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Osteosarcomas (OSs) are aggressive bone tumors with many divergent histologic patterns. During pa-
thology review, OSs are subtyped based on the predominant histologic pattern; however, tumors often
demonstrate multiple patterns. This high tumor heterogeneity coupled with scarcity of samples
compared with other tumor types render histology-based prognosis of OSs challenging. To combat lower
case numbers in humans, dogs with spontaneous OSs have been suggested as a model species. Herein, a
convolutional neural network was adversarially trained to classify distinct histologic patterns of OS in
humans using mostly canine OS data during training. Adversarial training improved domain adaption of
a histologic subtype classifier from canines to humans, achieving an average multiclass F1 score of 0.77
(95% CI, 0.74e0.79) and 0.80 (95% CI, 0.78e0.81) when compared with the ground truth in canines
and humans, respectively. Finally, this trained model, when used to characterize the histologic land-
scape of 306 canine OSs, uncovered distinct clusters with markedly different clinical responses to
standard-of-care therapy. (Am J Pathol 2023, 193: 60e72; https://doi.org/10.1016/
j.ajpath.2022.09.009)
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Osteosarcoma (OS) is a rare but aggressive pediatric ma-
lignancy with approximately 800 cases reported annually in
the United States.1 Patients with metastatic or relapsed
disease have dismal outcomes, with survival rates of <30%
despite aggressive salvage regimens that typically include
additional surgery, radiotherapy, and chemotherapy with
agents such as ifosfamide, etoposide, cyclophosphamide,
gemcitabine, and topotecan.2 Most osteosarcomas display
osteoblastic differentiation, sometimes intermixed with one
or more additional histologic patterns, including chondro-
blastic, fibroblastic, giant cell rich, and vessel rich.3e5

Currently, the only reliable histologic marker for prog-
nosis in human OS is the amount of necrosis achieved after
neoadjuvant chemotherapy.6 This assessment is based on
review of tumor sections harvested after local tumor control
via surgery. Despite this, a subset of patients with high
necrosis still develop metastatic disease after completion of
frontline therapy. Hence, additional prognostic biomarkers
merican Society for Investigative Pathology.
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are needed for accurate prognosis prediction. Because
naturally occurring canine osteosarcoma has strong biolog-
ical, molecular, and histologic similarities to human osteo-
sarcoma and is at least 10 times more common than human
osteosarcoma, it can serve as a powerful translational model
for cancer biomarker investigation and drug
development.7e9

In dogs with OS, standard of care consists of amputation
of the affected limb to achieve local tumor control, followed
by systemic platinum and/or anthracycline-based chemo-
therapy.10 However, many clinical studies demonstrate that
development of metastases, most often to the lungs, occurs
in >90% of canine patients within several months of diag-
nosis.10e14 In contrast to humans, the clinical workflow in
/licenses/by-nc-nd/4.0).
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Defining Train, Validation and Test Sets
dogs does not allow for assessment of response to neo-
adjuvant therapy, but rather access to the entire tumor at the
time of diagnosis via limb amputation. This allows a greater
area of untreated tumor for analysis and correlation with
outcomes of that specific patient.

Furthermore, in canine OS, beyond tumor stage (ie, de
novo metastatic disease), there are no known consistent
prognostic features either within the primary tumor histol-
ogy or other patient factors, such as tumor location, alkaline
phosphatase status, and age/sex/breed.10,12,14 Studies
examining the prognostic significance of histologic subtype
have identified conflicting findings in different data sets.11,13

This study took advantage of a larger patient cohort accu-
mulated during a prospective randomized clinical trial
conducted in >300 canine patients.12 This yielded a well-
annotated canine OS data set in which to examine osteo-
sarcoma histology and explore the potential of artificial in-
telligence (AI)ederived biomarkers. Specifically, the study
investigated whether techniques in AI using adversarial
learning could support the development of a histologic
subtype classifier for osteosarcomas that adapts from dogs
to humans and a prognostic signature in dogs based on
digital pathology whole slide images.15e17

Materials and Methods

Curation of Hematoxylin and EosineStained Slides of
Dog and Human Osteosarcomas

Canine OS tumor samples were curated from a multisite
clinical trial.12 Tumors were biopsied pre-amputation and
diagnosed as osteosarcoma by anatomic pathologists at
Comparative Oncology Trials Consortium (COTC) in-
stitutions (https://ccr.cancer.gov/comparative-oncology-
program/consortium, last accessed May 13, 2022). At the
time of surgical limb amputation, additional tumor tissue
was collected by COTC investigators as a part of the
standard-of-care portion of the trial schema. All tumors
were collected before any treatment. Dogs were randomized
to receive either standard of care or standard of
care þ adjuvant sirolimus (rapamycin) therapy. Statistical
analysis of the primary clinical outcomes of the entire cohort
of dogs found no differences in disease-free interval or
survival between the two arms; thus, cases were included
together in the analysis presented herein. In addition 39
human osteosarcoma samples were obtained from an in-
house pathology residency training cohort. Of these 39
samples, only 11 were utilized in our study for validation of
domain-agnostic features. Tumor tissue was placed in 10%
neutral-buffered formalin for 24 hours and then subjected to
EDTA slow decalcification. Tissue was then sectioned and
stained with hematoxylin and eosin, according to standard
histopathologic practice. Three canine cases were excluded
from this study as slides from these cases were not available.
Slides from remaining 306 canine cases and 39 human cases
were digitized using Hamamatsu S60 digital scanner
The American Journal of Pathology - ajp.amjpathol.org
(Hamamatsu Photonics, Hamamatsu, Japan) in �40
magnification or 0.23 mm per pixel. No additional manual
quality control of surgical tumor specimen size or percent-
age tumor tissue was completed before data collection. The
methods were performed in accordance with relevant
guidelines and regulations and approved by each partici-
pating COTC veterinary institution that enrolled canine
patients onto the clinical trials from which the image data
were derived.

Annotation and Preprocessing of Whole Slide Image
Data

Pathologist annotations for 95 dog slides and 11 human
slides were obtained in xml format using HALO (Albu-
querque, NM). Each annotation file contained coordinates of
roughly marked region boundaries for each histologic sub-
type within each slide. Because osteoblastic subtype is the
most dominant subtype in osteosarcoma, the main tumor
areas were marked and annotated as osteoblastic. Any re-
gions within this area exhibiting divergent histology were
annotated as necrotic, vessel rich (VR), chondroblastic,
fibroblastic, or giant cell rich.3,5 In canine tumors annotated
as VR, CD31 immunohistochemistry was used to confirm
the presence of tumor cell (CD31-) lined vascular spaces
(Supplemental Figure S1).18,19 Any unmarked regions fall-
ing outside main tumor areas were classified as other and
consisted primarily of nontumor tissue, osteoid formations,
and, in some cases, slide preparation artifacts, such as folded
tissue and slide debris.

Training deep learning models on whole slide image tiles
extracted from multiple magnifications has proven to be
effective in a weakly supervised learning setting where
region-level annotations by pathologists are not available and
histologic features of interest are open ended.20e23 However,
in this study, we had region-level pathologist annotations that
were based on previously defined histologic subtypes of os-
teosarcoma that are distinguishable at �10 magnification
level.24 The smallest regions of interest annotated by the
pathologist have an area of approximately 25,000 mm2 and are
represented by at least one tile of size 256 � 256 at �10
magnification. A larger tile size would have resulted in fewer
training tiles per histologic subtype, which would further in-
crease class imbalance and cause overfitting, whereas a
smaller tile size would have obscured important architectural
features that go beyond cellular morphology (eg, tumor cells
surrounding blood-filled spaces, which are a characteristic
feature of telangiectatic osteosarcoma). Hence, to train our
image classification model, each whole slide image was
scanned at �10 magnification level and broken down into
256 � 256 pixel tiles.

Tiles containing >85% of white space were filtered out.
Each remaining tile was assigned a single label based on any
overlapping pathologist annotations. If a tile contained one
or more tumor lesions of divergent histology (ie, a region
exceeding 15% of the tile area), the tile was assigned the
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histologic class of the most dominant lesion (ie, the diver-
gent lesion covering the highest percentage area). Other-
wise, the tile was assigned label osteoblastic. For example,
if a tile had 35% of its area marked as fibroblastic, then the
tile gets assigned the label fibroblastic. If a tile is dominated
by nontumor tissue or hemorrhage, it was assigned the label
other. All other tiles from unmarked slides were regarded as
unlabeled.

For training, 80% of all labeled tiles from dogs (source
domain) and additional 2000 labeled tiles from humans
(target domain) were randomly selected. Of the remaining
20% labeled tiles from dogs, half were randomly selected
for validation and hyperparameter tuning, and the remaining
half were held out for testing along with the remaining
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Figure 1 Overview of the training data and adversarial learning approach. A: N
images were extracted at �10 base magnification and split at random into 80% tra
is shown. B: Nonoverlapping whole slide image patches from 11 human whole slid
(approximately 3% of all labeled human patches) were reserved for domain advers
testing. See Materials and Methods for details on how each whole slide image pa
learning approach. The domain classifier is made to work against the histologic
domain classifier. For more details on the algorithm, see Materials and Methods. Av
cell rich; max, maximum; OB, osteoblastic; VR, vessel rich.
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labeled human tiles that were not selected for training. For
reproducibility, the random seed in the codes generating the
train, validation, and test splits was fixed. The distribution of
tiles by histologic subtype and train, validation, and test split
is shown in Figure 1 and Supplemental Table S1.
Before feeding a tile as input to the classification model,

each tile was rescaled to 224� 224 pixels, and its per-channel
pixel intensities (ranging from 0 to 1) were normalized to
follow a standard normal distribution using the following per-
channel mean intensity and SDs estimated from the dog
training data: mean (r Z 0.8938, G Z 0.5708, B Z 0.7944)
and SD (rZ 0.1163,GZ 0.1528, BZ 0.0885). Furthermore,
to artificially augment the size of the training set, each tile from
aminibatch during trainingwas flipped on one side at random.
Output
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Defining Train, Validation and Test Sets
Domain Adversarial Training of a Histologic Subtype
Classification Model for Osteosarcomas

Let ðX1; Y1Þ; ðX2; Y2Þ;.; ðXm; YmÞ be examples from a
source domain ðdZdogsÞ and ðXmþ1; Ymþ1Þ;.; ðXn; YnÞ be
examples from a target domain ðdZhumansÞ where the
number of examples available is typically much less than
the number of examples available from the source domain.
To train a classification model that adapts from the source
domain to target domain, we extend the algorithm of Ganin
and Lempitsky25 to the supervised setting. Specifically, let
qf be the parameter of the feature extraction backbone
Gf ð:; qf Þ; (ie, the function that takes as input an example Xi

and maps it to a set of features), let qy be the parameter of
the subtype classifier Gyð:; qyÞ; (ie, the function that re-
ceives input from the feature extractor and predicts class
label Yi), and let qd be the parameter of the domain classifier
Gdð:; qdÞ (ie, the function that receives input from the
feature extractor and predicts the domain label di).
Furthermore, let:
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The first term in Equation 1 represents the subtype clas-
sification error, whereas the second term in Equation 1
represents the domain classification error and the hyper-
parameter l controls the trade-off between the two errors.
The goal of a domain adaption algorithm is then to find the
saddle point of E:�bqf ;bqy�Z argmin

qf ;qy
E
�
qf ;qy;bqd� ð2Þ

bqdZ argmax
qd

E
�bqf ;bqy;qd� ð3Þ

The domain classifier tries to minimize the domain clas-
sification error (because of the �l term), and the subtype
classifier tries to minimize the subtype classification error.
To find the saddle point, the domain classifier is trained
adversarially with the label classifier. Consequently, the
parameters of the feature extractor qf at the saddle point
minimize the subtype classification error (ie, the learned
features are discriminative) while maximizing the domain
classification error (ie, the learned features are domain
invariant). Adversarial training is implemented in practice
by simply adding a gradient reversal layer just before the
domain classifier and performing standard stochastic
gradient descent (Figure 1). The update rule for the pa-
rameters after incorporating the gradient reversal layer is
given by Equations 4, 5, and 6:
The American Journal of Pathology - ajp.amjpathol.org
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The hyperparameterm represents the learning rate. To obtain
a head start during training, we initialize the parameters of the
feature extraction portion of the resnet50 convolutional neural
network (qf Þ to the values obtained from pretraining resnet50
on the ImageNet data set.26 Initializing convolutional neural
networks with pretrained weights from ImageNet has previ-
ously demonstrated success in transfer learning on many dig-
ital pathology applications.27,28 With the help of stochastic
gradient descent, we then simultaneously train the histologic
subtype classifier and domain classifier over several epochs
using the same resnet50 backbone to find parameters
ðqf ; qy; qdÞ that get us closest to the saddle point ofE. To aid in
faster convergence, we decrease the learning rate hyper-
parameter over each epoch, followingGanin and Lempitsky25:

mðpÞZ m0

ð1þ apÞb ð7Þ

Similarly, the hyperparameter l is increased over each
epoch, following Ganin and Lempitsky,25 while periodically
setting it to 0 every three epochs.

lðpÞZ 2
ð1þ e�apÞ � 1 ð8Þ

Such hyperparameter annealing is commonly practiced,
achieving better convergence during training.29 InEquations 7
and 8, P represents the training progress (fraction of total
number epochs completed). The hyperparameters m0Z0:001;
aZ10 ; and bZ0:75 are following Ganin and Lempitsky.25

The training batch size was set to 256 (sampling 32 patches
per whole slide image in each batch). As an early stopping
criterion, model training was halted after 15 epochs as the gap
between train error and validation error begins to widen after
15 epochs. Hence, model training was halted after 15 epochs.
The parameters achieving the best performance on the vali-
dation data set over 15 epochs were saved and eventually used
for making predictions on held-out test data. The resnet50
architecture and training algorithm were implemented in py-
thon using PyTorch (https://pytorch.org) on an in-house
dedicated server using a single Nvidia Ray Tracing Texel
eXtreme A6000 Graphics Processing Unit with 48 GB of
video RAM (Nvidia, Santa Clara, CA).

Spatial Probability Map Generation and Burden
Estimation for Each Histologic Subtype

To generate spatial probability maps, each whole slide
image was processed by the trained patch-level histologic
63
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subtype classifier from left to right in a sliding window
manner with a window size of 256 � 256 pixels and an
overlap of 64 pixels. The resulting probability maps
generated were further down sampled to �5 base magni-
fication via local average pooling of tile probabilities. We
eventually generate six spatial probability maps: one for
each class (excluding the other class, representing normal/
benign/hemorrhagic tissue). The resulting probability maps
can then be converted to gray scale or color images and
visualized as shown in Figures 2, AeC and 3.

Having generated spatial probability maps for each his-
tologic subtype, one can then estimate its absolute burden in
each patient’s tumor while accounting for variable number
of slides scanned per case using the following approach:

Fcase
subtypeZ

1
N

X
ij

PijðsubtypeÞ>0:5
Figure 2 AeD: Pathologist-marked regions versus classifier-generated spatial
tumor samples from dogs. The probability maps (depicted below each whole slide im
a sliding window manner over the whole slide image using a window size of
magnification, �10 (AeD). CB, chondroblastic; FB, fibroblastic; GC, giant cell ric

64
PijðsubtypeÞ represents the probability of region i,j being
classified a particular subtype. The summation term repre-
sents the total area. The term N in the denominator repre-
sents the number of slides scanned per case. Absolute
burden of each subtype, instead of relative burden, was
quantified because each tumor was scanned at the same base
magnification. Additionally, multiple slides scanned for
each tumor in our cohort were available, including slides
with tissue artifacts, such as folded tissue, and osteoid for-
mations. See Supplemental Table S2 for the estimated ab-
solute burden of each subtype for all 306 canine cases
analyzed in this study.

Data Preprocessing for K-Means Clustering Analysis

Given the estimated burden of each histologic subtype in
each dog sample, the study first centered and scaled the data
probability maps for each osteosarcoma subtype over whole slide images of
age) are generated by applying the trained patch-level subtype classifier in

256 � 256 pixels. For more details, see Materials and Methods. Original
h; N, necrosis; OB, osteoblastic; VR, vessel rich.
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Figure 3 A and B: Pathologist-marked regions versus classifier-
generated spatial probability maps for each osteosarcoma subtype over
whole slide images of tumor samples from humans. The probability maps
(depicted below each whole slide image) are generated by applying the
trained patch-level subtype classifier in a sliding window manner over the
whole slide image using a window size of 256 � 256 pixels. Original
magnification, �10 (A and B). CB, chondroblastic; FB, fibroblastic; GC,
giant cell rich; N, necrosis; OB, osteoblastic; VR, vessel rich.

Defining Train, Validation and Test Sets
and then performed a principal component analysis. The
projections of each sample along the first two principal
components, which capture most of the variability in the
data, were then used for K-means clustering.
Implementation Details of K-Means Clustering and
Survival Analysis

To perform K-means clustering, the kmeans() utility function
implemented in R stats package (https://cran.r-project.org)
was used with the following options set: maximum
iterations Z 500, and nstart (number of random
initializations of cluster centers) Z 100. For performing
Kaplan-Meier and Cox proportional hazards regression anal-
ysis of the clinical data, the survfit() and cph() utility functions
The American Journal of Pathology - ajp.amjpathol.org
from the R survival package were used. Results of these an-
alyses were plotted using the ggsurvplot() and ggforest utility
functions from R survminer and GGally packages.

Code Availability

The code to train a classification model using domain
adversarial learning, trained model weights, and scripts to
reproduce the downstream results are available (https://
github.com/spatkar94/adversarialdogs.git, last accessed
September 30, 2022).

Results

Overview of Whole Slide Imaging Cohorts Analyzed in
this Study and the Adversarial Learning Approach

To precisely characterize the morphologic heterogeneity of
osteosarcomas, 600 hematoxylin and eosinestained slides
of treatment-naïve primary tumors were systematically
collected and scanned from a diverse collection of 306 dogs
enrolled in a two-armed National Cancer Institute COTC
clinical trial.12 The distribution of dogs analyzed in this
study by geographic location and breed is summarized in
Supplemental Tables S3 and S4. In addition, 39 de-
identified hematoxylin and eosin slides of human osteosar-
comas were collected to evaluate species-agnostic histologic
features. A veterinary anatomic pathologist (J.B.) annotated
95 and 11 slides from canine and human samples, respec-
tively, to identify regions of necrosis or tumor-specific
histologic patterns,3e5 including osteoblastic, chondro-
blastic, fibroblastic, giant cellerich, and VR regions. Un-
annotated regions were classified as other.

A resnet50 convolutional neural network was trained on
whole slide image patches of osteosarcoma to classify them
into different histologic subtypes, necrosis, or nontumor
areas in both dogs (source domain) and humans (target
domain). Figure 1, A and B, and Supplemental Table S1
depict the distribution of whole slide image patches corre-
sponding to each class in training, validation, and test data
sets generated for dogs and humans, respectively. Patches
from both the dog and human training set were simulta-
neously fed to a resnet50 convolutional neural network
trained using a domain adversarial approach (Figure 1C),
which encourages neural networks to learn features that are
important for the classification task of interest while at the
same time less sensitive to domain-specific differences in
the data.25 This was achieved by simultaneously training
two classifiers that share the same feature extraction back-
bone. One classifier aimed to classify whole slide image
patches into one of the predefined classes, whereas the other
classifier aimed to distinguish the domain of each patch (ie,
whether the patch comes from a dog or human sample).
During training, the weights of the shared feature extraction
backbone are updated to arrive at an equilibrium that min-
imizes classification error while maximizing domain error.
65

https://cran.r-project.org
https://github.com/spatkar94/adversarialdogs.git
https://github.com/spatkar94/adversarialdogs.git
http://ajp.amjpathol.org


Patkar et al
Patches from the validation set were used to monitor for any
signs of overfitting of the classification model (seeMaterials
and Methods for more details). In the evaluation phase,
patches from the held-out test set were evaluated using the
trained histologic subtype classifier.

Adversarial Learning Improves Domain Adaptation of
the Histologic Subtype Classifier from Dogs to Humans

Having trained a patch-level histologic subtype classifica-
tion model in a domain adversarial manner, the study next
evaluated the performance of the trained model on held-out
test whole slide image patches in both dogs and humans. To
evaluate the model’s performance, the study computed the
per-class precision, recall, and F1 scores obtained by
comparing the model-predicted class labels of each whole
slide image patch in the test set with the ground-truth labels
obtained from overlapping pathologist annotations (see
Materials and Methods). On average, the model achieved an
F1-score of 0.77 (95% CI, 0.74e0.79) in dogs, and an F1-
VR other OB Necrosis GC FB CB

C
B

F
B

G
C

N
e
cr

o
si

s
O

B
O

th
e
r

V
R

Target

P
re

d
ic

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

VR other OB Necrosis GC FB CB

%
 o

f t
es

t d
at

a

A
VR other OB Necrosis GC FB CB

C
B

F
B

G
C

N
e
cr

o
si

s
O

B
O

th
e
r

V
R

Target

P
re

d
ic

tio
n

VR other OB Necrosis GC FB CB

B

0

25

50

75

100

VR O
th

er

O
B

N
ec

ro
si

s

G
C FB C
B

%

VR O
th

er

O
B

Ne
cr

os
is

G
C FB CB

%

Precision Recall

Dogs Humans

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f t
es

t d
at

a

0

25

50

75

100

Precision RecallD E

11700120 11 35

0145050 32 24

004500 0 11

8004302 114 94

0005308 8 163

5506435 3522 461

2026154739 402 3237

0

1000

2000

3000

Count

210011 2 68

011360024 7 7

0752200 0 11

3113116154 32 84

11108413711 320 643

741599370 14584 528

7396962761276 969 13928

Figure 4 Performance evaluation on held-out whole slide image patches fr
generated after evaluating model predictions on dog and human whole slide imag
of each whole slide patch (ie, the class achieving the highest probability based
pathologist-assigned class). Below each confusion matrix is a histogram depicting
evolution of the test error achieved by the classification model on human whole sl
epoch. The red points represent the test error trajectory achieved through adversa
control methods. The test error is defined as the average multiclass cross-entropy
of the classification model on held-out test patches in dogs and humans. The error
data sets were repeatedly down-sampled to 50% original size and the precision an
FB, fibroblastic; GC, giant cell rich; OB, osteoblastic; VR, vessel rich.
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score of 0.8 (95% CI, 0.79e0.81) in humans (Figure 4,
AeD). Overall, the histologic subtype classification model
adapts from dogs (source domain) to humans (target
domain) after seeing <5% of labeled examples from the
target domain. The subtype that had low precision (20%)
and low recall (23%) on the target domain is the chondro-
blastic subtype and was most often confused with the more
dominant osteoblastic subtype.
To evaluate the effect of domain adversarial training on

model generalizability from source domain (dogs) to target
domain (humans), three control experiments were per-
formed: i) train the image classification model on labeled
data from the source domain only and evaluate on target
domain (transfer learning), ii) train the image classification
model on labeled data from target domain only and evaluate
on target domain, and iii) train the image classification
model on labeled data from both the source and target
domain using standard supervised learning and evaluate on
target domain. For each experiment, the classification model
was trained starting from the same set of initialized weights
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and hyperparameters. Overall, the domain adversarial
learning approach achieved significantly lower test error per
epoch compared with the other three controls when evalu-
ated on the target domain (Figure 4E).

To visualize the predictions of the patch-level histologic
subtype classification model on the whole slide image,
spatial probability maps were generated. They depicted re-
gions of high versus low probability for each histologic
subtype based on application of the patch-level histologic
subtype classification model over the whole slide image in a
sliding window manner (see Materials and Methods for
details). As a qualitative validation, Figures 2 and 3 depict
pathologist-marked region boundaries within four dog and
two human osteosarcoma surgical specimens covering each
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Figure 5 K-means clustering analysis of 306 canine osteosarcoma tumors ba
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analysis plot, depicting the distribution of all canine osteosarcoma cases based
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histologic subtype along with classifier-derived probability
maps (one per histologic subtype) over the whole slide
image.
Unsupervised Exploratory Analysis of Whole Slide
Imaging Features Uncovers Distinct Populations of
Dogs with Different Responses to Standard-of-Care
Therapy

Having generated spatial probability maps of each subtype,
the study next estimated the absolute burden of each subtype
in each canine sample and applied the K-means clustering
algorithm to identify clusters of dogs with similar whole
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Table 1 Clinical Characteristics of the Dog Osteosarcoma Cohort
(N Z 306)

Clinical characteristics Value

Age, years 8.1 (1.4e15.6)
Weight, kg 38.8 (21.2e94.5)
Tumor location
Proximal humerus 64 (21)
Non-proximal humerus 242 (79)

ALP levels
Elevated 74 (24)
Normal 232 (76)

Sex
Castrated male 171 (56)
Intact male 13 (4)
Spayed female 118 (39)
Intact female 4 (1)

Disease-free interval, time from surgery, days 157 (3e1127)
Overall survival, time from surgery, days 235 (3e1652)
Treatment
Standard of care 155 (51)
Standard of care þ sirolimus (rapamycin) 151 (49)

For continuous variables, values in parentheses represent the minimum
and maximum range, and values outside the parentheses represent the
median over the entire cohort. All other data are given as number
(percentage).
ALP, alkaline phosphatase.

Patkar et al
slide tumor histology (Supplemental Table S2) (see
Materials and Methods). Figure 5A indicates the average
silhouette score of inferred clusters for different values of
K.30 The higher the average silhouette score, the more
compact and well separated were the clusters (maximum
score Z 1). The error bars indicate the CI estimated by
repeatedly performing K-means clustering on randomly
down-sampled versions of the original cohort (down-sam-
pling to approximately 80% original cohort size), when
keeping K fixed. The highest silhouette score is achieved for
K Z 3 clusters. Figure 5B depicts the data distribution
along the first two principal components and corresponding
cluster memberships.

The distribution of the estimated burden of each subtype
in each cluster and the clinical outcomes were examined
next. The clinical characteristics of the cases analyzed in this
study are provided in Table 1. See Supplemental Table S5
for all the clinical metadata. Cluster 3 had significantly
higher levels of the vessel-rich regions, whereas cluster 2
had significantly higher tumor necrosis relative to the rest of
the cohort and slightly elevated levels of the chondroblastic
subtype (Figure 5C). Overall, dogs belonging to cluster 3
had significantly worse clinical outcomes compared with the
other two clusters. Figure 6A shows a Kaplan-Meier plot
depicting differences in overall survival rates between dogs
belonging to cluster 3 and rest of the cohort (log-rank test P
Z 0.038), whereas Figure 6B depicts the differences in
disease-free interval rates between the dogs belonging to
cluster 3 and rest of the cohort (log-rank test P Z 0.0071).
All dogs belonging to cluster 3 relapsed within 12 months
after receiving adjuvant treatment. This negative association
remained significant despite adjusting for relevant clinical
parameters such as tumor location (proximal humerus
versus non-proximal humerus), alkaline phosphatase levels
(elevated versus normal), age, weight, sex, and adjuvant
treatment type in a multivariable Cox proportional hazards
regression model.

Finally, subgroup analysis was performed to ensure that
prognostic signatures remained significant in unlabeled data
not used in training. The first subgroup consisted of 55
reviewed cases (n Z 95 pathologist-annotated slides). The
second subgroup consisted of the remaining 251 unreviewed
cases. In each subgroup, the survival association remained
consistent, thus demonstrating the clinical utility of model
predictions beyond cases previously annotated by the
pathologist (Supplemental Figure S2).
Discussion

Through the activities of the National Cancer Institute
COTC, this study examined the largest data set of canine
osteosarcomas to date for which complete clinical outcome
data were available and standardized therapy was applied
(n Z 306). This large resource was used to demonstrate
how deep domain adversarial learning can be used to train a
68
histologic subtype classifier that adapts from dog to human
osteosarcoma despite utilizing a small fraction of human
data for training. Although this is not the first application of
deep learning in osteosarcomas,31e33 to the best of our
knowledge, it is the first attempt to identify histologic fea-
tures of osteosarcoma that transfer from canine to human
samples.
The trained species-agnostic histologic subtype classifier

was used to perform an unsupervised exploratory analysis of
whole slide imaging data of 306 dogs and identify distinct
clusters that respond differently to standardized chemo-
therapy based on the classifier-estimated burden of histo-
logic subtypes. These results are consistent with prior
reports indicating that the presence of specific histologic
subtypes may have prognostic value.11,13 However, a
rigorous quantitative evaluation of OS histology that takes
tumor heterogeneity into account has not been previously
explored, likely because of the difficulty in accumulating a
large enough data set and the immense manual labor by the
pathologist in annotating each region. This is the first
exploratory study using AI to define prognostic value of
variant histologic features within a large population of dogs
receiving standardized care in a prescriptive clinical trial. As
with the diagnostic and therapeutic approach to any cancer,
many separate factors should be considered when devising a
treatment and prognosis. The predictive value of our
approach should be considered alongside other patient fac-
tors and not considered the sole method by which prognosis
can be assigned for canine patients with OS. Nevertheless,
ajp.amjpathol.org - The American Journal of Pathology
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Defining Train, Validation and Test Sets
information gleaned from our approach is of substantial
clinical value to clinicians treating dogs with OS.

This study refrains from quantifying overlap between
pathologist annotations and AI predictions using Dice or
Intersection over Union (IoU) metrics. These metrics are
preferable in segmentation applications, where the ground
truth segmentation boundaries are precisely defined.34

However, because of intratumor heterogeneity,
The American Journal of Pathology - ajp.amjpathol.org
osteoblastic tumor cells are frequently observed intermixed
with other histologic subtypes.3,5,24 Hence, it is not feasible
for pathologists to precisely mark region boundaries of each
histologic subtype at high resolution for each slide.
Although the pathologist annotated most tumor tissue in all
annotated sections, there are examples where unannotated
tumor tissue was present. Interestingly, these cases offer
another example demonstrating the ability of the model to
69
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identify tumor tissue that would not be captured by Dice or
IoU metrics. For example, in Figure 2D, there are several
regions that were predicted to contain osteoblastic tumor
cells. On review, the pathologist was able to confirm the
presence of osteoblastic tumor tissue in these locations
(Supplemental Figure S3). This highlights a potential utility
of AI in identifying foci of tumor distal to the main tumor
mass. This may be particularly important in tumors that
require complete excision and could help by re-orientating
the pathologist toward specific regions to review.

In this study, tumors enriched for VR regions were
associated with reduced disease-free interval and overall
survival. These vascular structures define the rare telangi-
ectatic subtype of osteosarcoma, which is characterized by
blood-filled cystic spaces surrounded by thin septa lined by
tumor cells.3e5 Although an early study35 suggested that
telangiectatic OS carries a poor prognosis in human patients,
others suggest that although there may be a correlation with
clinical features, such as pathologic fracture, an association
with prognosis is less clear.36 In dogs, the telangiectatic
subtype has been associated with poor prognosis in studies
of OS originating in the ulna37 (n Z 30) or flat and irregular
bones38 (n Z 45). In our case set, we defined VR regions as
containing blood-filled spaces lined by tumor cells. On he-
matoxylin and eosin staining, these vascular spaces were
multifocally lined by polygonal cells rather than flat,
spindle-shaped cells, which were more likely to be inter-
preted as endothelium histologically. CD31 immunohisto-
chemistry staining confirmed the presence of blood-filled
spaces lined by tumor cells in VR-annotated canine osteo-
sarcomas (Supplemental Figure S2). Some VR regions also
contained cellular debris, which has been described in
human OS.39e41 Although VR morphology was uncommon
in our data set, the presence of tumor cellelined vascular
structures in largely solid tumors suggests that vascular
differentiation can occur within a focal region of these
histologically diverse tumors. Such tumors are less likely to
be classified as telangiectatic OS, which may inhibit the
prognostication of histologic subtype in OS. This is
emphasized by a study of OS originating in the ulna (n Z
30) that identified reduced survival in dogs with either pure or
mixed telangiectatic morphology (ie, telangiectatic or osteo-
blastic-telangiectatic37). In fact, up to 65% of canine osteo-
sarcomas are reported to demonstrate multiple histologic
subtypes.13 This underlines the utility of AI, which allows
pathologists to rapidly quantify the abundance of major and
minor histologic patterns within heterogeneous tumors.

Despite the merits of this study, there are still a few
notable limitations that should be considered. First, there
was no access to human clinical outcome data to assess the
prognostic value added by our approach over what is
currently clinically practiced for humans. A future direc-
tion will be to apply this method to a larger set of human
OS images with matched clinical outcomes to determine
algorithm performance in a translational setting. Second,
70
our study is based on annotations from a single anatomic
pathologist. Agreement between pathologists can vary
based on the feature of interest. This may be greater in
cases where pathologists must consider an aggregate of
histologic features to assign a tumor grade. For example, in
one veterinary study of osteosarcomas, agreement was
considered moderate for necrosis (intraclass correlation
coefficient Z 0.626), whereas agreement on grade was fair
using two different classification systems.42 In the future,
we aim to convene a comparative pathology board of M.D.
and D.V.M. pathologists to review canine and human os-
teosarcoma histology with the goal of assessing the impact
of our model on interobserver variability, and identifying
additional features, such as immune cell infiltration, that
may be incorporated into our prognostic model alongside
ongoing genomic work. Third, the data are severely
imbalanced, with only a handful of canine and human
tumor cases exhibiting uncommon histologic subtypes. To
ensure that there exist enough training examples of each
class for the patch-level classifier, pathologist-annotated
whole slide images were broken into nonoverlapping
patches scanned at high magnification and split at random
into train validation and test sets (see Materials and
Methods). Patch-based training of neural networks in dig-
ital pathology has enabled accurate detection and quanti-
fication of complex histologic features on few whole slide
images because of thousands of image patches that can be
extracted during training at high magnifications.22,43

However, neural networks trained this way are prone to
overfitting to slide, staining, or scanner-specific proper-
ties.44 In this work, an adversarial learning approach was
used to help neural networks overcome the bias that pre-
sent in domain-specific training paradigms. Adversarial
training can, however, be complex in practice compared
with standard supervised learning approaches. This is
especially relevant during initial phases of training, where
noisy signals from the domain classifier can derail the
learning algorithm.25 This issue is mitigated by having a
good initialization of model parameters and by gradually
increasing the influence of domain classifier in the learning
process, as defined in detail in Materials and Methods.
Lastly, no additional manual quality control of surgical
tumor specimens was completed before data collection
from different sites. Instead, our model was adversarially
trained to classify nontumor regions in addition to the six
different histologic subtypes of osteosarcoma based on
pathologist annotations. The robustness and accuracy of
the classification model is expected to improve as addi-
tional data are collected.
In summary, deep domain adversarial learning could be a

powerful addition to the modern pathologist’s toolbox for
identification of domain-agnostic histologic and molecular
features of tumors and is likely to be useful for many other
comparative oncology applications, especially where human
data are scarce.
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