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Summary
The contribution of gene-by-environment (GxE) interactions for many human traits and diseases is poorly characterized. We propose a

Bayesian whole-genome regressionmodel for joint modeling of main genetic effects and GxE interactions in large-scale datasets, such as

the UK Biobank, where many environmental variables have been measured. The method is called LEMMA (Linear Environment Mixed

Model Analysis) and estimates a linear combination of environmental variables, called an environmental score (ES), that interacts with

genetic markers throughout the genome. The ES provides a readily interpretable way to examine the combined effect of many environ-

mental variables. The ES can be used both to estimate the proportion of phenotypic variance attributable to GxE effects and to test for

GxE effects at genetic variants across the genome. GxE effects can induce heteroskedasticity in quantitative traits, and LEMMA accounts

for this by using robust standard error estimates when testing for GxE effects. When applied to bodymass index, systolic blood pressure,

diastolic blood pressure, and pulse pressure in the UK Biobank, we estimate that 9:3%, 3:9%, 1:6%, and 12:5%, respectively, of pheno-

typic variance is explained by GxE interactions and that low-frequency variants explainmost of this variance. We also identify three loci

that interact with the estimated environmental scores (� log10p > 7:3).
Introduction

Despite long standing interest in gene-by-environment

(GxE) interactions,1 this facet of genetic architecture re-

mains poorly characterized in humans. Detection of GxE in-

teractions is inherently more difficult than finding additive

genetics in genome-wide association studies (GWASs). One

difficulty is that of sample size: a commonly cited rule of

thumb suggests that detection of interaction effects requires

a sample size at least four times larger than that required to

detect a main effect of comparable effect size.2 Another dif-

ficulty is that an individual’s environment, which evolves

through time, is very hard to measure in a comprehensive

way and is inherently high dimensional. Also, there are

many environmental variables that could plausibly interact

with the genome and many ways to combine them, and

typically these factors are not all present in the same dataset.

The recently released UK Biobank dataset, a large popula-

tion cohort study with deep genotyping and sequencing

and extensive phenotyping3 offers a unique opportunity

for the exploration of GxE effects.4–10

It can be challenging to interpret statistical inference of

interactions, which should not be interpreted as biological

interaction.11,12 Specifically, the choice of scale for a quan-

titative phenotype can influence the extent to which inter-

actions are detected.13 However, for discovery of associated

loci, including interactions can increase power14 and

explicitly modeling them genome wide, as we do in this

paper, can be valuable in pointing the way to improving

prediction models.

Models that consider environmental variables jointly

can be advantageous, particularly if several environmental
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variables drive interactions at individual loci or if an unob-

served environment driving interactions is better reflected

by a combination of observed environments. StructLMM7

models the environmental similarity between individuals

(over multiple environments) as a random effect and

then tests each SNP independently for GxE interactions.

However, StructLMM is not a whole-genome regression

(WGR) model, so it does not account for the genome-

wide contribution of all other variants, which is often a

major component of phenotypic variance.

Advances in methods applied for detecting genetic main

effects in standard GWASs have shown that linear mixed

models (LMMs) can reduce false positive associations due

to population structure and improve power by implicitly

conditioning on other loci across the genome.15–17 Often

these methods model the unobserved polygenic contribu-

tion as a multivariate Gaussian with covariance structure

proportional to a genetic relationship matrix (GRM).18–20

This approach is mathematically equivalent to a WGR

model with a Gaussian prior over SNP effect sizes.15 More

flexible approaches that would allow for different prior

distributions that better capture SNPs of small and large ef-

fects have been proposed in both the animal breeding21,22

and human literature.23–25 The BOLT-LMM method17 uses

a mixture of Gaussians (MoG) prior and shows this can

increase power for detecting associated loci in some (but

not all) complex traits.

Here, we propose a method called Linear Environment

Mixed Model Analysis (LEMMA), which aims to combine

the advantages of WGR and modeling GxE with multiple

environments and is applicable to large datasets with hun-

dreds of thousands of individuals, such as the UK Biobank.
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Instead of assuming that the GxE effect over multiple envi-

ronments is independent at each variant, as StructLMM

does, we learn a single linear combination of environ-

mental variables (which we call an environmental score

[ES]) that has a common role in interaction effects genome

wide. The ES is estimated within a Bayesian WGR model

that uses two separate MoG priors on main genetic effects

and GxE effects. We use variational inference to fit the

model that is tractable for GxE analyses of biobank scale

datasets with tens of environmental variables.

Estimating the ES satisfies one of the primary motiva-

tions of this work by providing a readily interpretable

way to examine the combined effect of many environ-

mental variables and how they might interact with geno-

type. A motivating example is the investigation of how

modern obesogenic environments might accentuate the

genetic risk of obesity. Tyrell et al.26 studied environments

one at a time for their interaction with a body mass index

(BMI) genetic risk score (GRS) and found several significant

interactions. Our method allows joint analysis of environ-

ments that might plausibly better represent an obesogenic

environment, negating the need to model each environ-

ment one at a time. Our other motivations when devel-

oping LEMMA were to develop a powerful method to

detect GxE interactions and to estimate the proportion of

variance that could be attributable to GxE interactions.

A LEMMA analysis has several distinct steps. First, the

model is fitted with a large set of SNPs genome wide

(e.g., all the SNPs that have been directly assayed on a gen-

otyping chip). The estimated ES is then used to estimate

the proportion of phenotypic variability that is explained

by interactions with this ES (GxE heritability) via random-

ized Haseman-Elston (RHE) regression.27,28 This heritabili-

ty analysis can be run on genotyped or imputed SNPs and

can be stratified by minor allele frequency (MAF) and link-

age disequilibrium (LD) for better interrogation of the ge-

netic architecture of GxE interactions. The ES is also used

for testing for GxE interactions one variant at a time, typi-

cally at a larger set of imputed SNPs in the dataset. We use

‘‘robust’’ standard errors when testing each variant for a

GxE interaction, which helps control for the conditional

heteroskedasticity caused by GxE interactions. We also

suggest checks and solutions for the situation where envi-

ronmental variables are themselves heritable and have a

non-linear relationship to the trait of interest.

We compared LEMMA to existing approaches, such as

StructLMM and F-tests, by using simulated data and

applied the approach to UK Biobank data for BMI, systolic

blood pressure (SBP), diastolic blood pressure (DBP), and

pulse pressure (PP).
Material and Methods

Linear Environment Mixed Model Analysis (LEMMA)
The standard LMM used in genome wide association studies is

written as
The America
y¼Caþ uþ e; (Equation 1)

where y is the centered and scaled N31 vector of phenotypes, C is

an N3L0 matrix of covariates with L031 fixed effects vector a, and

u and e are N31 vectors of unobserved polygenic and residual ef-

fects vectors, respectively. Typically, u is modeled as a Gaussian

with a mean of zero and covariance matrix s2gK. Specification of

the N3N kinship matrix K is an area of active research,29–32 but

the simplest approach is to let K ¼ XXT=M, where X is the N3M

genotype matrix and columns of X (which usually correspond to

SNPs) are normalized to have a mean of zero and variance one.

This can equivalently be written as a Bayesian WGR model,

y¼Caþ Xbþ e; (Equation 2)

where

b � N 0;s2
g

.
M

� �
: (Equation 3)

Here b is an M31 vector modeling the random effect of each

SNP. This form corresponds to the so-called infinitesimal model

where every SNP is allowed to have a small but non-zero effect

on a given trait. To generalize the model to a non-infinitesimal

genetic architecture, we model SNP effects with a mixture of

Gaussian priors. This approach has been applied previously in

human genetics17,25 and by the ‘‘Bayesian alphabet’’ of

genomic prediction methods in the animal breeding litera-

ture.21,22,33

We extend this setup to model GxE interactions genome wide

with a linear combination of multiple environmental variables

by using

Y ¼Caþ Xbþ Zgþ e; (Equation 4)

where

Z¼h1X; (Equation 5)

h¼Ew; (Equation 6)

w � N 0; ILð Þ; (Equation 7)

where E is an N3L matrix of environmental variables that could

potentially be involved in GxE interactions andw is an L31 vector

of weights. Together they define the N31 vector h, which is the

linear combination of environments that we refer to as the ES.

This ES is learned in tandem with SNP effects. We note that all

environmental variables contained in E must also be contained

in C, so L%L0. We chose to model the interaction weights w

with a Gaussian prior, but in theory, one could consider sparser

priors, such as a spike and slab. We set the variance of the prior

on w to the identity matrix IL. Setting the prior variance of w to

a parameter would be unidentifiable because any change in scale

would be absorbed by the prior variances on the interaction effects

g (see s2g;1 and s2g;2 in Equations 8 and 9).

The N3M matrix Z contains all of the multiplicative interaction

terms of the ES h with all of the genetic variants. We use the nota-

tion h1X for the element-wise product of h with each column of

X. In other words, h1X ¼ diagðhÞX, where diagðhÞ is an N3N di-

agonal matrix with h as the diagonal. The vector of interaction ef-

fect sizes g has dimension M31.

We chose to useMoG priors on both the main genetic effects ðbÞ
and the interaction effects ðgÞ because this prior is very flexible
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and spans the range of genetic architectures from polygenic to a

very sparse model. The priors are

bj

���s2
e ; lb;s

2
b;1;s

2
b;2 � lbN 0;s2

es
2
b;1

� �
þ 1� lbð ÞN 0;s2

es
2
b;2

� �
;

(Equation 8)

gj

���s2
e ; lg; s

2
g;1;s

2
g;2 � lgN 0;s2

es
2
g;1

� �
þ 1� lgð ÞN 0; s2

es
2
g;2

� �
:

(Equation 9)

We use standard Gaussian priors on the covariate and error terms.

a
��s2

a � N 0;s2
a

� �
(Equation 10)

e
��s2

e � N 0;s2
e

� �
(Equation 11)

Variational Inference
For notational convenience, we define q¼ fa; b;g;wg as the set of

latent variables, D :¼ fX;Eg the genetic and environmental data,

and f as the set of hyper parameters. Then the posterior

pðqjy;D;fÞ is given by

pðqjy;D;fÞfpðyjq;D;fÞ
Y
c

pðacjfÞY
l

pðwlÞ
Y
j

p
�
bj; uj

��f�Y
j

p
�
gj; vj

��f�: (Equation 12)

To evaluate the posterior, we use the variational inference frame-

work, approximating the true posterior pðqjy;D;fÞ with a tractable

alternative distribution qðq; nÞ governed by (variational) parame-

ters n. To make inference tractable, we use the standard mean-field

assumption so that qðq; nÞ factorizes

qðq; nÞ¼
Y
c

qðacÞ
Y
l

qðwlÞ
Y
j

q
�
bj; uj

�Y
j

q
�
gj; vj

�
: (Equation 13)

To make qðq; nÞ a close approximation of the true posterior, we

minimize the Kullback-Leibler (KL) divergence between qðq; nÞ
and pðqjy;D;fÞ with respect to variational parameters n. In this

manner, the problem has been transformed from one of

computing posterior distributions into one of optimization. We

can show that minimizing the KL divergence is equivalent to

maximizing a lower bound on the marginal log likelihood by

observing

KLðq k pÞ¼ � Eq

�
log

pðqjy;D;fÞ
qðq; nÞ

�
; (Equation 14)

¼ �Eq

�
log

pðq; yjD;fÞ
qðq; nÞ

�
þ Eq½logpðyjD;fÞ�; (Equation 15)

¼ �Eq

�
log

pðq; yjD;fÞ
qðq; nÞ

�
þ logpðyjD;fÞ: (Equation 16)

Thus, we can write

Fðn;fÞ : ¼ Eq

�
log

pðq; yjD;fÞ
qðq; nÞ

�
%logpðyjD;fÞ: (Equation 17)

Here, Fðn;fÞ is commonly referred to as the evidence lower

bound (ELBO). As a result of the factorized form of Equation 13,

we can cyclically update the approximate distribution for each

latent variable in turn until we reach convergence.
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Our model depends on a set of eight hyper-parameters f ¼ fs2e ;
fs2b;ig

2

i¼1
;fs2g;ig

2

i¼1
;lb;lg;s

2
ag. We set s2a to a large constant to create a

flat prior on the covariates, leaving seven unknowns. Similar

methods have performed a grid search over hyper-parameter

values (with either cross validation17 or the in-sample ELBO to

identify the optimum24). For LEMMA, a grid search would be

computationally demanding because the set of hyper-parameters

is larger and we cannot efficiently perform multiple runs in paral-

lel as done by Loh et al.17 Instead, we maximize a lower bound on

the approximate log likelihood (the so-called ELBO) with respect

to the hyper-parameters. In this manner, our approach can be

viewed as a variational expectation maximization algorithm.34,35

Similar to the EM algorithm, the hyper-parameter maximization

step can lead to slow exploration of the hyper-parameter space and

thus to slow convergence of the LEMMA algorithm. We use an

accelerator, SQUAREM,36 to speed up convergence. Given two es-

timates of the hyper-parameters ft�2 and ft�1, we can adjust the

maximized estimate ft with

~ftðvtÞ¼ft�2 � 2vtDft�1 þ v2t D
2ft ; (Equation 18)

where Dft�1 ¼ ft�1 � ft�2 and D2ft ¼ ft � 2ft�1 þ ft�2. Thus, the

new adjusted estimate ~ftðvt Þ is a continuous function of the step

size vt , which yields the original estimate ft for vt ¼ � 1. As recom-

mended by Varadhan et al.,36 we set

vt ¼ min �1;�kDft�1 k 2
2=

�
kD2ft k 2

2Þ. Occasionally this yields an

estimate that is either outside of the domain of f or leads to a state

with a worse ELBO than the previous state. For the first issue, we

use a simple backtrackingmethod of halving the distance between

vt and � 1, and for the second, we simply judge model conver-

gence when the absolute change in the ELBO drops below a given

threshold. We use the same convergence criterion as the BOLT-

LMM method:17 namely that a full pass through all latent

variables yields an absolute change of less than 0.01 in the approx-

imate log likelihood (ELBO). Figure S17 shows the evolution of the

ES parameter estimates for the four UK Biobank traits we analyzed

and illustrates that, at the point of convergence, the parameters

appear stable.
Identifying GxE-Associated Loci
After convergence of the LEMMA variational inference algorithm,

we obtain posterior mean estimates of bb; bg, and bh ¼ Ebw. From

these, we construct residualized phenotypes by following a

leave-one-chromosome-out (LOCO) scheme:

yresid�LOCO ¼ y � Cba �XLOCO
bbLOCO � bh1XLOCObgLOCO:

(Equation 19)

XLOCO denotes the genotype matrix excluding SNPs on the same

chromosome of the test SNP, and bLOCO and gLOCO are constructed

similarly. Using a LOCO scheme has been shown to increase

power in LMMs because the effect of the test SNP is condi-

tioned on the effects on a large proportion of the rest of the

genome.16,19

For each imputed SNP, we then perform hypothesis tests btests0

and gtests0 by using the linear model

yresid�LOCO ¼ xtestbtest þ ðbh1 xtestÞgtest þ e; (Equation 20)

¼ Ht þ e: (Equation 21)

Here, H is the N32 design matrix with first and second columns

containing xtest and bh1xtest, respectively, and t is the 231 vector
r 1, 2020



containing parameters btest and gtest, which are the main genetic

effect and interaction effect of the SNP being tested.

Assuming that e has a mean of zero and covariance matrixU, we

can use the standard ordinary least squares (OLS) estimator

bt ¼ �
HTH

��1
HTy; (Equation 22)

which (under certain regularity conditions) is asymptotically nor-

mally distributed with mean t and variance VarðbtÞ. By assuming

the residual phenotype is homoskedastic, that is that U ¼ bs2
e I,

we can obtain the usual variance estimator given by

VarðbtÞ¼ bs2
e

�
HTH

��1
: (Equation 23)

It has previously been observed that GxE interaction tests are

likely to suffer from conditional heteroskedasticity,37 and hence,

the homoskedastic variance estimator is likely to underestimate

the true variance.38 We explain this phenomenon in detail in

the Supplemental Notes.

To overcome this, we use robust standard errors, alternatively

called Huber-White, sandwich, or ‘‘heteroskedastic consistent’’ er-

rors,39,40 that are standard tools in economics41 and have previ-

ously been proposed for use in GxE interaction studies.37,42,43

We further include a small adjustment that reduces bias in small

samples.44 This yields the variance estimator

VarðbtÞ¼ �
HTH

��1
HT bSH�

HTH
��1

; (Equation 24)

where bS is a diagonal matrix with bSii ¼ ðbe2i =ð1� hiiÞ2Þ, where be ¼
y �Hbt and h ¼ HðHTHÞ�1HT . Hence, our GxE test statistic is

given by

bg2
test

VarðbgtestÞ
(Equation 25)

and, under the null hypothesis, is asymptotically distributed as c2
1.

Because main effects tests are not sensitive to assumptions of het-

eroskedasticity in the same way that GxE tests are,37 we use a sim-

ple t test to test the hypothesis btests0.
Heritability Estimation
Previous GWR methods24,45,46 have shown that it is possible

to rearrange the model hyper-parameters to gain an estimate

of trait heritability. We find that in our variational framework,

this approach underestimates trait heritability because of the

tendency of mean-field variational inference to under-

estimate the posterior variance of each parameter. Instead, we treat

the posterior mean bhLEMMA as a fixed effect and use RHE regres-

sion27,28,47 to estimate heritability with a single SNP compo-

nent27 (RHE-SC) and multiple SNP components28 (RHE-

LDMS). With the multi-component model, SNPs are stratified

into a total of 20 bins: 5 MAF bins (%0:1, 0:1 < MAF % 0:2,

0:2 < MAF %0:3, 0:3 < MAF %0:4, and 0:4 < MAF % 0:5) and

4 LD score quantiles.

The single component model is given by

y � N Ea; s2
bK þ s2

g
bV þ s2

e I
� �

; (Equation 26)

where K ¼ XXT=M, bV ¼ ZðbhÞZðbhÞT=M, and ZðbhÞ ¼ diagðbhÞX. HE

regression is a method of moments estimator that fits the variance

components ðs2b;s2g; s2e Þ to minimize the difference between the

empirical and expected covariances. This is mathematically equiv-

alent to solving the following linear system:
The America
0
@ tr

�
K2

�
trðKVÞ trðKÞ

trðKVÞ trðV2Þ trðKÞ
trðKÞ trðVÞ N

1
A
0
B@

s2
b

s2
g

s2
e

1
CA¼

0
@ yTKy

yTVy
yTy

1
A: (Equation 27)

Wu et al.27 showed that this system can be solved in OðNMBÞ
time (for small B) without ever forming the kinship matrices K

and V with Hutchinson’s estimator and that covariates can be effi-

ciently projected out of the phenotype, genotypes, and interac-

tion matrix Z with minimal additional cost. Pazokitoroudi

et al.28 give an extension to multiple components and show that

variance estimates can be obtained with the block jackknife.

Speed et al.48 show that the usual form for h2
G, the proportion of

trait variance explained by additive genetic effects, given by

bh2

G ¼ bs2
bbs2

b þ bs2
g þ bs2

e

; (Equation 28)

holds only when genotype matrix X is standardized to have a col-

umn mean of zero and column variance of one. Although this is

true in expectation for bZ (assuming that Covðbh;XjÞ ¼ 0; cj˛f1;
Mg), this is not guaranteed. To obtain a column mean of zero,

we include an intercept of ones among the covariates that are pro-

jected out of the phenotype, genotypes, and interactionmatrix. To

account for columns’ having variance not equal to one, we use a

more general form of the heritability estimator (see Speed et al.48

for details)

bh2

GxE ¼
bs2
gtr

�bV�.
N

s2
b þ bs2

gtr
�bV�.

N þ bs2
e

: (Equation 29)

Computational Efficiency
We implement a number of steps to improve computational and

memory efficiency, including vectorization using SIMD exten-

sions, compressed data formats, pre-computing quantities, parallel

computing with OpenMPI, and the use of the well-optimized Intel

Math Kernel Library. Full details are given in the Supplemental

Notes.
Detecting Squared Environmental Dependence
By default, each of the L environmental variables is tested against

the phenotype for significant squared effects. To do this, LEMMA

tests the hypothesis bls0 by using the following linear model:

y¼1a0 þ Caþ E2
l bl þ e: (Equation 30)

The squared effect of any environmental variables with a p value

less than 0.01 (Bonferroni correction for L multiple tests) are

added to the matrix of covariates C.
Controlling for Covariates
Unlike in BOLT-LMM,17 it is not possible to efficiently project co-

variates out of the model ðy;X;ZÞ because the multiplicative inter-

action matrix Z changes after each pass through the data. Instead,

the LEMMA software package can either regress covariates out of

the phenotype or model the covariates as random effects in the

variational framework. For our analyses of the UK Biobank, we

included all covariates within the variational model.
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Comparison to Existing GxE Methods
We compare LEMMA to three other single SNP methods that

jointly model interactions with multiple environments. The first

comparisonmethod, StructLMM,7 is a method that uses a random

effects term, u, to model environmental similarity instead of ge-

netic similarity. Specifically, StructLMM uses the model

y � N Caþ xtestb;s
2
GxEdiag xtestð ÞSdiag xtestð Þ þ s2

eSþ s2
nI

� �
(Equation 31)

to test the hypothesis s2GxEs0. Here, C is the matrix of covariates

with fixed effects a, xtest is the focal variant, and S ¼ EET is the

environmental similarity matrix (where E is an N3L matrix of

environmental variables). Although StructLMM provides both

an interaction test and a joint test that looks for non-zero main

and interaction effects at each SNP, we use only the interaction

test in our comparisons. Finally, we note that StructLMM recom-

mends ‘‘gaussianizing’’ the phenotype as a pre-processing step;

however, we just center and scale the phenotype for consistency

with our other methods.

Our second and third comparisonmethods use equivalent infor-

mation to StructLMM in a fixed effects framework. Consider the

linear model

y ¼ Caþ Ea0 þ xtestbtest þ xtest1Egþ e (Equation 32)

¼ Ht þ e; (Equation 33)

where H is formed from column-wise concatenation of

½C;E; xtest; diagðxtestÞE� and t is the corresponding vector of fixed ef-

fects. Let R be the indicator matrix such that Rt ¼ g. We wish to

test the null hypothesis H0 : g ¼ 0. Assuming that e has a mean

of zero and covariance matrix U, we can use the standard OLS esti-

mator bt ¼ ðHTHÞ�1HTy, which (under certain regularity condi-

tions) is asymptotically distributed as normal with mean t and

variance given by VarðbtÞ ¼ ðHTHÞ�1HTUHðHTHÞ�1: Assuming

homoskedasticity yields the standard F test statistic,

Ftest ¼
ðRbtÞT�RðHTHÞ�1

RT
��1

ðRbtÞ	L

bs2
e

; (Equation 34)

which follows an Fd1�d0 ;N�d1 distribution under the null hypothe-

sis, where d1 is the column rank of H and d0 is the column rank

of H under the null hypothesis. Alternatively, we can use the

same robust standard error used in the LEMMA test statistic

Frobust ¼ðRbtÞT�R�HTH
��1

HT bUH
�
HTH

��1
RT

��1

ðRbtÞ;
(Equation 35)

where bU is a diagonal matrix with bUii ¼ be2i
ð1�hiiÞ2

, be ¼ y �Hbt and h ¼
HðHTHÞ�1H. Then Frobust is asymptotically distributed as c2

d3
,

where d3 is the rank of HRT . In our simulations, we refer to this

as the robust F-test.

SNP-Specific Interaction Profile
The SNP-specific interaction profile is defined as hLS ¼ EwLS, where

wLS is the least-squares parameter estimate of w in the single SNP

model

y¼Caþ xtestbtest þ xtest1Ew þ e (Equation 36)

and y;C, and E are the data matrices defined below. The correlation

between hLS for a given SNP and the ES estimated by LEMMA can
702 The American Journal of Human Genetics 107, 698–713, Octobe
be viewed as a proxy for how well LEMMA captures the GxE inter-

actions at that locus.
UK Biobank Analysis
We used real genotype and phenotype data from the UK Biobank,

which is a large prospective cohort study of approximately

500;000 individuals living in the UK.3 To account for potential

confounding effects of population structure, we first subset

down to the white British subset of 344,068 individuals used by

Bycroft et al.3 in a GWAS on human height. This represents unre-

lated individuals who self-report white British ethnicity and

whose genetic data projected onto principal components lies

within the white British cluster.3 After sub-setting down to indi-

viduals who had complete data across the phenotype, covariates,

and environmental factors (see below), we were left with approx-

imately 280;000 samples per trait (Table S1). Finally, we filtered ge-

netic data on the basis of MAF (R0:01) and IMPUTE-info score

(R0:3), leaving approximately 642;000 genotyped variants (Table

S1) and 10;295;038 imputed variants per trait. For each trait, we

included age3, age23 gender, age33 gender, a binary indicator

for the genotype chip, and the top 20 genetic principal compo-

nents as additional covariates.

BMI was derived from height and weight measurements made

during the first assessment visit (instance ‘‘0’’ of field 21001),

and readings more than six standard deviations from the popu-

lation mean were set to missing. logBMI and INT(BMI) refer

to BMI after applying a log transformation and an inverse

normal transformation (applied separately to males and fe-

males), respectively.

After calculating the mean SBP and DBP by using automated

blood pressure readings from the first assessment visit (fields

4080 and 4079), we adjusted for medication usage by adding

15 mmHg and 10 mmHg to SBP and DBP, respectively.49 Data

from manual measurements (fields 93 and 94) were used in the

rare instance that no automated reading was available. Blood

pressure readings more than four standard deviations from

the mean were set to missing. PP was then calculated as SBP

minus DBP.

For our GxE analyses, we made use of 42 environmental vari-

ables from the UK Biobank, similar to those used in previous

GxE analyses of BMI in the UK Biobank.7,50 From the data pro-

vided by the UK Biobank, we included seven continuous environ-

mental variables (‘‘age when attended assessment centre,’’ ‘‘sleep

duration,’’ ‘‘time spent watching television,’’ ‘‘number of days/

week walked 10þ minutes,’’ ‘‘number of days/week of moderate

physical activity 10þminutes,’’ ‘‘number of days/week of vigorous

physical activity 10þminutes,’’ and ‘‘Townsend deprivation index

at recruitment’’), one ordinal environmental variable (‘‘alcohol

intake frequency’’), nine dietary ordinal variables (‘‘salt added to

food,’’ ‘‘oily fish intake,’’ ‘‘non-oily fish intake,’’ ‘‘processed meat

intake,’’ ‘‘poultry intake,’’ ‘‘beef intake,’’ ‘‘lamb intake,’’ ‘‘pork

intake,’’ and ‘‘cheese intake’’) and two dietary continuous variables

(‘‘tea intake’’ and ‘‘cooked vegetable intake’’). We further derived

one categorical variable (‘‘is current smoker’’ from the responses

given in the UK Biobank field ‘‘smoking status’’) and one contin-

uous variable (‘‘sleep sd,’’ the number of standard deviations

from the population mean sleep duration). For analyses of blood

pressure, we additionally included one further continuous vari-

able, ‘‘waist circumference.’’ This left 11 dietary variables and ten

non-dietary variables (11 for blood pressure traits). In addition,

we included multiplicative interactions between participants’
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age and gender with all non-dietary variables and included the

main effect of gender, giving the data matrix E a total of 42 col-

umns (45 for blood pressure traits). Before running LEMMA,

each column was standardized as

Eij ¼
Eij �mean

�
E:;j

�
sd
�
E:;j

� : (Equation 37)

In all cases where participants responded with ‘‘prefer not to

answer,’’ ‘‘do not know,’’ or ‘‘none of the above,’’ we set the value

to missing. For three continuous variables (‘‘time spent watching

television,’’ ‘‘tea intake,’’ and ‘‘cooked vegetable intake’’), we

removed the 99th percentile, and for ‘‘sleep duration,’’ we removed

both the 1st and 99th percentiles.

After running LEMMA, we found it convenient to interpret

weights corresponding to a re-scaled data matrix E1. Assuming

the column space of E and E1 is the same, weights w1 that corre-

spond to E1 can be extracted from the ES via least-squares

w1 ¼
�
ET
1E1

��1
ET
1 bhLEMMA; (Equation 38)

where bhLEMMA represents the ES. We note that, although multivar-

iate linear regression is invariant to a re-scaling of the design ma-

trix, ridge regression is not because of the penalization place on

the magnitude of the learned parameters. However, because the

magnitude of the weights from our UK Biobank analysis is typi-

cally small (less than 0.2) compared to the standard deviation of

our Gaussian prior (1), in this case, the re-scaling makes minimal

difference.

Re-coded data matrix E1 was formed with one column for each

of the 11 dietary variables (normalized to have a mean of zero

and variance of one) and three columns for each of the ten (11

for blood pressure traits) non-dietary variables; the first column

was augmented by a binary male indicator vector, the second

by a binary female indicator vector, and the third by a contin-

uous vector of participant age. Columns augmented by male

and female binary indicator vectors were normalized to have a

mean of zero and variance one (not including zeros due to

augmentation), apart from age (scaled to represent the number

of decades aged past 40 years). Columns augmented by age

were normalized first and then multiplied by age on the per-

decade scale. We further included indicator columns for men

and women, which can be interpreted as gender-specific inter-

cepts and is equivalent to including an intercept and a binary col-

umn for only one gender (men or women). We note this leaves

43 (46) columns where the extra column comes from including

an intercept within the column space of E1 and is necessary

because some columns have a mean not equal to zero. Thus,

the column space of E1 is equivalent to E under the constraint

that the ES has a mean of zero.
Simulation Studies
Genetic data was sub-sampled from the UK Biobank by default

with N ¼ 25;000 unrelated individuals of mixed ancestry and

M ¼ 100;000 genotyped SNPs. Environmental variables were

simulated from a standard Gaussian distribution. By default, we

constructed phenotypes with 2,500 causal main effects and

1,250 causal interaction effects explaining 20% and 5% of trait

variance, respectively. For each phenotype, we constructed a

weighted average of the environmental variables, which we used

to simulate multiplicative interaction effects. Environments with

a non-zero weight are referred to as active. All non-zero effects
The America
were drawn from SNPs in the first half of each chromosome, allow-

ing us to test the calibration of each method on ‘‘null’’ SNPs from

the second half of each chromosome. To allow for direct power

comparisons across different scenarios, we included an additional

60 SNPs with standardized effect sizes that together accounted for

1% of trait variance with their main effects and 1% of trait vari-

ance with their interaction effects. Finally, a further 1% of trait

variance was modeled via the first genetic principal component

(PC). For all methods, we included the first genetic PC as a covar-

iate. For each method, we calculated power as the proportion of

the SNPs of standardized effect identified at a threshold of

p < 0:01.

In simulations used to test RHE regression, phenotypes were

constructed with 10;000 causal main effects, explaining 20% of

trait variance, and in simulations with non-zero GxE heritability,

with 10;000 causal SNPs with interaction effects.

Model Misspecification
We simulated a scenario where a disease trait Y depends non-line-

arly on a heritable environmental factor S. More explicitly,

suppose that X is the centered and scaled genotype matrix so

that columns have a mean of zero and variance of one, that S is

modeled as

S¼Xt þ es; (Equation 39)

where es � N 0; 1� h2
t

� �
I

� �
, tmodels random SNP effects for S, and

trait Y is given by

Y
��a¼ aS2 þXbþ e: (Equation 40)

Here, a is a constant that we use to control the strength of the

contribution of S2 to Y, e � N 0; 1� h2
b

� �� �
and b is the random

SNP effects for Y. For simulation, we suppose that t and b have

spike and slab priors

tj

�����vj � vjN 0;
h2
t

Plt


 �
þ 1� vj
� �

d0 tj
� �

; (Equation 41)

bj

�����uj � ujN 0;
h2
b

Plb


 �
þ 1� uj

� �
d0 bj

� �
; (Equation 42)

vj � BerðltÞ; (Equation 43)

uj � BerðlbÞ: (Equation 44)

Results

Performance on Simulated Data

Figure 1 compares the ability of differentmethods to detect

GxE interactions at SNPs in simulations where a single true

ES interacts with SNPs across the genome. Figure S1 shows

the false positive rate (FPR) to detect main effects. We

compared our default version of LEMMA, which uses

robust standard errors, StructLMM, a simple F-test of inter-

action, and an F-test that uses robust standard errors (see

Material and Methods). The simulations vary GxE herita-

bility, the total number of environmental variables, and

sample size. When sample size is large (N ¼ 100,000), all
n Journal of Human Genetics 107, 698–713, October 1, 2020 703



A B C
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Figure 1. Type I Error and Power of Tests to Detect GxE Effects in Simulation
(A–C) Comparison of false positive rate as the number of environments increases (A), as phenotype variance explained by GxE effects
increases (B), or as the number of samples increases (C).
(D–F) Analogous comparison of the power to detect GxE interactions. Simulations used genotypes subsampled from the UK Biobank and
by default contained N ¼ 25;000 samples, M ¼ 100;000 SNPs, six environmental variables that contributed to the ES, and 24 that did
not (default parameters denoted by stars). Error bars extend tomeanþ/� 13 standard error of the mean.We assess power (at family-wise
error rate [FWER] < 0:01) to detect 60 causal SNPs whose GxE effect each explained 0:00016% of trait variance. See Materials and
Methods for full details of phenotype construction.
the methods have reasonable control of FPR and LEMMA

controls FPR at least as well as other methods across the

range of simulations. When sample size is smaller

(N ¼ 25,000), the robust F-test performs less well as the

number of environments grows (Figure 1A) and the F-test

and StructLMM perform less well as the amount of GxE

variance increases (Figure 1B). When we increase the sam-

ple size to N ¼ 200,000, we still find that LEMMA has a

slighty inflated type I error rate (see Figure S2).

It is interesting that all the methods we tested have a

slightly inflated type I error, and this is most likely due

to a number of different reasons. StructLMM and the

F-test fit a model at each variant and ignore GxE effects

at other loci, which can induce heteroskedasticity that

can inflate type I error.37,43 We used robust standard errors

for the robust F-test, but it seems that this approximation

works best when the number of environmental traits is

small. LEMMA does account for GxE effects at other loci

and also uses robust standard errors, but it still has a

slightly inflated type I error that gets worse as the number

of environments increases (Figures 1A and S2). In parallel

simulations (see Figure S3), we find that our model

slightly over-estimates GxE heritability as the number of

environments increases. Because our simulations test for

GxE effects at SNPs used to estimate the ES, we suspect

that the type I error inflation is due to this two-stage

approach.

When there is a single true ES involved in GxE interac-

tions, we found that LEMMA provided a substantial power

increase (Figures 1 and S4). StructLMM and F-tests have
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very similar power in these simulations, although previous

work suggests that StructLMM may outperform the F-test

in small samples.7

When estimating the GxE heritability of the LEMMA ES

by using RHE regression with a single SNP component

(RHE-SC), we observed some upward bias as the number

of environments increases. This effect is ameliorated by

increasing sample size (see Figure S3), suggesting that the

influence of over-fitting in our Biobank analyses is mild.

In 20 simulations with L ¼ 30 environmental variables,

N ¼ 100; 000 samples, and true GxE heritability of 5%,

we observed a mean GxE heritability of 5:2%. Figure S5

further illustrates the ES estimation accuracy of LEMMA.

Finally, we ran LEMMA on two sets of simulated datasets

(N ¼ 25,000) with causal SNPs chosen either randomly or

to be low frequency (MAF< 0.1). We used the ES estimated

from each simulated dataset to estimate h2
G and h2

GxE by us-

ing RHE with SNPs stratified by MAF and LD (RHE-LDMS)

and then without any stratification (RHE-SC). Previous

studies have established that estimating heritability with

a single SNP component makes assumptions about the

relationship between MAF, LD, and trait architecture that

may not hold up in practice,48,51 whereas stratifying

SNPs into bins according to MAF and LDscore (the LDMS

approach) is relatively unbiased.51–53 Figure S6 confirms

that stratifying byMAF and LD results in accurate heritabil-

ity estimates irrespective of the MAF distribution of causal

SNPs and suggests that this method can be used to interro-

gate the MAF distribution of GxE components of a trait via

LEMMA. However, when causal SNPs are low frequency,
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Figure 2. Bias from Model Misspecification of a Heritable Environmental Variable
(A) Comparison of GxE association test statistics from a single simulation where non-linear dependence on the confounder explains 5%
of trait variance. FPR at heritable sites of the misspecified environment only.
(B) Comparison of GxE association test statistics from an analysis of logBMI in 281;149 participants from the UK Biobank.
(C) FPR at heritable sites of the misspecified environment while the strength of squared dependence varies. 20 repeats per scenario. Ab-
breviations are as follows: LEMMA-S, LEMMA with non-robust variances used to compute test statistics; (þSQE), significant squared
environmental variables (Bonferroni correction) included as additional covariates.
not stratifying by MAF and LD results in underestimation

of h2
G.

Controlling for Heritable Environmental Variables

Previous work by Tchetgen et al.42 has shown that misspe-

cifying the functional form of an environmental variable

can induce heteroskedasticity into tests for GxE interac-

tions. The authors further show that use of robust standard

errors will control for this heteroskedasticity but only if the

environment is independent of the variant being tested.

Independence between genotypes and the misspecified

environment is important because it means that the

(least-squares) mean estimator is still unbiased.

However, environmental variables themselves often

have a genetic basis. We therefore performed simulations

where the phenotype depended on the non-linear

(squared) effect of a heritable environmental variable. In

simulation (Figures 2A and 2C), we observed that misspeci-

fication of the environmental variable can cause substan-

tial inflation in GxE test statistics at heritable sites of the

confounding environment. Relatively smooth non-linear-

ities, such as squared effects, are easily detected by regres-

sion modeling before using LEMMA (see Materials and

Methods) and can then be included as covariates [indi-

cated by (þSQE) in Figure 2]. This procedure produced

well-calibrated test statistics for all methods in simulation

(Figure 2C).

In Figure 2B we compare the GxE association test statis-

tics from our analysis of logBMI in the UK Biobank with

and without adjusting for detected squared effects.

Although we detected squared effects for 30 of the 42 envi-

ronmental variables (significance level 0.01; Bonferroni

correction for multiple testing), the ES obtained from the

two analyses was almost identical (Pearson r2 > 0:999).
The America
Because the additional variance explained collectively by

the squared effects was negligible (incremental

R2 < 0:00001), it would be surprising if this was not the

case. Negative log10ðpÞ values from the two analyses were

also highly correlated (Pearson r2 ¼ 0:961), although there

were small changes in the p values at the FOXO3 locus

(which remained genome-wide significant in both ana-

lyses) and at the SNAP25 locus [which was genome-wide

significant in the (�SQE) analysis only]. We therefore

conclude that the influence from this form of confounding

in our analysis of logBMI was minor. However, because the

cost to this procedure is small, LEMMA uses the (þSQE)

strategy by default for all analyses of UK Biobank traits.

GxE Interaction Analysis in the UK Biobank

We applied LEMMA to characterize GxE interactions in

BMI (logBMI), SBP, DBP, and PP by using a set of 42 envi-

ronmental variables similar to those used in previous ana-

lyses,7,8,50 including data on smoking, hours of TV

watched, Townsend index, physical exercise, and alcohol

consumption (see Materials and Methods and Table S1).

We analyzed GxE heritability due to multiplicative ef-

fects with the ES by using both M ¼ 639;005 genotyped

SNPs and M ¼ 10;270;052 common imputed SNPs (MAF

R0:01 in the full UK Biobank cohort) stratified by MAF

and LDscore into 20 components. Using imputed

SNPs, we estimated GxE heritability of 9:3%, 12:5%,

3:9%, and 1:6% for logBMI, PP, SBP, and DBP, respectively

(see Table 1). On genotyped SNPs, the GxE heritability es-

timates were slightly lower for logBMI and PP (h2
GxE ¼ 8:6%

and h2
GxE ¼ 11:1%, respectively) and almost identical for

SBP and DBP (see Table S2). For all traits, the heritability

of additive SNP effects was slightly higher on imputed

data, consistent with previous results.52
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Table 1. Partitioned Heritability Estimates for Four Quantitative
Traits in the UK Biobank

Trait h2
G (SE) h2

GxE (SE)

logBMI 0.274 (0.056) 0.093 (0.028)

INT (BMI) 0.278 (0.056) 0.059 (0.024)

BMI 0.268 (0.055) 0.137 (0.031)

PP 0.228 (0.051) 0.125 (0.028)

SBP 0.251 (0.05) 0.039 (0.023)

DBP 0.254 (0.05) 0.016 (0.02)

Heritability estimates obtained with common imputed SNPs (MAF > 0:01 in
the full UK Biobank cohort) with RHE-LDMS. GxE heritability estimates were
obtained via the ES from each model fit. All analyses controlled for the same
covariates used in the WGR analysis (including the top 20 principal compo-
nents). Abbreviations are as follows: SE, standard error estimated with the block
jackknife (see Materials and Methods); h2

G, heritability due to additive genetic
effects; h2

GxE, heritability due to multiplicative GxE effects; RHE, randomized HE
regression;27,28 LDMS, SNPs stratified by minor allele frequency and LDscore
(20 components); INT, inverse normal transform applied to males and females
separately.
When working with quantitative traits, it can be hard to

choose an optimal transformation or scale for each trait.

Tyrell et al.26 analyzed BMI by using the raw scale and

then also by transforming to a standard normal distribu-

tion. They observed larger interaction effects on the raw

scale and suggested that this was due to larger variance

in BMI in individuals in the high-risk environment groups,

which causes heteroskedasticity and inflates effect esti-

mates. In addition to our main analysis, which used log

BMI, we re-ran LEMMA by using the raw BMI measure-

ment and then also by transforming to a standard normal

distribution in females and males separately. These results

are presented in Table 1 and agree with the results of Tyrell

et al.:26 estimates of GxE heritability on the raw, log, and

inverse normal scales were 13:7%, 9:3%, and 5:9%,

respectively.

Previous work on models of natural selection has sug-

gested that the variance explained by additive SNP effects

should be uniformly distributed as a function of MAF in a

neutral evolutionary setting54 and that enrichment of the

variance explained by low-frequency SNPs is evidence

for negative selection. For all four traits, we found that

variance explained by the additive genetic effects of

low-frequency SNPs (MAF < 0:1) was slightly elevated,

consistent with previous observations of negative selec-

tion46 (Figure 3). Additionally, the distribution of additive

genetic effects by MAF for logBMI was qualitatively similar

to that found by GREML-LDMS in a previous study.52 In

contrast, we found that variance explained by GxE effects

was overwhelmingly attributed to low-frequency SNPs

(MAF < 0:01), especially those with low LD. However,

we are not aware of any evolutionary theory that has

been extended to model the MAF distribution of GxE

effects.

For logBMI, we estimated an ES that put high weight on

alcohol intake frequency, Townsend index, and physical

activity measures (Figure 4C). Almost all of the non-dietary
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environmental exposures had a higher effect in women

than in men; smoking status was the one exception. This

is reflected in the facts that (A) the ES has much higher

variance in women and (B) those with a negative ES were

almost all female (97%) (see Figure 4B). When comparing

the characteristics of those in the bottom 5% of the ES to

the whole cohort (by using the mean for continuous vari-

ables and the mode for categorical), we found that those in

the bottom 5% were predominantly female (100% versus

53%), younger (51 years versus 56 years), had a higher

Townsend deprivation index (0.91 versus �1.74), drank

less often (‘‘special occasions’’ versus ‘‘once or twice a

week’’), and watched more TV (3.28 h versus 2.69 h of

TV daily) (Table S3). We note that positive values of the

Townsend index indicate material deprivation, whereas

negative values indicate relative affluence.

Previous cross-sectional studies have reported GxE

interactions between a linear predictor formed from BMI-

associated SNPs and alcohol intake frequency,55 Townsend

index,26,55 physical activity measures,5,26,55,56 and time

watching TV,26,55,56 all of which had high relative weight

in the logBMI ES. An alternative approach from Robinson

et al.6 binned samples according to their environmental

exposure (e.g., age) and tested for significant differences in

SNP heritability by using a likelihood ratio test. They re-

ported strong interaction effects with age in a cohort of

43;407 individuals whose ages spanned 18� 80 years but

only reported significant interactions with smoking in the

UK Biobank interim release. This suggests that we might

expect age to play a more dominant role in the logBMI ES

in a cohort that included younger individuals. Finally, one

category that is notably down weighted is the contribution

from dietary variables. Although significant interactions

with fried food consumption57 and sugar sweetened

drinks58 have previously been reported in a cohort of US

health professionals, these dietary variables were not

included in the diet questionnaire used by the UK Biobank.

The ES for PP was dominated by the effects of age and

gender (age, age2, age-x-gender, and gender together ex-

plained 94:9% of variance in the ES). The magnitude of

the ES was strongly associated with increased age,59

whereas the sign of the ES was strongly associated with

gender, implying that GxE effects were stronger in the

elderly but acted in the opposite direction in men and

women (Figure S7).

Similarly, we observed that variance of the ES increased

with age in both SBP and DBP, but instead of age itself be-

ing highly weighted, we found that age interactions with

other environmental variables were most important for ex-

plaining variation in the ES. Specifically, for SBP, we found

that age interactions with smoking, Townsend index, and

alcohol frequency explained 86% of variance in the ES

(Figure S8). When compared to the cohort average, we

found that participants in the top 5% of the SBP ES were

older (63 years versus 58 years), had a higher Townsend

deprivation index (1.2 versus �1.74), and were more likely

to smoke (59% versus 9%), whereas those in the bottom
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Figure 3. Partitioned Heritability Estimates for Four Quantitative Traits in the UK Biobank
Heritability estimates partitioned into additive genetic and multiplicative GxE interaction effects for four quantitative traits in the UK
Biobank with approximately 280;000 unrelated white British individuals (see Table S1) and M ¼ 10;270;052 common imputed SNPs
(MAF> 0:01 in the full UK Biobank cohort). Multiplicative GxE interactions were computed with the ES from eachmodel fit. Heritability
estimation was performed via a multi-component implementation of RHE regression27,28 with SNPs stratified into 20 components (5
MAF bins and 4 LD score quantiles).
5% were also older (65 years versus 58 years), predomi-

nantly female (91:5%), rarely drank alcohol (43:9% drank

‘‘never’’), and a had low Townsend deprivation index

(�2.9 versus �1.74) (Table S4).

Finally, we observed notably higher variance in the ES

for DBP among men, most of which appeared to be driven

by high gender-specific weights for smoking status and

alcohol frequency (Figure S9). We further observed that

alcohol frequency and smoking status became increasingly

influential with age. The total SNP-GxE heritability for this

ES, however, was quite low.

When testing for significant GxE interactions between

the estimated ESs and imputed markers across the

genome, we observed that use of the robust standard er-

rors made a noticeable difference to the calibration of

LEMMA (Figure S10 and Table S5). We identified two

loci for logBMI (Figure 4), one locus for DBP

(Figure S9A), and zero loci for SBP and PP by using a

threshold of 5310�8 for genome-wide significance (Table

2). This table also includes results from a standard linear

regression GWAS test at the three loci. Table S6 provides

full parameter estimates of the environmental, SNPs,

and SNP-ES effects.

For logBMI, LEMMA identified GxE interactions at

rs2153960 (p ¼ 6:5310�9; Figure S11) and at rs539515
The America
(p ¼ 6:5310�12; Figure S12). The SNP rs2153960 is an

intron in FOXO3 and has been previously associated with

insulin-like growth factor 1 (IGF-1) concentration in a

cohort of 10;000 middle-aged Europeans.60 IGF-1 is

known to be a central mediator of metabolic, endocrine,

and anabolic effects of growth hormones and is also

involved in carbohydrate homeostasis.60 The patterns of

main effect association and GxE association show consid-

erable overlap (Figure S11A). This SNP did not reach

genome-wide levels of significance with the standard

linear regression GWAS test (Table 2).

The SNP rs539515 is located 6 kb downstream of

SEC16B. The patterns of main effect association and GxE

association are very similar (Figure S12A). Multiplicative

GxE interactions have been reported at SEC16B with mul-

tiple environmental variables in a similar analysis in the

UK Biobank7 and with physical activity separately in Euro-

peans5 ðp¼ 0:025Þ and in Hispanics61 ðp¼ 8:1310�5Þ.
Highly significant variance effects ðp¼ 3:88310�17Þ,
which can be indicative of GxE, have also been reported

at the SEC16B locus via N ¼ 456;422 Europeans in the

UK Biobank.62 SEC16B transcribes one of the twomamma-

lian orthologs of SEC16, which has a key role in organizing

endoplasmic reticulum exit sites by interacting with COPII

components.63 Although several GWASs have identified
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Figure 4. GxE Analysis of logBMI in the UK Biobank
(A) LEMMA association statistics testing for multiplicative GxE interactions at each SNP. The horizontal gray line denotes ðp¼ 5310�8Þ,
and p values are shown on the �log10 scale.
(B) Distribution of the environmental score (ES), stratified by gender and age quantile.
(C) Weights used to construct the ES. Dietary variables have a single weight shown on the per-standard-deviation (SD) scale. ‘‘Gender’’
has two weights; a gender-specific intercept for women (first) and formen (second). Remaining non-dietary variables have three weights:
(1) a per-SD effect for women only, (2) a per-SD effect for men only, and (3) a per-SD, per-decade effect, which is the same for both gen-
ders. SD for the male- and female-specific weights is computed for each gender separately. Age is computed as the number of decades
aged from 40 years. See Materials and Methods for details.
associations between SEC16B,64,65 the relevance of SEC16B

to BMI is not well characterized.66 Some evidence exists to

suggest that SEC16B has role in the transport of peroxi-

some biogenesis factors; peroxisomes are an organelle

involved in the catabolism of long-chain fatty acids found

ubiquitously in eukaryotic cells. Previous authors65 have

also speculated that SEC16B might play a role in the trans-

port of appetite regulatory peptides; however, we are not

aware of any evidence for this theory.

The DBP-associated SNP is rs8090962, but it only just

passes our threshold for significance and we are least confi-

dent that this is a true GxE association for a few reasons.

The SNP is located within an enhancer, approximately

100 kb downstream of SEC11C and 50 kb upstream of

ZNF532. Neither gene has previously been associated

with blood pressure traits. There is some evidence of a

main effect close by (Figure S13A), but the pattern of

main effect association does not coincide well with the

pattern of GxE association. In addition, the pattern of

GxE association by genotype (Figure S13B) shows a striking

cross over by genotype between extremes of the ES. We

have observed above that our test statistics are very slightly

inflated, so this could be a false positive association.
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Relationship of Genetic PCs and Environmental Scores

We regressed the estimated ESs against the PCs for each of

the four UK Biobank traits, and the results are included in

Table S7. We found some significant associations, mostly

with PC5, which seems to correlate with North-South ge-

ography in the UK.67 To explore further, we also re-ran

the heritability analysis by including interaction terms of

the ES with the genetic PCs as control variables, but the re-

sults were almost unchanged (see Table S8).

Comparison of the LEMMA ES with a Marginal ES

For each trait, we used least-squares regression to compute

a linear model fit using all of the non-genetic covariates

used in the LEMMA analysis. We then constructed an ES

(referred to as ESmarginal) by using the marginal environ-

mental effects from this model fit. The correlation between

the LEMMA ES and ESmarginal was � 0:062; � 0:019; �
0:297, and �0:088 for logBMI, PP, SBP, and DBP, respec-

tively, suggesting that these vectors are quite dissimilar.

Figure S14 shows a comparison of the interaction weights

used to construct the LEMMA ES and ESmarginal for each of

the four traits. Visually, the weights learnt through each

approach look quite distinct. In particular, age, age2, and
r 1, 2020



Table 2. Loci with Genome-wide Significant GxE Interaction Effects with the ES

SNP rs539515 rs2153960 rs8090962

Trait log(BMI) log(BMI) DBP

Chr 1 6 18

BP 177889025 108988184 56694404

A0 A G A

A1 C A G

AF 0.21 0.71 0.44

Nearest gene SEC16B FOXO3 OACYLP / SEC11C

Standard GWAS Tests

bG (SE) 0.0043 (0.0003) 0.0014 (0.0003) �0.00001 (0.0192)

p valueG 5:7310�51 1:1310�6 1:0310þ0

LEMMA Association Tests

bG (SE) 0.0254 (0.0016) 0.0087 (0.0015) 0.0011 (0.0015)

bGxE (SE) �0.0117 (0.0017) �0.0098 (0.0017) 0.0087 (0.0016)

p valueG 1:6310�60 1:6310�8 4:5310�1

p valueGxE 6:5310�12 6:5310�9 3:6310�8

Independent loci with genome-wide significant (p < 5310�8) GxE interaction effects with the environmental score (ES). Loci at least 0.5 cM apart were judged to
be independent. SNP effect sizes reported on a per-SD scale. SNP locations follow the GrCh37 human genome assembly. All loci had an IMPUTE info score>0.99.
Abbreviations are as follows: BP, base pairs; A0, reference allele; A1, alternative allele; AF, reference allele frequency; SD, standard deviation.
age3gender have much higher relative weights in ESmarginal

than in the LEMMA ES.
Comparison of Methods on UK Biobank Data

To compare LEMMA with existing single SNP methods,

we also ran StructLMM, the F-test, and the robust F-test

on logBMI by using the same set of environmental

variables as used by LEMMA (but not including the

significant squared environments as covariates). Manhat-

tan plots are displayed in Figure S15. Test statistics from

both the F-test (lGC ¼ 1:37) and StructLMM (lGC ¼
1:235) were substantially inflated when compared to

the robust F-test and LEMMA (lGC ¼ 1:03 and lGC ¼
1:062, respectively; see Table S5), suggesting that

StructLMM does not properly control for heteroskedastic-

ity. There are clear differences between the four methods,

especially among SNPs with suggestive evidence of GxE

interaction results (Figure S16). LEMMA did not find the

FTO locus, StructLMM and F-test did not find the

SEC16B locus, and the robust F-test only found the FTO

locus.

LEMMA relies on the assumption that all GxE interac-

tion effects for a single trait share a common ES, and we

have shown in simulation that, when this assumption

holds, LEMMA achieves substantial increases in power.

However, we would expect LEMMA to have little power

to detect SNPs that interact with a combination of environ-

ments that are not well correlated with the genome-wide

ES estimated by LEMMA. FTO seems to be one clear

example of this. We extracted an estimate of the SNP-spe-
The America
cific interaction profile at FTO by using the robust F-test

(Materials and Methods), and we found that its correlation

with LEMMA’s ES was low (Pearson r2 ¼ 0:3). In compari-

son, a similar analysis at SEC16B and FOXO3 yielded

much higher correlations (Pearson r2 ¼ 0:725 and

r2 ¼ 0:713, respectively).
Discussion

In this study, we proposed a WGR method, LEMMA, that

estimates a single ES that interacts with SNPs across the

genome. In simulation, we have demonstrated that the

ES can be used to compute well-calibrated p values of the

multiplicative interaction effect at each SNP. LEMMA is

also able to quantify the trait variance attributable to

MAF- and LD-stratified interaction effects of the ES.

In our analyses of four quantitative traits in the UK Bio-

bank, we have demonstrated that GxE effects among com-

mon imputed SNPs make a non-trivial contribution to the

heritabilityof logBMIandPP (9:3%and12:5%, respectively).

Our stratified heritability analysis has suggested thatGxE in-

teractions for these traits aremostly drivenby low-frequency

variants. Our analysis identified three loci with statistically

significant GxE interaction effects. As far as we are aware,

two of these loci, rs539515 (FOXO3) and rs8090962, are

novel, and for the other, rs539515 (SEC16B), we show stron-

ger evidence for statistically significant GxE interaction ef-

fects than the previous study.7

Robinson et al.6 have previously attempted to quantify

the contribution of GxE interactions to the heritability of
n Journal of Human Genetics 107, 698–713, October 1, 2020 709



BMI in a study performed on imputed SNPs from the

interim UK Biobank release. Using the GCI-GREML model

implemented in GCTA68 and eight environmental vari-

ables that included measures of smoking, hours of TV

watched, and alcohol frequency, Robinson et al.6 reported

that only smoking had significant GxE heritability (4:0%).

In contrast, the ES estimated for logBMI in our analysis had

non-zero contributions from many environmental

variables, including hours of TV watched and smoking,

suggesting that multiple environmental variables can in-

fluence the genetic predisposition to BMI. Modeling these

environmental variables jointly allowed LEMMA to cap-

ture a combination whose GxE interactions explained

9:3% of heritability.

We have also evaluated the performance of three exist-

ing single SNP methods (StructLMM, the F-test, and a

robust F-test) both in simulation and on logBMI from

this same dataset. In simulation with large datasets, we

observed that StructLMM and the F-test had similar perfor-

mance, an observation that also held in our analysis of

logBMI. Both of these methods appeared vulnerable to het-

eroskedasticity, which we showed is likely to occur in traits

with non-trivial GxE heritability. A simple adjustment, us-

ing ‘‘robust’’ or Huber-White variance estimators, solved

this problem. The two F-test methods further benefit

from a wealth of existing theory41 and, being theoretically

simpler than StructLMM, could be easily implemented as

an R-plugin with PLINK69 (for example37). In our opinion,

the robust F-test is therefore the most appropriate of the

three single SNP methods to model GxE effects with tens

of environments in biobank-scale datasets.

Although LEMMA represents a method with increased

power to detect GxE interaction effects, our approach

does have some caveats. First, the gain in power is depen-

dent on a strong assumption on the underlying genetic ar-

chitecture. Although our analysis suggests that this does

hold to some extent for PP and logBMI, this may not be

the case for other traits.

In addition, LEMMA only estimates the proportion of

phenotypic variance that is explained by interactions

with this ES and we do not claim that this captures all

the GxE heritability of a trait. If relevant GxE environ-

ments are not included in the analysis, and these envi-

ronments have low correlation to the environments

that are included, then LEMMA cannot account for

them and will most likely underestimate the true GxE

heritability. Unobserved environments can cause trait

variance to depend on genotype8 (see Figure S19), and

extending LEMMA in this direction is left for future

work.

LEMMA has the requirement that none of the environ-

mental variables have any missing values. This could lead

to a reduction in samples size if many environmental vari-

ables are included. If the amount of missing data is small, it

should not pose a big problem, and missing data imputa-

tion methods are also an option. If LEMMA is applied

in situations where the missing data structure is related
710 The American Journal of Human Genetics 107, 698–713, Octobe
to the phenotype of interest, then this could cause bias

in the results.

Despite much effort to provide an efficient implementa-

tion, the LEMMA algorithm is still computationally

demanding. Using randomized HE regression to estimate

an improved initialization of the interaction’s weights

may help to reduce runtime and is an avenue that we are

currently pursuing.

Finally, for simplicity, LEMMA currently searches only

for GxE interactions with a single linear combination of

environments. Generalizing the LEMMA approach to

several orthogonal linear combinations or using func-

tional annotation to restrict the SNPs that each ES inter-

acts with may yet yield more power to identify interac-

tions in complex traits and explain more phenotypic

variation.
Data and Code Availability

The genetic and phenotype datasets generated by UK Bio-

bank analyzed during the current study are available via

the UK Biobank data access process. The resource is

available to all bona fide researchers from academic,

charity, public, and commercial sectors for all types of

health-related research that is in the public interest: there

is no preferential or exclusive access for any person. More

details are available at http://www.ukbiobank.ac.uk/

register-apply/. Pre-compiled binaries and source code for

the LEMMA method are available from https://jmarchini.

org/lemma/.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.08.009.
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