pairs as well as the number
of overlapping pairs is calculated as ‘gpc,Tra[.‘onL
EPC-TraFFsg | » |EPC-TraFF10 | » 1EMC| s [ECPM| 5 |ECrmal,s
EpC-TraFFyy N EPC-TrabFs | » | EPC-TraFEso N EPC-TraFE100
EpC-TraFEsy N EPC-TrakF1g0 | »
NEcpuml > |Epc-TrakFsy N Ecrmm |, |Erc-Trarrsy N Enicls
|Epctraresy N Ecem| |Epc-Trarrsy N Ecrmm | » |EpC-TrarE100N,
Eumcl, | EpctrarFige N Ecpum |, |EpC-TrarF10 N Ecrmm | » 1EMcN
Ecpmls 1Emc N Ecrmml, and |Ecppr N Ecrmal, which are
displayed in Tables 1 and 2.

Although all methods perform a combinatorial search
of frequently occuring TFBS pairs and aim to identify
their significance in the given set of sequences, Table 1
shows that each of these methods detects in the same
set of sequences using the same PWM library consid-
erably different numbers of important TFBS pairs. The
reason for that can be explained due to the differences in
their underlying algorithms. While MatrixCatch mainly
scans the sequences to recognize the known pairs from
TransCompel database, CPModule applies a very strin-
gent TEBS screening threshold with an additional filter-
ing step based on nucleosome occupancy, which results
in a dramatic reduction of significant pairs found by
CPModule. On the other hand, CrmMiner uses a super-
vised classification approach for the identification of sig-
nificantly enriched TFBS pairs in the sequences under
study.

Table 2 suggests that regardless of the distance mea-
sure used, a large amount of TFBS pairs are regularly
detected by PC-TraFF as significant. Further, Table 2
clearly demonstrates that all of these methods carry
distinct information and thus the overlap between any
two of them is quite low. Thus the pairwise compar-
ison highly indicates that under the assumption that
each of these methods focuses on different important
aspects of interaction between TFs, they can comple-
ment each other perfectly. Especially, this assumption
is true for PC-TraFF as an information theory-based
method compared with the other three conventional
methods.

’

’

)

Epc-TrakFa N EMC|» |EpC-TrabEy »
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Table 2 Total number of edges in two predicted collaboration
networks of different methods

Total number of common edges in collaboration networks

Genome-wide analysis Breast cancer analysis

|Ercriarry N Epcrrarrsg| 43 54
|Epctiarsy N Epcriarfigo| 41 43
|Epcriarrs N Ennc| 3 1
|Epctrarrsy N Ecou] 6 0
|Erctrarrso N Ecrmu] 0 0
|Epc TrafFso N EPC TrafFrg| 82 80
|Ercrrarrs, N Ennc| 4 1
|EpcTrarrsy N Ecou] 8 1
|Epc Trarfsy N Ecimm] 2 0
|Epcriar g0 N Enic| 4 1
|EpctrarFico N Ecru] ° 0
|ErcmrarFico N Ecimm| 2 0
[Emc N Ecpml 1 0
[Epc N Ecrmml 0 1
[Ecpm N Ecrmml 3 1

Second, we applied all of these methods to the randomly
selected sequence set, explained above. While PC-TraFF
and CPModule successfully detected the inserted TFBS
pair as significant, MatrixCatch and CrmMiner have not
detected this pair.

To assess the performance of PC-TraFF, we further
made a statistical comparison between our method and
the three previous methods. For this comparison study,
we followed a similar procedure suggested by Yu et.
al [31]. As positive controls we obtained in total 3158
TEBS pairs according to experimentally validated interac-
tions between TFs from TRANSCompe1®, BioGRID and
STRING interaction databases. As negative controls, we
used all possible remaining pairs which have not been
experimentally validated yet but could be predicted based
on the PWM library applied in this study. Having applied
all methods to the above mentioned promoter sequences,
we observed that each of these methods reaches consid-
erably high specificity and quite low sensitivity indicating
that all methods show comparable performances. The
details are presented in Table 3. As expected, all meth-
ods suffer from low sensitivity because the way how we
assess this parameter is a very tough one, leading to a

Table 1 Total number of edges in method-dependent significant collaboration networks

Total number of edges in predicted collaboration network

Sequence sets of RefSeq genes in |Ercorraryo | |Epcrrarrs | |Erc-rrarf oo [Emcl |Ecoml |Ecrmml
Genome-wide analysis 54 86 91 19 17 21
Breast cancer analysis 64 82 88 13 6 25
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Table 3 Performance comparison between PC-TraFF g,
PC-TraFFsg, PC-TraFF;q9, MatrixCatch (MC), CPModule (CPM), and
CrmMiner (CrmM)

Sensitivity Specificity MCC
PC-TraFFzo 23 % 99.5% 0.088
PC-TraFFso 3.1% 99.3% 0.10
PC-TraFF100 32% 99.3% 0.102
MC 0.5% 99.9% 0.053
cPM 0.5% 100% 0.06
CrmM 0.6% 99.6 % 0.025

large overestimation of false negatives. Thus, the consid-
eration of sensitivity alone is of limited value and should
be taken for comparison of the different methods only.
Further, our results indicate that the usage of PC-TraFF
with different distance constrains gives rise to predic-
tion of different numbers of TFBS pairs (see Table 1)
which slightly changes its performance (see Table 3). Con-
sidering MCC-values, our PC-TraFF reaches moderately
increased performance compared to the three other meth-
ods. Thus, we propose mutual usage of previous methods
with PC-TraFF together so that they can complement each
other (for details see Table 4).

Table 4 The complementary usage of different methods can
lead to an improved performance in identifying important pairs
in sequences

Sensitivity Specificity MCC
PC-TraFFy0 U MC 2.8% 99.5% 0.101
PC-TraFFs0 U MC 3.6% 99.3% 0.112
PC-TraFF100 UMC 3.8% 99.3% 0.114
PC-TraFFy U CPM 26% 99.5% 0.099
PC-TraFFso U CPM 34% 99.3 % 0.107
PC-TraFFi00 U CPM 35% 99.3% 0.109
PC-TraFFyo U CrmM 3.0% 99.2% 0.087
PC-TraFFso U CrmM 38% 99% 0.10
PC-TraFF100 U CrmM 3.9% 99 % 0.102
MC U CPM 1.0% 99.9% 0.079
MC U CrmM 1.2% 99.6 % 0.050
CPM U CrmM 1.2% 99.6 % 0.051
PC-TraFFy0 U MC U CPM 31% 99.5 % 0.1
PC-TraFFso U MC U CPM 3.8% 99.3% 0.118
PC-TraFF100 U MC U CPM 4% 99.3% 0.12
PC-TraFFy U MC U CPM U CrmM 3.8% 99.2% 0.10
PC-TraFFso U MC U CPM U CrmM 45% 99% 0.116
PC-TraFF100 UMCUCPMUCrmM 4.7 % 99 % 0.119
MCUCPM U CrmM 1.7% 99.6 % 0.07
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Additionally, we compared the predictions of PC-TraFF,
MatrixCatch, CPModule, and CrmMiner, which have not
been experimentally validated yet. It turned out that there
is only one TFBS pair (VEMYCMAX_B - VSEGR_Q6) that
is experimentally unconfirmed, but even so, detected by
PC-TraFF and CrmMiner as significant.

A genome-wide analysis of promoters in the context of
RefSeq genes and miRNA genes

Applying our method to 23015 promoter sequences of
human RefSeq genes, we observed 54 PC-TraFF signifi-
cant collaborating TFBS pairs which are comprised of 7
homotypic and 47 heterotypic pairs. According to their
z-scores, the top 10 PC-TraFF significant pairs deter-
mined in promoter sequences of human RefSeq genes are
given in Table 5 (for the whole list of significant pairs see
Additional file 3). The importance of 44 pairs out of all sig-
nificant pairs has been experimentally verified by previous
studies regarding their interactions which are summarized
in TRANSCompel® [19], BioGRID [29] and STRING [30]
interaction databases. The remaining 10 TFBS pairs found
by PC-TraFF have not been experimentally validated yet
and the reason for their significance is still unclear.

As shown in Fig. 1, the predicted collaboration net-
work of PC-TraF significant TFBS pairs is comprised of
three unconnected subgraphs and consists of 35 nodes
and 54 edges where each edge refers to a collabo-
ration and each node corresponds to a TFBS. More-
over, the network contains the four hubs V$SP1_Q2_01,

Table 5 Significant TFBS pairs found by PC-TraF in genome-wide
promoter analysis of human RefSeq genes. The table shows the
top 10 significant TFBS pairs, which are sorted in descending
order based on their z-scores

Significant pair Z-score  Reference
VSPUT_Q6 - VSETS_Q6 984 TRANSCompel®,
BioGRID, STRING
VSCETS1P54_01 - VSETS_Q6 576 TRANSCompel®,
BioGRID, STRING
VSETS_Q4 - VSETS_Q6 549 TRANSCompel®,
BioGRID, STRING
VSEGR_Q6 - VSSP1_Q2_01 5.09 BioGRID, STRING
VSCETS1P54_01 - VSSP1_Q2_01 4.94 TRANSCompeI®,
STRING
VSAP1_Q2_01 - VSAP1_Q4_01 4.69 TRANSCompeI®,
BioGRID
VSSTAT6_01 - VSOCT_Q6 4.66 -
VSCEBPB_02 - VSSTAT6_01 4.58 TRANSCompel®,
STRING
VSMYCMAX_B - V$SP1_Q2_01 436 BioGRID, STRING
VSAPTFJ_Q2 - VSAPT_Q2 4.09 TRANSCompel®,

BioGRID, STRING
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I VS$EGR_Q6 N J—
V$SP1.Q6 “~___V$SP1 Q4 01 V$CEBPB_01
7 VSNPKD g6 - V$CEBP_Q2_01
VSMYCMAX_B V$PU1 6 I
_ V$IRF_Q6_01
VS$ETS_Q6 V$CEBPB_02
S— V$AP1 01
VS$ETS_Q4 e ' .
V$SP1_Q2 01 V$CET571P5[_01' V$STAT6_01 \VﬂRF Q6
V$AHRHIF_Q6 V$0CT_Q6
V$KROX_Q6 VSCREB Q3 — V$AP1.Q4 01 —— v$aP1 Q2 01 V$50X9_B1
V$CP2 01 \  V$PEBP_Q6 o
V$CP2_02 7 el V$AP1_C
TR V$AP1F)_Q2 —V$AP1 Q2 :
T V$NFAT Q6 ~— V$NFAT Q4 01 V$AP1 Q6
Fig. 1 PC-TraFF significant collaborating TFBS pairs based on promoter sequences of human RefSeq genes. Blue lines denote interactions between
TFs whose importance is experimentally verified whereas red lines indicate potential interactions between transcription factors that have not been
experimentally validated yet

V$STAT6_01, VSCETS1P54_01, and V$AP1_Q4_01 each
of which provides critical knowledge to understand
mechanisms of the gene regulatory network. The hubs
and their top three collaboration partners are given in
Table 6.

The binding site V$SP1_Q2_01 is a GC-rich motif on
the DNA bound by Sp1 which is a member of the three-
zinc finger Kriippel-related transcription factors family
[32]. Initially, Sp1 was detected as a general TF needed
for the activation of a large number of housekeeping
genes. In addition, Sp1 is important for the recruitment of
the transcriptional machinery in the absence of a TATA
box [33, 34]. Sp1 interacts with corepressors or coactiva-
tors to regulate transcription in cell-signaling events and

to modulate DNA-binding specificity [35, 36]. The sec-
ond hub in the network is the binding site V$STAT6_01
bound by the factor STAT6 belonging to the family of
STAT factors which seldomly activate transcription alone
but act together with other factors to active transcription
[37-39]. STAT6 is known to be involved in the immune
system. Here, it acts in response to the cytokines IL-4
and IL-13 and thus it is required for T-cell proliferation
as well as responses in T-cells [40]. In addition, STAT6
was recently identified to function in non-immune tis-
sues like mammary gland, lung and skin [40]. Another
hub is VSCETS1P54_01 representing the binding site of
ETS1 which is a member of the evolutionarily conserved
ETS family of transcription factors [41, 42]. The factor

Table 6 The hubs and their top three collaboration partners in the predicted collaboration network of significant TFBS pairs for human

RefSeq genes

Hub Top three collaborating pairs Z-score Reference

VS$SP1_Q2_01 VSEGR_Q6 5.09 BioGRID, STRING
VSCETS1P54_01 4.94 TRANSCompel®, STRING
VSMYCMAX_B 4.36 BioGRID, STRING

VSSTAT6_01 VSOCT_Q6 4.66
VS$CEBPB_02 458 TRANSCompel®, STRING
VSCEBP_Q2_01 3.74 TRANSCompeI®, BioGRID, STRING

VSCETS1P54_01 VSETS_Q6 5.76 TRANSCompel®, BioGRID, STRING
VS$SP1_Q2_01 4.94 TRANSCompel®, STRING
VSNFKB_Q6 3.96 TRANSCompel®, STRING

VSAPT_Q4_01 VSAP1_Q2_01 4.69 TRANSCompel®, BioGRID, STRING
VSSTAT6_01 335 TRANSCompel®, BioGRID, STRING
VSAP1_Q6 3.35 TRANSCompel®, BioGRID, STRING
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ETS1 plays a critical role in T-cell and B-cell prolifera-
tion and differentiation [41, 43]. Moreover, ETS1 is one
of the well investigated transcription factors whose tran-
scriptional activity is regulated by other factors by physical
and functional interactions [41, 44, 45]. The next hub in
the network is V$AP1_Q4_01 which is bound by AP-1
transcription factor. Simplified, AP-1 is a heterodimer of
JUN and FOS proteins or a homodimer of JUN proteins.
All AP-1 constituents belong to the leucine zipper family,
known as the one of the largest family of dimerizing TFs
in humans that share as a common feature a bZIP domain
[1, 32, 46, 47]. There is a huge number of different AP-1
proteins which are all differentially expressed and reg-
ulated indicating that the dimers differ in their cellular
function [48]. In general, AP-1 is involved in cell prolifer-
ation and differentiation as well as cell cycle progression.
Its combinatorial interactions with other transcription
factors are required for the specification of (regulatory)
transcriptional activities of FOS-JUN family proteins in
the human genome [48-50].

A closer look at the predicted collaboration network
of significant TFBS pairs (see Fig. 1) and Table 6 reveals
that the hub TFBS pairs V$SP1_Q2_01 - V$CETS1P54_01
bound by Sp1 - ETS1 and V$STAT6_01 - V$AP1_Q4_01
bound by STAT6 - AP-1 (JUN) exhibit significant coop-
erativity in their binding. The interaction between Spl
and ETS1 appears among others in TATA-less promoters
where the TATA-box can be replaced by a non-consensus
binding site for Sp1. The binding of Sp1 to this site is of
low affinity, but can be strengthened by the interaction
to ETS1 bound adjacent to it on DNA [51]. The physical
interaction between STAT6 and JUN was observed to play
a critical role in the upregulation of the IL-24 promoter.
IL-24 is a multifunctional cytokine that is important for B
cell differentiation as well as anticancer effects in diverse
cancer cells [52].

Above, we concentrated our research on interactions of
TFs with RefSeq genes. To extend our knowledge about
the gene regulatory network, we will in the following
also address the question of TF-miRNA gene interactions.
However, it is important to note that promoters of miRNA
genes used in this study are based on the predicted TSSs.
Consequently, they should not be treated as reliable as
the TSSs of RefSeq genes and the results may somewhat
vary when working with the results of different predic-
tion algorithms. It has been demonstrated that TFs can
regulate miRNAs as well as miRNAs can regulate TFs.
Additionally, both are involved in gene regulation, TFs
on a transcriptional level, miRNAs on a translational one.
It might therefore be interesting to compare the tran-
scriptional networks for genes and miRNAs regarding
interacting TFs to find similarities or dissimilarities. For
this purpose, we further performed a genome-wide anal-
ysis with PC-TraFF of the promoters of human miRNAs
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using computationally predicted promoter sequences of
miRNAs over ca. 50 tissues and cell lines (see Additional
file 4). Applying PC-TraFF to these human miRNA pro-
moters, we observed 42 significant TFBS pairs, among
which 35 heterotypic and 7 homotypic pairs could be
identified. The top 10 PC-TraFF significant pairs deter-
mined in promoter sequences of human miRNA genes are
given in Table 7 (for the whole list of significant pairs see
Additional file 5).

In addition, 14 of 42 significant TFBS pairs overlap with
the result of promoter sequence analysis of human RefSeq
genes. The importance and functionality of these signif-
icant pairs was checked with the TRANSCompel® [19].
BioGRID [29] and STRING interaction databases [30].
Here, biological importance of 21 TFBS pairs could be
confirmed through interaction databases. The remaining
21 PC-TraFF significant TFBS pairs have not been experi-
mentally validated yet and the reason for their significance
is still unclear.

Like the TFBS pair analysis of human RefSeq genes, we
constructed based on the significant TFBS pairs found by
PC-TraFF of human miRNA promoters a predicted col-
laboration network. It consists of 30 nodes and 42 edges
where each edge refers to a collaboration and each node
corresponds to a TFBS (see Fig. 2). The most remarkable
result of this analysis is that the network contains the three
hubs V$SAP1_Q4 01, VSCETS1P54_01, and V$STAT6_01
which have been also identified as hubs in the significant
TEBS pairs collaboration network of human RefSeq genes
(see Fig. 1). The hubs and their top three collaboration
partners are given in Table 8.

Previous studies described that AP-1, which binds to the
V$AP1_Q4_01 motif, is involved in the expression of sev-
eral miRNAs. For example, AP-1 activates miR-155 in the

Table 7 Significant TFBS pairs found by PC-TraFF in
genome-wide promoter analysis of human miRNA genes. The
table shows the top 10 significant TFBS pairs, which are sorted in
descending order based on their z-scores

Significant pair Z-score Reference

VSSTAT6_01 VSHMGIY_Q6 1373

VSHMGIY_Q6 VSLEF_Q2 5.89

VSHMGIY_Q6 VSGATA_Q6 5.18

VSCREB_Q3 VSAP1_Q4_01 5.16 BioGRID, STRING

VSMYCMAX_B VSAHRIF_Q6 5.03 BioGRID, STRING

VS$STAT6_01 VSAP1_Q4_01 498 TRANSCompe|®,
BioGRID, STRING

VSHMGIY_Q6 VSAP1_Q4_01 497 BioGRID, STRING

VSSTAT6_01 VSLEF_Q2 483

VSSF1_Q6 VSHNF4_Q6 4.79

VSHMGIY_Q6 VSCREB_Q3 4.79 BioGRID, STRING
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processes of B-cell activation and maturation [53]. ETS1
binds to the V$CETS1P54_01 motif and regulates among
others the expression of miR-126, which is responsible for
the regulation of angiogenesis and vascular inflammation
[54]. STAT6 binds to V$STAT6_01 and is involved in the
cholesterol biosynthesis pathway through targeting miR-
197 [55]. Besides this, it has been described to be regulated
by miRNAs which act among others as tumor suppressors
[56].

Furthermore, it is important to note that the hub TFBSs
V$STAT6_01 and V$AP1_Q4_01 were detected by PC-
TraFF as a significant pair indicating that their bindings
frequently occur in a cooperative manner in the promoter

sequences of human miRNA like in the promoters of
human RefSeq genes.

Analysis of breast cancer subtype-associated promoter
regions

Today, it is widely known that breast cancer is the most
common cancer in women. Breast cancer can be sepa-
rated into five subgroups termed Luminal A, Luminal B,
Normal-like, ErbB2 over-expressing and Basal-like [28]. In
order to expand our analysis to more specific, clinically
relevant situations, we applied our new method to pro-
moter regions of breast cancer-associated RefSeq genes
and their regulating miRNA genes.

Table 8 The hubs and their top three cooperation pairs in the predicted collaboration network of significant TFBS pairs for human

miRNA genes

Hub Top three collaborating pairs Z-score Reference

VSAP1_Q4_01 VSCREB_Q3 5.16 BioGRID, STRING
VSSTAT6_01 498 TRANSCompeI®, BioGRID, STRING
VSHMGIY_Q6 497 BioGRID, STRING

VSCETS1P54_01 VSMYCMAX_B 433 -
VSPUT_Q6 367 TRANSCompel®, BioGRID, STRING
VSEGR_Q6 3.64 -

VSSTAT6_01 VSHMGIY_Q6 1373 -
VSAP1_Q4_01 498 TRANSCompel®, BioGRID
VSLEF_Q2 4.82
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Similar to the genome-wide analysis, we started with
analyzing the 218 promoter regions of target RefSeq
genes. As a result of this analysis, we observed 64
PC-TraFF significant collaborating TFBS pairs that
are comprised of five homotypic and 59 heterotypic
pairs (see Additional file 6). The biological impor-
tance of 44 pairs has been experimentally verified by
previous studies whereas the remaining 20 PC-TraFF
significant pairs have not been experimentally vali-
dated yet and the reason for their significance is still
unclear.

Interestingly, we found that two TEBSs in the PC-TraFF
significant pairs are representing the E2F transcription
factor family (see Fig. 3). In general, this family is known
to be involved in cell cycle regulation as well as apoptosis
and DNA damage response. Our results reveal that mem-
bers of the E2F family are collaborating with each other
which has been proven by experimental studies in the con-
text of breast cancer [57]. Briefly, activating and repressive
E2Fs bind to adjacent sites on the BRCA1 promoter and
regulate its activity. In response to hypoxia, they cause
the downregulation of unmutated BRCA1 which in turn is
associated with sporadic cancers of the breast [57]. In our
study, we further detected the established collaboration of
E2F family members with Sp1, c-Myc and NF-«B1, each
of which plays a critical role in breast cancer [34, 58, 59].
The interaction of E2F and Sp1 has been experimentally
verified to play a fundamental role in the activation of S-
phase specific promoters at the G;/S boundary of the cell
cycle [60].

The binding site VSNFKB_Q6 that is bound by mem-
bers of the NF-«B related factors family forms a hub in
the network of potential collaborating pairs of the breast
cancer gene set (see Fig. 3 and Table 9). In general, NF-«B
related factors are involved in the regulation of cell pro-
cesses like proliferation, survival and immunity. In addi-
tion, they are critical for the regulation of inflammation
as well as angiogenesis [61] and are known to be involved
in breast cancer [59]. In our study, we found that NF-«B1,
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a member of the family NF-«B related factors [32], inter-
acts with ETS1, ELF1, Sp1, and E2F1. ETSI is involved in
breast cancer where it regulates genes that are important
for metastasis and tumor progression [62]. ELF1 belongs
to the Ets-related factors family and regulates genes that
are involved in cell growth and differentiation. Its overex-
pression is linked with breast cancer [63]. Another mem-
ber of the NF-«B related factors family is RelA which is
found to collaborate with SMAD3, AHR and c-Myc each
of which is known to be involved in breast cancer [64, 65].
AHR is aligand activated transcription factor whose activ-
ity is linked with alterations in cell proliferation, apoptosis,
adipose differentiation, tumor promotion, immune func-
tion, vitamin A status, development and reproductive
functions [66]. The physical interaction of RelA and AHR
is important for the activation of the c-Myc oncogene in
breast cancer cells [65].

Three TFBSs in our significant pairs (V$CEBP_Q2,
V$CEBPB_02 and V$CEBP_Q2_01) can be bound by
transcription factor C/EBPS. This TF is known to regulate
genes that are involved in invasion, cellular proliferation,
survival and apoptosis [67]. Further, the level of C/EBPS is
often increased in metastatic breast cancer and is known
to correlate with a high tumor grade [67]. We found
this factor interacting with HMGA1, c-Myb and STATS6.
HMGAL is regulating gene expression by altering the
chromatin structure and orchestrating transcription fac-
tor complexes to enhanceosomes within promoter regions
[68]. Additionally, it is known to be overexpressed in
aggressive cancers and to be involved in metastatic pro-
gression in triple negative breast cancers [68]. The inter-
action of HMGA1 and C/EBP§ is in particular crucial for
the regulation of the human insulin receptor [69]. c-Myb
functions in cell differentiation as well as cell proliferation
and is involved in different types of tumors [70].

To gain more insight into the role of TF interactions in
gene regulatory networks, we further applied PC-TraFF to
the promoters of breast cancer-associated miRNAs. In our
analysis, we found 43 PC-TraFF significant collaborating

Table 9 The hubs and their top three collaboration partners in the predicted collaboration network of breast cancer-associated

significant TFBS pairs for human RefSeq genes

Hub Top three collaborating pairs Z-score Reference

VSNFKB_Q6 VSCETS1P54_01 542 TRANSCompel®, STRING
VSETS_Q6 4.80 BioGRID, TRANSCompeI®, STRING
VSSP1_Q4_01 343 BioGRID, TRANSCompeI®, STRING

VSCETSTP54_01 VSETS_Q6 801 BioGRID, TRANSCompel®, STRING
VSNFKB_Q6 542 TRANSCompel®, STRING
VSMYCMAX_B 521

VSMYCMAX_B VSCETS1P54_01 5.16
VSE2F_Q3_01 521 TRANSCompel®
VSAHRHIF_Q6 4.39 BioGRID, STRING
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Fig. 3 PC-TraFF significant collaborating TFBS pairs based on breast cancer-associated promoter sequences of human RefSeq genes. Blue lines
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TFEBS pairs that are comprised of 8 homotypic and 35
heterotypic pairs (see Fig. 4). 14 out of 43 significant
pairs have been also detected by PC-TraFF in the breast
cancer-associated promoters of RefSeq genes. Of all sig-
nificant pairs 22 could be verified based on annotation
databases TransCompel, BioGRID and/or STRING. The
significance of the remaining pairs is still unclear. In
addition to interactions between TFs in the promoters
of miRNA genes, we further investigated the interplay
between TFs and miRNAs. Consequently, we found for
TFs in 37 pairs at least a reference to their interaction with
miRNAs in literature (see Additional file 7).

Figure 4 shows that the collaboration network contains
the five hubs V$STAT6_01, VSETS_Q6, VSAP1_Q4 01,
V$HMGIY_Q6, and V$PU1_Q6 each of which plays a
critical role in the breast cancer-associated gene regula-
tory network [62, 68, 71-74]. The hubs and their top three
collaboration partners are given in Table 10. V$ETS_Q6
is bound by ETS1 which also binds to VSCETS1P54_01
and V$CETS168_Q6. Both are found to collaborate with
VS$ETS_Q6 and show quite high significance levels in the
PC-TraFF analysis. ETS1 has been described in literature
to be involved in regulation of and by miRNAs which
are involved in cancer [54, 75]. As an example, ETS1 has
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Fig. 4 PC-TraFF significant collaborating TFBS pairs based on breast cancer-associated promoter sequences of human miRNA genes. Blue lines
denote interactions between TFs whose importance is experimentally verified whereas red lines indicate potential interactions between
transcription factors, that have not been experimentally validated yet

been found to regulate and is in turn also regulated by  regulation, more specifically, it has been observed to act as
miR-222 [75]. It was found that a phosphorylated part a metastasis suppressor miRNA in human breast cancer
of the ETS1 protein induced miR-222 transcription in  [76]. The transcription factor PU.1 binds to sites pre-
metastatic melanoma [75]. As previously described, ETS1  dicted with V§PU1 Q6. It has been shown to be important
is additionally involved in regulation of miR-126 [54]. This  for differentiation and development of several cell types
miRNA is also known to be involved in breast cancer and tissues, as for example in B cell development and

Table 10 The hubs and their top three collaboration partners in the predicted collaboration network of significant TFBS pairs for
breast cancer-associated human miRNA genes

Hub Top three collaborating pairs Z-score Reference
VSSTAT6_01 VSHMGIY_Q6 13.28 -
VSMYB_Q5_01 5.77 -
VSGATA_Q6 4.98 -
VSETS_Q6 VSPUT_Q6 1349 TRANSCompel®, BioGRID, STRING
VSSF1_Q6 6.16 -
VSCETS1P54_01 5.00 TRANSCompel®, BioGRID, STRING
VSAP1_Q4_01 VSHMGIY_Q6 4.85 BioGRID, STRING
VSLEF1_Q2 427 BioGRID
VSSTAT6_01 417 TRANSCompel, BioGRID, STRING
VSHMGIY_Q6 VSSTAT6_01 13.28 -
VSMYB_Q5_01 6.17 -
VSLEF1_Q2 6.00 -
VSPUT_Q6 VSETS_Q6 1349 TRANSCompel®, STRING
VSSF1_Q6 5.88 -

VSCETS168_Q6 3.29 TRANSCompel®, BioGRID, STRING
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terminal myeloid differentiation [77]. Additionally, it has
been described to be associated with cancer, as it inter-
acts with the p53 family of tumor suppressors and acts as
a tumor suppressor itself in B cell malignancies [77, 78].
Like ETS1, PU.1 is involved in miRNA regulation and has
been reported to regulate the transcription of miR-142 in
hematopoietic cell specific expression as well as miR-424
expression in human monocyte and macrophage differen-
tiation [79, 80]. Another hub is V§AP1_Q4_01, which is
bound by AP-1. This TF has been shown to be involved in
regulation of miR-21, a miRNA which has been observed
to be significantly deregulated in breast cancer [81, 82].

Comparative analysis of breast cancer subtypes

Breast cancer tumors can be separated into five differ-
ent subgroups with unique RefSeq genes based on their
mRNA expression patterns. As has been noted in [28],
the promoters of the individual subtypes can be distin-
guished by their composition of TFBS. The number of
promoter sequences of RefSeq genes as well as the cor-
responding number of PC-TraFF significant pairs found
for each subtype is shown in Table 11. The results show
that there is a certain pairwise overlap between the sig-
nificant pairs found in all subtypes (see Table 12) indi-
cating that some TF collaborations are not restricted
to the individual subtypes. The largest pairwise over-
lap with 36 significant pairs is between Luminal A and
Luminal B indicating that this subtypes match in a large
part of their regulatory features. There is further a huge
significant TFBS pair overlap found in Luminal A and
Basal-like as well as Luminal B and Basal-like associated
sequences.

Six significant pairs (see Table 13) are detected by PC-
TraFF in all subtypes, each of them has been detected as
significant previously (see Fig. 3). One of these pairs repre-
sents the synergistic collaboration between transcription
factors PEBP2aA and ETS1 whose direct interaction is
crucial for the activation of the osteopontin (Opn) pro-
moter [83]. Opn is in general important for ossification
[83] but its splicing variants have been shown to be
expressed in breast cancer cells [84]. Another TFBS pair
out of these six pairs represents the collaboration between

Table 11 Number of promoter sequences of breast cancer
subtype-associated RefSeq genes and corresponding significant
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Table 12 Number of pairwise overlapping significant pairs of the
RefSeq genes of breast cancer subtypes Luminal A, Luminal B,
Basal-like, Normal-like, and ErbB2 over-expressing

Subtype Luminal A Luminal B Basal-like Normal-like ErbB2
over-exp.
Luminal A - 36 28 26 23
Luminal B - 30 20 19
Basal-like - 25 19
Normal-like - 16

ErbB2 over-exp. -

C/EBPB and STAT6 which often bind directly adjacent
on DNA and activate transcription in a synergistic
manner [85].

In analogy to our previous analysis, we investigated
in the next step the interactions between TFs in the
promoter sequences of breast cancer subtype-associated
miRNA genes. The number of promoter sequences of
miRNA genes as well as the number of PC-TraFF signifi-
cant pairs identified for each subtype is shown in Table 14.
As for the breast cancer subtype-associated Refseq genes,
we made a pairwise overlap comparison between the
significant pairs identified in the promoters of subtype-
associated miRNA genes (see Table 15). Similar to the
previous findings, the results of this comparison show that
the largest pairwise overlap is found between Luminal
A and Luminal B with 38 overlapping pairs whereas the
smallest significant TEBS pair overlap is found between
the Basal-like and the ErbB2 over-expressing subtype. Fur-
ther the results suggest that the significant TFBS pairs
found in each subtypes do not vary clearly. In contrast
to the Refseq gene analysis, in the miRNA promoters
20 PC-TraFF significant TEBS pairs have been detected
in all five subtypes (see Table 16). Surprisingly, one of
these pairs, namely V$SF1_Q6 and V$E2A_Q6 does not
occur in the predicted TFBS pair collaboration network of
miRNA genes of the breast cancer analysis (see Fig. 4). The
binding sites V$SF1_Q6 and V$E2A_Q6 are bound by the
factors NR5A2 and TCE3, respectively. NR5A2 has been
described to be associated with invasive breast cancer and

Table 13 Six PC-TraFF significant TFBS pairs found in promoter
sequences of RefSeq genes of all five breast cancer subtypes

pairs found by PC-TraFF Significant pairs Reference

Subtype Number of sequences Number of Pairs VSMYCMAX_B - VSE2F_Q3_01 TRANSCompel®

Luminal A 86 61 VSCETS1P54_01 - VSPEBP_Q6 TRANSCompel®, BioGRID, STRING
Luminal B 57 62 VSCETS1P54_01 - VSNFKB_Q6 TRANSCompel®, STRING
Basal-like 31 72 VSCEBP_Q2 - VSSTAT6_01 TRANSCompel®, BioGRID, STRING
Normal-like 27 49 VSAP1_Q2_01 - VSAP1_Q4_01 TRANSCompel®, BioGRID, STRING
ErbB2 over-expressing 16 62 V$SCEBPB_02 - VSSTAT6_01 TRANSCompeI®, STRING




Meckbach et al. BMC Bioinformatics (2015) 16:400

Table 14 Number of breast cancer subtype-associated miRNA
genes and corresponding significant pairs found by PC-TraFF
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Table 16 20 PC-TraFF significant TFBS pairs found in promoter
sequences of MiIRNA genes of all five breast cancer subtypes

Subtype Number of miRNAs Number of Pairs Significant pairs Reference
Luminal A 186 46 VSSTAT6_01 - VSHMGIY_Q6 -
Luminal B 53 61 VSHMGIY_Q6 - VSLEF1_Q2 -
Basal-like 76 45 VSHMGIY_Q6 - VSMYB_Q5_01 -
Normal-like 23 52 VS$STAT6_01 - VSMYB_Q5_01 -
ErbB2 over-expressing 70 45 VSSF1_Q6 - VSCETS168_Q6 -
VSHMGIY_Q6 - VSAP1_Q4_01 BioGRID, STRING
VSSTAT6_01 - VSAP1_Q4 01 TRANSCompel®,
is additionally thought to be involved in promotion of BioGRID, STRING
migration of breast cancer [86]. TCF3 upregulates miR-  V$STAT6_01 - VSGATA_Q6 -
495 in breast cancer stem cells [87]. Additionally, TCF3  v$HMGIY_Q6 . VSGATA_Q6 .
is supposed to be involved in breast cancer growth and  \¢gata g . VSLEFT_Q2 _
initiation and is preferentially highly expressed in breast VSMYCMAX_B i VSAHRHIF_ Q6 BiOGRID, STRING
cancer with poor prognosis of the basal-like subtype [88].
. . : V$APT_C - V$AP1_Q4_01 TRANSCompel®,
Although both transcription factors are involved in breast B CRID STRING
cancer, we could not confirm their direct interaction '
through annotation databases or literature survey. V9SF1_Q6 i VSE2A_Q6 i
VSSF1_Q6 - VSHNF4_Q6 -
Computational time and memory usage of PC-TraFF VSGATA_Q6 - VSAPT_Q4_01 TRANSCompel®,
The identification of significant TFBS pairs in human BioGRID, STRING
genome is computationally intensive because of its con- ~ VSLEF1_Q2 - VS$AP1_Q4_01 BioGRID
siderably large size and its complicated as well as com-  v$MYCMAX_B - V$E2F_Q3_01 TRANSCompel®
plex transcriptional network. When analysing a set of  \¢\rxappaBes 01 . VSCREL_01 BioGRID, STRING
sequences of the human genome, the computational time VSSTAT 01 i VSHMGIY_Q6 i
and memory usage can rise very quickly due to the huge
number of potential TFBS pairs. Thus, one of our main VSE2F_Q3_01 _ VSAHRHIF_Q6 _
targets while developing PC-TraFF algorithm was to keep
its computational time and memory usage tractable. PC-
TraFF is implemented in Java and performed on Intel
Core™i7-4770K Processor operating at 3.50 GHz, with 32 Applying PC-TraFF algorithm to the promoter

GB DDR3 RAM using Ubuntu 12.04.5 operating system
(64 - bit version). Further, we compared the performance
of PC-TraFF with MatrixCatch [6], CPModule [9], Crm-
Miner [27], CisMiner [4], and COPS [8]. However, our
attempt to apply CisMiner and COPS to human genomic
sequences failed because the scope of applicability of
both methods is strongly limited due to their very high
execution time and memory consumption.

Table 15 Number of pairwise overlapping significant pairs of the
miRNA analysis of breast cancer subtypes Luminal A, Luminal B,
Basal-like, Normal-like, and ErbB2 over-expressing

sequences of RefSeq genes, the average computational
time of a sequence was 0.1806 s in genome-wide pomoter
analysis and 0.0203 s in breast cancer analysis, respec-
tively. Consequently, the algorithm took ~ 69 minutes
with a memory requirement of 3229 Mb for genome-wide
analysis and less than one minute (~ 0.07 minute) with
a memory requirement of 581 Mb for breast cancer
analysis. The computational time and memory usage of
PC-TraFF in comparison to other tools is presented in
Table 17.

Subtype Luminal A Luminal B Basal-like Normal like ErbB2 Table 17 Computational time (in seconds) / memory usage (in
over-exp.  megabyte) of the individual tools

Luminal A - 38 28 31 30 Genome-wide analysis Breast cancer analysis

Luminal B - 31 32 33 PC-TraFF 41584 s /3229 Mb 445/581 Mb

Basal-like - 27 24 CPModule 2213.0s/721.6 Mb 595/78Mb

Normal-like - 27 CrmMiner 34409.6 s /526 Mb 857.45/90 Mb

ErbB2 over-exp. MatrixCatch 627.25/70.7 Mb 16.95/46.2 Mb
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Discussion

Previous studies showed that Pointwise Mutual Informa-
tion (PMI) is a powerful association measure in the field
of linguistics. Aji S et al. [20] used PMI in their study
for document summarization processes based on a Term-
Sentence-Matrix where they measured weights of words
to describe their importance in sentences. On the other
hand, Gerlof Bouma [21] applied PMI in his work for
extracting collocations from a text where he aimed to
identify essential word combinations in sentences which
display some idiosyncrasy in their linguistic distributions.
These two articles encouraged us to utilize PMI for the
identification of potentially collaborating transcription
factors based on the idiosyncrasy of their binding site
distributions on the genome. Thus adopting the idea of
Aji S et al. [20] and Gerlof Bouma [21] in the field of
bioinformatics, we treat in this study the genome as a doc-
ument, the sequences under investigation as sentences,
and TFBSs as words in these sentences.

Today, it is known that in higher organisms TFs often
form non-random combinations of functional dimers or
higher order complexes instead of acting alone. Until now,
different studies have confirmed that the binding sites of
TFs provide a useful clue in the prediction of collaborating
TFs in a set of sequences (see e.g. [4—14]). As a result, we
use the TFBSs as the key components of PC-TraFF. How-
ever in our method the challenge was to filter these TFBSs
with the objective of eliminating the bias as well as noise
effects of both highly over- and underrepresented TFBSs
in a consistent way. These highly over- and underrepre-
sented TFBSs could be assumed to be punctuation marks
or stop words like “a”, “the’, “of” etc. which are required
in sentences due to the grammatical structures of natu-
ral languages. However they do not provide meaningful
information in statistical analysis for the identification of
important words in sentences [20]. Moreover, we apply an
additional filtering step in order to avoid the overestima-
tion of such TFBS pairs which directly overlap with TFBSs
of their same type (see the “Methods” section, Phase 3).
These overlaps result from the palindromic TFBSs and the
PWMs used by Match® program [25]. The filtering can
be seen as removal of redundant words in sentences indi-
cating that these words do not contribute any additional
information about the content of a sentence.

Another fundamental step of our new method is the
construction of TFBS pairs for which a distance mea-
sure between TFBSs according to their localization is
required. Today, different approaches are utilized to define
the distance constraints between TFBSs like the calcu-
lation of the preferred distances between TFBSs based
on their coordinates on the sequences (see e.g [4, 8])
or the usage of certain predefined maximum and mini-
mum distances between TFBSs (see e.g [11, 17, 27]). As
suggested by Hu et al. [11], in this study we preferred
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the latter approach and tested our method using differ-
ent predefined distance constraints. However our distance
definition between TFBSs clearly differs from the previ-
ous definitions used in [8, 11], hence in these studies the
distance between TFBSs has been calculated based on the
last nucleotide of the first TFBS and first nucleotide of the
second TFBS. We find the usage of this definition doubtful
in our study since: i) it can result in negative distances if
we consider slightly overlapping TFBSs which satisfy our
predefined maximum and minimum distance constraints;
ii) we believe that the first or last nucleotide of a TFBS
is not convincing since the borders of TFBSs as they are
represented by PWMs are somewhat fuzzy.

In order to almost completely eliminate the noise of
false positive TFBSs, we additionally applied the average
product correction (APC) theorem. The APC theorem is a
promising method which has been developed by Dunn et
al. [24] as an explicit noise measure based on information
theory to estimate the background mutual information of
residue positions in multiple sequence alignments. This
theorem seems to be of universal applicability and thus
we utilized it in our approach to calculate for each TFBS
pair the background PMI,(¢,; t5) shared by TEBSs ¢, and
tp in the set of sequences under study. By removal of the
background from the observed PMI,, -values, the point-
wise mutual information is decreased which results in the
correction of the observed values. As a consequence, a
separation of the signal caused by functional collabora-
tion of TFs from the background occurs. We use these
corrected values for ranking the candidate pairs without
influence of noise contained in the sequences under study.

The results we present in this study for different sets
of sequences of human RefSeq genes show that the vast
majority of TEBS pairs found by PC-TraFF are in agree-
ment with previous experimental studies. 44 significant
TEBS pairs in the genome-wide analysis of promoters
as well as in the breast cancer-associated sequence set
analysis, respectively, have been confirmed by literature
regarding to the interactions of corresponding TFs. Such
interactions contribute crucial information for our under-
standing of combinatorial aspects of gene regulatory net-
works in the human cell cycle [2]. To gain more insights
into the regulatory network we further analyzed the pro-
moter regions of miRNA genes whose interactions with
TFs play an important role in several biological pro-
cesses [89]. Unlike recent studies [89-92], which mainly
focus on the interplay between miRNAs and single TFs,
in our analysis we systematically studied the interactions
between TFs in the promoters of miRNA genes. It turned
out that there are several overlapping significant pairs
which are detected in the sequences of both miRNA genes
and RefSeq genes indicating that the collaboration of
corresponding TFs are essential for transcription in gen-
eral. However, we found one binding site VSHMGIY_Q6
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which was found more frequently in the significant TFBS
pairs in the promoters of miRNA genes than RefSeq
genes. VSHMGIY_Q6 is bound by the transcription fac-
tors HMGA1 and HMGA2. Mammalian HMGA proteins
have been shown to play key roles in chromatin archi-
tecture and gene control and are known to have onco-
genic activity [93]. Furthermore, it has been shown that
HMGA proteins regulate miRNAs. For example, the miR-
NAs miR-196a-2, miR-101b, miR-331 and miR-29a have
been found be downregulated in cells lacking the HMGA1
protein [93]. Additionally, the miRNA miR-181b has been
shown to be up-regulated by HMGA1 and both are sup-
posed to be involved in breast cancer progression [94].
This, in correlation with our results, might hint to the fact
that the HMGA proteins could be important regulators of
miRNAs.

Of particular interest, we created based on the PC-
TraFF significant TFBS pairs for each analysis a collabo-
ration network (see Figs. 1, 2, 3 and 4). These networks
support us on the one hand for explaining the potential
biological functions of TF pairs in the corresponding set
of sequences. On the other hand, they help us to gener-
ate new hypotheses for extending our knowledge of why
these transcription factors tend to bind in a preferential
manner. All collaboration networks of significant pairs
contain two large unconnected subgraphs. These findings
are consistent with those of Hu et al. [11] and indicate
that the collaboration networks of transcription factors
are split in two major groups according to their binding
behaviour. Interestingly, we explore that the predicted col-
laboration networks for RefSeq genes as well as miRNA
genes in the genome-wide analysis contain the binding
sites VSSTAT6_01, VSCETS1P54_01, and V$SAP1_Q4_01
with a higher degree of connectivity and thus they are
defined as hubs in both networks. However, the binding
site V$SP1_Q2_01 shows a sole exception in the genome-
wide analysis in comparison to other hubs because we can
only find it in the collaboration network for RefSeq genes.
The reason why this binding site can not form a signifi-
cant pair in the genome-wide analysis of miRNA genes, is
still unclear. For the breast cancer-associated sequence set
analysis, the predicted collaboration networks for miRNA
genes and their target RefSeq genes contain completely
different binding sites as hubs. This finding indicates that
the functional interactions between TFs for the regula-
tion of the miRNA transcription could also differ from
the interactions between TFs for the gene regulation of
RefSeq genes. We further analyzed breast cancer subtype
specific sets of sequences by separating the breast cancer-
associated sequences into five subgroups as has been
noted in [28]. A comparison between the significant pairs
found in all subtypes reveals that PC-TraFF detected six
experimentally verified TFBS pairs (see Table 13) which
are found and are likely to play a critical role in each
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subtype. The results further suggest that our method is
not dependend on the number of sequences under study,
since the PC-TraFF can detect for a small number of
sequences a high number of significant TFBS pairs or vice
versa.

Additionally, we applied the PC-TraFF using differ-
ent distance constraints as suggested by Hu et al. [11].
The results denote that a considerable number of true
significant TFBS pairs are consistently detected by PC-
TraFF under different distance constraints which indicates
the consistency of PC-TraFF predictions (see Additional
file 1).

Although we can verify the importance of most TFBS
pair predictions in the promoter regions of human Ref-
Seq genes, there are still 10 and 20 unconfirmed TFBS
pairs found for the genome-wide analysis and breast
cancer-associated sequence set analysis, respectively. It is
interesting to note that three of the unconfirmed TFBS
pairs (V$CETS1P54_01 — VSMYCMAX_B, V$CP2_01 —
V$SF1_Q6, and V$SOX9_B1 — V$STAT6_01) are referred
as significant in both analyses. As discussed in [31], one
reason for the significant co-occurrence of all uncon-
firmed binding sites could be that their TFs do not
have direct physical interaction but rather collaborate
with each other through another co-factor indirectly.
However, we hypothesize that most of the unconfirmed
pairs identified by our present method in the promoter
regions of both RefSeq genes as well as miRNA genes
may play a critical role for an effective regulation of
the transcriptional machinery in both analysis notwith-
standing the absence of previous experimental data.
Therefore, further progress from the biochemistry and
molecular biology end is required not only to evalu-
ate the significance of these pairs, but also for a future
perspective on a deeper understanding of regulatory
networks.

Finally, we made a pairwise comparison between the
results of PC-TraFF and conventional methods Matrix-
Catch [6], CPModule [9], and CrmMiner [27]. This
comparison study reveals that all these methods detect
remarkably different sets of TFBS pairs as important
which results in considerably low overlaps between the
results of all these methods. The reason for that can
be explained that all methods model different aspects of
interactions between transcription factors and thus carry
distinct information. However, the comparison results
additionally indicate that all these methods reach com-
parable perfomances. These findings are consistent with
those of Klepper et al. [95] where they applied several
methods to identify TFBS pairs using different datasets
and then showed that no single method is better than
other. Thus, we suggest to use these methods together
to improve the perfomance in identifying important
pairs.
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Conclusions

In this study, we develop PC-TraFF for the identifi-
cation of potentially collaborations between TFs using
their binding site distributions on the sequences under
study. PC-TraFF is a new information theoretic method
that applies the pointwise mutual information by con-
sidering TFBSs like words and sequences like sentences.
PC-TraFF also utilizes the average product correction
theorem which reduces the effect of false positive TFBSs
and thus enhances the signal caused by functional interac-
tions between TFs. Results show that PC-TraFF algorithm
has a tractable computational time and memory con-
sumption. Our results further indicate that PC-TraFF is on
the one hand able to identify known collaborating pairs in
the sequences, on the other hand able to predict additional
pairs which are likely to play critical role in the gene regu-
latory network but have not been experimentally validated
yet. Thus we suggest that the web server of PC-TraFF
could be used as a novel automated tool for the prediction
of potential collaborating transcription factors which are
required to better understand the molecular mechanism
of cellular regulation.

Methods

Set of sequences for RefSeq genes and miRNA genes

Using UCSC genome browser [96], we obtain for human
RefSeq genes and miRNA genes the corresponding pro-
moter sequences based on their annotated transcription
start sites (TSS). It is important to note that while the
TSSs of RefSeq genes have been obtained from the UCSC
genome browser, the TSSs of miRNA genes have been
determined during an internal project, the publication
of which is under preparation. The method utilized for
obtaining the TSS of the miRNAs depends on the posi-
tions of modified histones, more precisely the positions
of H3K4me3. This modified histone has been described
to be localized mainly at the promoters and TSS of tran-
scriptionally active genes in the genome [97]. Therefore,
these positions in collaboration with some computational
TSS identifying tools were used to define the TSS and pro-
moter regions of miRNAs. Moreover, it is important to
note that we have also analysed the promoter sequences
of miRNAs from PROmiRNA database [98] to compare
its results to those of our data. It turned out that there are
several overlapping significant pairs found by PC-TraFF
(data not shown).

In this study, the assembly of the hgl9 release of the
human genome was used and only UCSC track refGene
annotations were considered whose chromosome annota-
tions correspond to the chromosomes chrl-chr22, chrX
and chrY.

Regarding TSS annotations, RefSeq genes and miRNA
genes can have highly correlated multiple promoters
which results in overestimation of some transcription
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factor binding sites (TFBSs). Thus, to avoid the redun-
dancy between sequences we filter them based on their
TSSs and use in our analysis only those sequences which
have no overlap.

TFBS detection

We scan each sequence and its reverse complement
employing the Match™ program [25] setting its profile
parameter as specified by Deyneko et al. in [6] to detect
transcription factor binding sites (TFBSs). To apply the
Match™ program, we used a vertebrate position weight
matrix (PWM) library suggested in [6]. The PWMs were
obtained from the latest version of TRANSFAC (release
2014.1) [26].

The PC-TraFF algorithm

The PC-TraFF algorithm consists of six phases to detect
potentially collaborating transcription factors in a set of
sequences.

Phase 1: construction and filtering of the TFBS-sequence
matrix

Based on the frequency of predicted TFBSs in each
sequence, we create a TFBS-sequence matrix M,
where rows correspond to IDs of the sequences

and columns refer to names of PWMs. The
entries of M are calculated as follows. Let s; (i =
1,...,m,where m isthe number of sequences) denote

a promoter sequence and let ¢ (j = 1,...,n where n is
the number of PWMs under study) be a potential TFBS
predicted by PWM j. The entry of M at position (i, j),
fij» is calculated as the observed frequency of ¢ in the
sequence s;.

Afterwards, we filter M in order to reduce: i) the bias
of the highly represented TFBSs in all sequences; ii) the
noisy effect of false signals arising from insufficient data.
Hence, we define for a matrix M its filtering parameters as
follows. First, we calculate the standard deviation o of the
entire matrix M based on its column sums. After that, we
eliminate a column k in M if the column sum of k is greater
than 3 x o. Second, we identify average zero percentile
in M based on its column entries and remove all columns
in M if such columns consist of more zero entries than
average, as we formally recieved the best results with this
approach.

Phase 2: identification of important TFBSs in each sequence
Using the filtered matrix M, the importance of each TFBS
in each sequence is characterized by calculating the point-
wise mutual information between sequence s; and TFBS ¢
(PMy;) as

p(sir tj)

PMI(s;; ) = log, —~297_
55 =8 sy - p()

(1)
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where p(s;, tj) indicates the probability that TFBS #; occurs
in the sequence s; with respect to entire set of sequences.
It is calculated as

S
P(S'xt') = < ~—n 7
v > ,"lzlfi/

where fj; is the frequency of the TFBS #; in the correspond-
ing sequence s;.

p(si) and p(%) are the marginal probabilities for s; and
t; in the entire set of sequences, respectively, which are
calculated as

()

Z;l:lfii
( i) = m ~n 7 (3)
P i=1 j:1fi1'
p(t) = = @

> Z;I:Iﬁj'

A positive PMI(s;; t)-score for a specific TFBS ¢ in the
sequence s;, resulting from the fact that the pair distribu-
tion p(s;, tj) is greater than the product of the marginal
distributions, shows that ¢; occurs in s; more often than by
chance. Conclusively, we regard such TFBSs in sequences
as important for transcription and consider only those
TEBSs in our further analysis for each sequence.

Phase 3: filter to avoid overlaps

The Match™ program predicts all potential TFBSs based
on the given PWM library. Thereby, it is possible that
some binding sites overlap or one binding site is included
in another. The overlap between binding sites can occur
due to: i) the palindromicity of TFBSs (the reverse comple-
ment is the same as the original sequence); ii) some PWMs
being larger than real binding sites of TFs.

Overlapping of TFBSs of the same type can result in
their overestimation in our analysis. Thus, to avoid the
overestimation of such TFBSs, we filter them based on
their distance to the corresponding TSS. After the filtering
process, the TFBS is taken into account that has a closer
distance to TSS compared to its overlapping partner (illus-
trated in Fig. 5) since functional TFBSs often have a closer
localization to TSSs [37].
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Phase 4: construction of TFBS pairs
We define the distance, d;, ;, between two TFBSs £4 and
tp based on their midpoints C;, and Cgy:

th,tB = |CtA - CtB| (5)

The midpoint, Cy, of a TFBS ¢4 is defined as | &4 |
where lengthy is the length of z4.

In this work, two TFBSs form a pair, if dyi < di 1 <
dyax Where d,;, and d,,,, are minimal and maximal dis-
tance constrains, respectively, which are specified by user.
In this study, we set dy,;;,, at least 5 bp which approximately
corresponds to one-half of an average TFBS’ length. In
analogy to study of Hu et al. [11], we used different dy,,«
constrains in our analysis. Moreover, following [99] a
slight overlap (of at most 4 bp) between TFBSs of different
types is allowed if the user-defined distance constrains are
satisfied.

Applying our approach to construct TFBS pairs, we have
to deal with their false overestimation due to repeated
number of similar binding sites within a certain interval
on DNA, also known as homotypic clustering. To avoid
this problem in our analysis, we allow that one TFBS can
only participate in a pair of two specified TFBSs within a
certain interval (predefined distance). This is illustrated in
Fig. 6.

Phase 5: weighted cumulative pointwise mutual information
Potential collaborating transcription factors are deter-
mined by calculating weighted cumulative pointwise
mutual information (PMI,.) based on the co-occurrences
of their corresponding TFBSs. The PMI(z,; t,) between
TFBSs t, and t;, is defined as

p(tﬂ’ th)
pta) - p(ty)’

where p(t,, tp) is the joint probability, p(t;) and p(¢p) are
marginal probabilities for ¢, and ¢, respectively. In gen-
eral, the PMI-metric is very susceptible to low number
counts [21]. To eliminate this property of the PMI-metric
to some extent, we first multiply the PMI(¢,; £5)-value of
each TFBS pair with their joint probability p(Z,, t,). After

PMI(t,; t,) = log, (6)

TSS

which is closer to TSS

Fig. 5 Filtering procedure of the overlap filter. Overlapping TFBSs of the same type (marked in red cycles) are filtered in a way that the TFBS survives
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Certain interval

__,TSS

Fig. 6 The problem of homotypic clusters: The TFBSs (tpye) form an homotypic cluster within a certain interval on the sequence. The TFBS tyq is also
included in this interval. According to our definition to construct TFBS pairs and by following the DNA strand in 5’-3’ direction: i) we consider one
thlue — treg PaIr in this interval indicating that an individual TFBS can only participate in one count of a specified pair (shown with black line); ii) if we
consider tpue — tpie Pairs, there are two pairs within this interval (shown with blue lines). The red (dashed) lines demonstrate that the remaining
thiue — tblue aNd tpjue — treq PAIrs are not taken into account in the calculation of pointwise mutual information of this pairs

that, we incorporate the weight of each sequence (w;) with
respect to the entire set of sequences in the calculation
of PMI. Doing this, the weighted pointwise mutual infor-
mation of each TFBS pair in a sequence s ]P’M]I;(ta; tp) is
obtained as

PMI, (a5 tp) = ws - p(tas tp) - PMI(ta; tp). 7)

The sequence weight w; for a sequence s is given by the
number of TFBS pairs N in s divided by the total number
of TFBS pairs in the entire set of sequences S.

N
Zsi eS Nsi
To define the collaboration level of ¢, and t;, in S, we cal-
culate weighted cumulative pointwise mutual information

value PMl.(4;¢5) by summing up their IP’M]I;(ta; ty)-
values over all sequences as

(8)

W =

PMlpe(ta; tp) = ) PMIE, (643 15). )

seS

Phase 6: background noise reduction of TFBSs using average
product correction

We apply the average product correction (APC) pro-
cedure, developed by Dunn et al. [24], to reduce the
background noise of TFBS pairs that might occur as a
result of false positive TFBSs in the entire sequence set S.
Thus, we estimate the expected level of the background
PML,c (245 tp) shared by TEBSs £, and £, as

PMHpc(ta; ﬂ) : PMH]JC(%? E)

APC(ty, ty) = s
44

(10)

where PMII,¢(¢,; tx) is the mean pointwise mutual infor-
mation of TFBS ¢, that is defined by

_ R
PMlpe(ta; ) = ~— ;PMHW@“; t). (11)

Further, the PMI,. refers to overall mean pointwise
mutual information for all TEBS pairs.

Afterwards, the APC(t,, t,)-value of a pair under study
is subtracted from its PMI,c(¢,; tp)-value, and thus we

observe the corrected PMH};‘CP C(ta tp)-values as

PMIS (ta3 ty) = PMlpe(tai ) — APC(tar 1) (12)

Finally, by transforming the corrected IP’M]I‘;CP C(tas ty)-
values into z-scores, we consider a TFBS pair to be sig-
nificant in the entire set of sequences, if the pair has a
z-score > 3.
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