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Objectives: Approximately 20∼30% of all traffic accidents are caused by fatigue driving.

However, limited practicability remains a barrier for the real application of available

techniques to detect driving fatigue. Use of pupillary light reflex (PLR) may be potentially

effective for driving fatigue detection.

Methods: A 90min monotonous simulated driving task was utilized to induce

driving fatigue. During the task, PLR measurements were performed at baseline and

at an interval of 30min. Subjective rating scales, heart rate variability (HRV) were

monitored simultaneously.

Results: Thirty-two healthy volunteers in China participated in our study. Based on

the results of subjective evaluation and behavioral performances, driving fatigue was

verified to be successfully induced by a simulated driving task. Significant variations

of PLR and HRV parameters were observed, which also showed significant relevance

with the change in Karolinska Sleepiness Scale at several timepoints (|r| = 0.55 ∼ 0.72,

P < 0.001). Furthermore, PLR variations had excellent ability to detect driving fatigue

with high sensitivity and specificity, of which maximum constriction velocity variations

achieved a sensitivity of 85.00% and specificity of 72.34% for driving fatigue detection,

vs. 82.50 and 78.72% with a combination of HRV variations, a nonsignificant difference

(AUC = 0.835, 0.872, P > 0.05).

Conclusions: Pupillary light reflex variation may be a potential indicator in the detection

of driving fatigue, achieving a comparative performance compared with the combination

with heart rate variability. Further work may be involved in developing a commercialized

driving fatigue detection system based on pupillary parameters.
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INTRODUCTION

Road traffic accidents has become the eighth leading cause
of death worldwide (1). They killed nearly 1.35 million
people every year, and caused up to 50 million injuries
(1), resulting in huge losses for societies with regard to
population health and economic matters. However, ∼20∼30%
of all traffic accidents are caused by fatigue driving, which
is in fact preventable (2). Driving fatigue is often induced
by prolonged driving without due rest, being presented with
deteriorated concentration, low alertness, slow reaction to
emergencies, etc., all of which can lead to road traffic crashes
(3). Continuous efforts have been made to develop reliable
indicators of driving fatigue to warn drivers of their fatigue
status promptly and thus preventing possible accidents from
occurring (4–10).

Among these exploratory studies, the detection systems
incorporating physiological signals of drivers, which
mainly involves extracting and analyzing characteristics of
electroencephalogram (EEG) (6, 11–13), heart rate variability
(HRV) (5, 14, 15), electromyogram (EMG) (7, 16), etc., are
considered as the most accurate and reliable ones to reflect
the mental states. However, due to the inconvenience to wear,
and various complicated algorithms, the real application of
these techniques still remains a challenge. In contrast, eye
metrics also offers a promising method for monitoring fatigue
(17), including the percentage of eyelid closure (8, 18), blink-
based (19) and pupil-based features (10, 20, 21) in an eyewear
system. These eye-tracking data provide additional evidence
for motivational disengagement, describing the effect of fatigue
on attention and task performance (22). However, detection
systems using a camera-based approach has a limitation
of illumination, and most of those need computers, image
processing algorithms and feature extraction techniques to
extract drowsy symptoms (19). The effectiveness of pupillary
light reflex (PLR) on the assessment of sleep deprivation was
recently explored (23), suggesting that PLR variables might also
be able to indicate fatigue. Automated pupillometry, which has
been utilized in different clinical settings (24, 25), enables to
provide several accurate and reliable parameters with respect
to pupil size and PLR (26, 27). To date, no study has been
conducted to analyze the association between PLR variations
with driving fatigue.

Our aim was to investigate the effectiveness of quantitative
PLR on driving fatigue detection, as well as the possible detection
performances of a combination of PLR and HRV, which may
very likely promote the further development of a driving fatigue
detection system in the future.

Abbreviations:ACV, average constriction velocity; ADV, average dilation velocity;

AUC, area under curve; HF, high frequency; HFnu, normalization of HF power by

the formula: HF / (LF + HF) ∗ 100; HRV, heart rate variability; LF, low frequency;

LFnu, normalization of LF power by the formula: LF / (LF + HF) ∗ 100; Lat,

latency; Max, maximum pupil size; MCV, maximum constriction velocity; Min,

minimum pupil size; %PLR, constriction percentage; SDNN, standard deviation of

the NN intervals; T75, time to 75% recovery; 1, differences in all variables from

baseline to the measurement at each timepoint.

MATERIALS AND METHODS

Study Population
We conducted a single center, prospective, observational
diagnostic study using a volunteer sample between November,
2020, to April, 2021. Thirty-two healthy postgraduate students
from Zhejiang University School of Medicine in China
voluntarily participated in our study, among whom 20 were male.
All participants held valid driving license of more than 2 years,
with at least half of a year driving experience, had regular sleep
pattern, normal or corrected to normal vision and no history of
any psychiatric disorder. All participants were asked to follow
the below requirements before the tests: (1) refrain from alcohol,
caffeine and tea within 12 h; (2) adequate sleep (almost 6∼8 h)
the day before the experiment; (3) wash the hair within 24 h. The
study was approved by the ethics committee of Second Affiliated
Hospital of Zhejiang University School of Medicine (approval
number: 2020-893). Informed written consent and training were
provided prior to entering the experiment.

Driving Fatigue Induction
Among all recruited participants, a 90min monotonous
simulated driving task was conducted in a darkened room,
involving in a simple driving simulator (Nanjing Shengguan
Jinbang Electronic Technology, China). A straight and
monotonous route with low traffic density was designed in
advance. The performance method in the simulator was the same
as that in a real car. The visual display of the driving simulated
environment was a 14-inch liquid crystal display at 80 cm in
the front of the subjects’ eyes. Current speed and car gear were
showed on the screen, and the engine noises as well as nearby
traffic noises were provided. During the driving task, the subjects
were asked to restrict all unnecessary movements and drive in
the center of the road, maintaining a constant speed between 70
and 90 km/h.

The experiment started between 9:00 and 11:00 a. m. or
3:00 and 5:00 p. m. for every subject to minimize the effect
of circadian variance. After 10min of rest, 3min of HRV
were recorded, which was regarded as the baseline data (T0).
Meanwhile, subjective assessments and pupillary measurements
were taken. In order to evaluate fatigue level over the course of
the experiment, the task was divided into three 30-min sections.
When each section was completed, the HRV and PLR data were
recorded. Meanwhile, subjective ratings were performed. The
flowchart of the study was shown in Figure 1.

Subjective Assessments
Subjects completed the Karolinska Sleepiness Scale (KSS) (28),
which is a nine-point scale for assessing sleepiness with responses
ranging from extremely alert (1) to very sleepy (9). Driving
fatigue was defined as KSS ≥ 7. Fatigue Grade (FG) scale, which
is a five-point scale designed by our team with responses ranging
from no fatigue (0) to severe fatigue (5), was also completed.

Heart Rate Variability Data Acquisition
HRV was assessed with a protocol of 3min sampling using
the SA-3000P (Medi-core, Korea). Subjects were instructed to
stay with eyes open, be silent, and breath normally during
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FIGURE 1 | Schematic diagram for the entire experimental framework. FG,

fatigue grade; HRV, heart rate variability; KSS, Karolinska Sleepiness Scale;

PLR, pupillary light reflex.

measurement. Standard deviation of the NN intervals (SDNN)
and frequency domain indicators including low frequency (LF,
0.04∼0.15Hz), high frequency (HF, 0.15∼0.4Hz), normalized LF
(LFnu), normalized HF (HFnu), LF/HF ratio were measured and
showed automatically on the screen. The SDNN, LFnu, HFnu,
and LF/HF were collected for further analysis.

Pupillary Light Reflex Data Acquisition
PLR were measured using the PLR-3000 pupillometer
(NeurOptics, CA, USA). It was performed with a rubber
cup covering the measured eye and the subject’s hand covering
the non-measured eye. A flash of visible white light with a
duration of 0.8 s and a pulse intensity of 120 µW was delivered
to induce a pupillary reflex, and repeated video images at more
than 30 frames/s were stored for 3.21 s. The device provided
with maximum and minimum pupil size (Max and Min),
constriction percentage (%PLR), latency (LAT), constriction
and dilation velocity (CV and DV), and T75. PLR measurement
was performed on each eye for a series of three stimuli, then
the data was averaged, producing one PLR data point for each
subject. Maintaining eye opening during the recording was
encouraged, but if interrupted, the test would be repeated after 5
s rest.

Statistical Analysis
Normal distribution was confirmed with the Kolmogorov–
Smirnov test. For normally or non-normally distributed
continuous variables, results are given as mean ± SD or median
(IQR), respectively. Repeated measures analysis of variance
or Friedman test was used to test the variability of different
approaches. When the main effect was significant, a post-hoc
analysis with Bonferroni correction was conducted. Correlations
were determined by Spearman analysis. Considering the
between-subject differences at baseline, differences between
the baseline and the measurement at each time point were
utilized to conduct the Spearman’s correlation. Due to there
are a total of 24 correlational analyses and the P-values
have to be adjusted for the number of tests, P < 0.002
(0.05/24) of two-sided was considered to be significant. Detective
performances of each indicator and the combination of two

indicators were analyzed by calculating specificity, sensitivity,
and the area under the receiver operating characteristic
curve (AUC). P < 0.05 of two-sided was considered to be
significant. All analyses were performed using Prism software
(version 7.0; GraphPad, USA) and Medcalc software (version
19.0; Belgium).

RESULTS

Subjective Rating Results and Behavioral
Performances
The subjects’ mean ± SD age was 25.5 ± 3.1 years, sleeping
hours in the past 24 h were 7.4 ± 0.9 h, driving experience
was 4.3 ± 1.9 years. To test whether our fatigue model
was successful, we analyzed the subjective fatigue ratings and
behavioral performances. Compared to the beginning of the
experiment, we found significantly higher fatigue scores after the
experiment [KSS: T0: 3 (2–4), T1: 5 (4–6) a, T2: 6 (5.25–7) ab vs.
T3: 7 (6–8) ab, P < 0.001; FG scale: T0: 0, T1: 0 (0–1) a, T2: 2
(1.25–3) a vs. T3: 3 (2.25–4) abc, P < 0.001]. Additionally, the
number of accidents increased significantly from the beginning
to the end of the driving task [T0: 0, T1: 1 (0–1), T2: 1 a vs. T3:
2 (2, 3) abc, P < 0.001], indicating that the manipulation was
successful (note: aP < 0.05 vs. T0; bP < 0.05 vs. T1; cP < 0.05
vs. T2).

Fluctuations of Heart Rate Variability
Significant differences in HRV indicators between the first and
last section of driving task were observed. Mean SDNN increased
across long-term driving (T0: 39.04 ± 12.33ms, T1: 50.60 ±

16.63ms a, T2: 56.43 ± 17.41ms ab vs. T3: 63.34 ± 19.00ms
abc, P < 0.001, Figure 2A). The mean power of HRV in LFnu
and LF/HF also significantly increased in a linear fashion [LFnu:
T0: 51.96 ± 16.25 µV2, T1: 61.63 ± 17.51 µV2a, T2: 68.58 ±

19.24 µV2ab vs. T3: 72.12± 18.16 µV2abc; LF/HF: T0: 1.23 (0.68–
1.70), T1: 1.91 (0.97–3.19) a, T2: 2.63 (1.06–4.66) a vs. T3: 3.29
(1.49–7.57) ab; both P < 0.001, Figures 2B,C], while there was
a mild decline in the mean power of HRV in HFnu, from T0:
44.99 (37.06–59.92) µV2, T1: 35.68 (23.81–51.24) µV2, T2: 29.05
(16.24–49.71) µV2a to T3: 22.94 (11.46–44.15) µV2a (P < 0.001,
see Figure 2D) (note: aP < 0.05 vs. T0; bP < 0.05 vs. T1; cP <

0.05 vs. T2).

Variations of Quantitative Pupillary Light
Reflex
With the increase of driving hours, Min significantly decreased
and%PLR increased (Min: T0: 4.40± 0.7mm, T1: 4.20± 0.7mm
a, T2: 4.08± 0.7 ab vs. T3: 3.99± 0.6mm ab; %PLR: T0: 36.1± 4.6
%, T1: 37.4± 4.2 % a, T2: 38.9± 4.6 % ab vs. T3: 39.7± 3.8 % ab;
both P < 0.001, Table 1). Similarly, significant increases in ACV
and MCV were also observed with the increase of the driving
hours (ACV: T0: 3.20 ± 0.43 mm/s, T1: 3.34 ± 0.46 mm/s a, T2:
3.50± 0.44 mm/s ab vs. T3: 3.68± 0.47 mm/s abc; MCV: T0: 5.19
± 0.74 mm/s, T1: 5.53 ± 0.75 mm/s a, T2: 5.72 ± 0.74 mm/s ab

vs. T3: 5.90 ± 0.71 mm/s ab; both P < 0.001, Table 1). However,
the differences in Max, Lat, ADV and T75 were not statistically
significant at different timepoints (note: aP < 0.05 vs. T0; bP <

0.05 vs. T1; cP < 0.05 vs. T2).
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FIGURE 2 | HRV fluctuations during the driving task for all participants. Due to missing data of HRV of two participants, the data at these two timepoints were the

results of data analysis of 30 participants. The error bars in this figure represent mean ± SD. (A) The variations of SDNN for HRV. (B) The variations of LFnu for HRV

results. (C) The variations of LF/HF for HRV results. (D) The variations of HFnu for HRV. HF indicates high frequency; HFnu, normalization of HF power by the formula:

HF / (LF + HF) * 100; HRV, heart rate variability; KSS, Karolinska Sleepiness Scale; LF, low frequency; LFnu, normalization of LF power by the formula: LF / (LF + HF) *

100; SDNN, standard deviation of the NN intervals. aP < 0.05 vs. T0; bP < 0.05 vs. T1; cP < 0.05 vs. T2.

TABLE 1 | The results of PLR for both eyes through the whole process of driving task.

Variables T0 (n = 31) T1 (n = 31) T2 (n = 31) T3 (n = 31) P-value

Max, mean ± SD, mm 6.88 ± 0.7 6.74 ± 0.7a 6.70 ± 0.7a 6.76 ± 0.7a <0.001

Min, mean ± SD, mm 4.40 ± 0.7 4.20 ± 0.7a 4.08 ± 0.7ab 3.99 ± 0.6ab <0.001

%PLR, mean ± SD, % 36.1 ± 4.6 37.4 ± 4.2a 38.9 ± 4.6ab 39.7 ± 3.8ab <0.001

Lat, median (IQR), s 0.23 (0.21 ∼ 0.25) 0.23 (0.21 ∼ 0.25) 0.22 (0.21 ∼ 0.25) 0.22(0.21 ∼ 0.23) 0.11

ACV, mean ± SD, mm/s 3.20 ± 0.43 3.34 ± 0.46a 3.50 ± 0.44ab 3.68 ± 0.47abc <0.001

MCV, mean ± SD, mm/s 5.19 ± 0.74 5.53 ± 0.75a 5.72 ± 0.74ab 5.90 ± 0.71ab <0.001

ADV, mean ± SD, mm/s 1.37 ± 0.16 1.40 ± 0.20 1.42 ± 0.22 1.42 ± 0.22 0.812

T75, median (IQR), s 2.69 (2.15 ∼ 3.14) 2.54 (2.08 ∼ 3.25) 2.73 (2.35 ∼ 3.37) 2.70 (2.40 ∼ 3.14) 0.084

ACV, average constriction velocity; ADV, average dilation velocity; Lat, latency; MCV, maximum constriction velocity; Min, minimum pupil size; %PLR, constriction percentage; T75, time

to 75% recovery.

Due to missing data of PLR of one participant, the data at all timepoints were the results of data analysis of 31 participants. Values are presented as mean ± SD for normally distributed

data or as median (IQR) for non-normally distributed data, aP < 0.05 vs. T0; bP < 0.05 vs. T1; cP < 0.05 vs. T2.

Correlation Analysis Between Different
Methods
Due to the missing data of PLR of one participant and missing
data of HRV of two participants, there were a total of 31 and
30 values for deprived PLR and HRV parameters for correlation
analysis at each timepoint. Change in KSS (1KSS) were not
correlated with the change in PLR parameters at T1 and T2 (all P
> 0.002, Figures 3A–H). Change in KSS (1KSS) was moderately
correlated with the change in Min (1Min), %PLR (1%PLR) and
ACV(1ACV) (r=−0.66, 0.60, 0.55, all P < 0.001, Figures 3I–K)
at T3. Similarly, 1KSS was highly correlated with the change in
SDNN (1SDNN) at T1 and T2 (r = 0.71 and 0.72, both P <

0.001, Figures 4A,E), and moderately correlated with change in
LFnu (1LF) at T1 (r = 0.65, P < 0.001, Figure 4B). However,
1KSS was not correlated with change in LF/HF (1LF/HF)
and HF (1HF) at T1 (Figures 4C,D), 1LF, 1LF/HF and 1HF
at T2 (Figures 4F–H), change in all HRV parameters at T3
(Figures 4I–L)

Performance of Pupil Light Reflex and
Heart Rate Variability Variations in Driver
Fatigue Detection
ROC analysis showed that both PLR and HRV variations
had a significant discriminatory power to detect driver fatigue
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FIGURE 3 | Correlations of PLR variations with the change in KSS. (A–D) Correlation of 1KSS with the change in PLR parameters at T1. (E–H) Correlation of 1KSS

with the change in PLR parameters at T2. (I–L) Correlation of 1KSS with the change in PLR parameters at T3. ACV, average constriction velocity; KSS, Karolinska

Sleepiness Scale; MCV, maximum constriction velocity; Min, minimum pupil size; %PLR, constriction percentage; 1, differences in all variables from baseline to the

measurement at each timepoint.

(Table 2), which was defined as KSS more than seven in the
present study. The Youden index identified a 1MCV cut-off
of 0.43 mm/s for driving fatigue detection with a sensitivity
of 85.00% and a specificity of 72.34% (AUC = 0.835, P <

0.001, Figure 5A). Similarly, best cut-off of 1SDNN was >

13.01ms, with an AUC of 0.805 (P < 0.001, sensitivity 85.00%,
specificity 63.83%, Figure 5B). A combination of 1MCV and
1SDNN achieved an AUC of 0.872 (P < 0.001, sensitivity
82.50%, specificity 78.72%), yet no significant differences were
found among the performances of 1MCV, 1SDNN and their
combination (all P > 0.05, Delong test).

DISCUSSION

This study investigated the effectiveness of pupillary light reflex
and heart rate variability in driving fatigue detection. The
findings are as follows: (1) significant increases in several
variables of PLR and HRV were observed at fatigue state; (2) the
variations of PLR and HRV showed significant relevance with the
change in KSS; (3) PLR variations had excellent ability to detect
driving fatigue, with a comparative performance with HRV or a
combination of PLR and HRV.

In our study, a simple driving simulator was applied to induce
driving fatigue. For safety reasons, experimental tests for the
fatigue detection are often conducted on driving simulators
in a controlled environment. Previous literature suggested
that driving fatigue could occur in a monotonous driving

environment with a duration of 90min (3, 13, 14). Among many
endogenous factors, time-on-task and high workload accumulate
mental fatigue, while the sleep-related causal factors worsen
sleepiness (29). In our study, all participants were asked to refrain
from alcohol, caffeine and tea within 12 h and obtain adequate
sleep (almost 6∼8 h) the day before the experiment to avoid the
sleep-related causal factors. Then, based on the increased scores
of subjective ratings and deteriorated driving performances of
subjects, a conclusion could be drawn that a 90-min driving task
successfully induced driving fatigue.

It has been indicated that HRV is the most sensitive
index assessing the regulation between sympathetic and
parasympathetic nervous systems (15). An increase in SDNN,
LFnu, LF/HF ratio, and a decrease in HFnu in this study
corroborates earlier findings (14). The results implied that
the dominating activity turned from parasympathetic to
sympathetic activity. In the first section, without obvious
fatigue, sympathetic activity increased due to the task of
simulated driving. With fatigue increased and performance
deteriorated, participants counteracted the sleep demand by
trying to stay awake to complete the task, resulting in consistent
sympathetic activation.

Most importantly, significant differences of pupillary
parameters between different periods of task were found. For
the automated pupillometer, %PLR depends on the intensity
and duration of the stimulus (30), while CV are related to reflex
amplitude except in cases of unusual pupillary syndromes (30).

Frontiers in Public Health | www.frontiersin.org 5 February 2022 | Volume 10 | Article 828428

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Shi et al. Driving Fatigue Detection Using Pupillometry

FIGURE 4 | Correlations of HRV variations with the change in KSS. (A–D) Correlation of 1KSS with the change in HRV parameters at T1. (E–H) Correlation of 1KSS

with the change in HRV parameters at T2. (I–L) Correlation of 1KSS with the change in HRV parameters at T3. HF indicates high frequency; HFnu, normalization of

HF power by the formula: HF / (LF + HF) * 100; HRV, heart rate variability; KSS, Karolinska Sleepiness Scale; LF, low frequency; LFnu, normalization of LF power by

the formula: LF / (LF + HF) * 100; SDNN, standard deviation of the NN intervals; 1, differences in all variables from baseline to the measurement at each timepoint.

TABLE 2 | The characteristics of ROC curves.

Variables AUC 95%CI P-value Cutoff Sensitivity Specificity

PLR variations

1Min 0.699 0.592 ∼ 0.793 < 0.001 < −0.29mm 77.50% 59.57%

1%PLR 0.709 0.601 ∼ 0.801 < 0.001 > 3.19 % 67.50% 74.47%

1ACV 0.743 0.638 ∼ 0.830 < 0.001 > 0.26 mm/s 80.00% 61.70%

1MCV 0.835a 0.740 ∼ 0.906 < 0.001 > 0.43 mm/s 85.00% 72.34%

HRV variations

1SDNN 0.805 0.706 ∼ 0.882 < 0.001 > 13.01ms 85.00% 63.83%

1LFnu 0.797 0.697 ∼ 0.876 < 0.001 > 14.32 µV2 80.00% 76.60%

1HFnu 0.720 0.614 ∼ 0.811 < 0.001 < −14.59 µV2 67.50% 74.47%

1LF/HF 0.711 0.604 ∼ 0.803 < 0.001 > 1.15 67.50% 74.47%

Combinations of variables for PLR and HRV

1MCV + 1SDNN 0.872 0.784 ∼ 0.934 <0.001 / 82.50% 78.72%

ACV, average constriction velocity; AUC, area under curve; HF, high frequency; HFnu, normalization of HF power by the formula: HF / (LF + HF) * 100; HRV, heart rate variability; LF, low

frequency; LFnu, normalization of LF power by the formula: LF / (LF + HF) * 100; MCV, maximum constriction velocity; Min, minimum pupil size; SDNN, standard deviation of the NN

intervals. %PLR, constriction percentage; 1, differences in all variables from baseline to the measurement at each timepoint; aP < 0.05 vs. 1Min.

With identical intensities and durations of all stimuli in our
study, the PLR variations were associated with the occurrence
of fatigue. Sympathetic and parasympathetic fibers dictate the
pupil diameter to contract or dilate by balanced activation of
the dilator and sphincter pupillae muscles in changing the light
exposures toward the eyes (17). When fatigued, sympathetic

activity would increase, with greater contraction in a shorter
time to respond to the light stimulus, which might explain
the variations of PLR. In addition, the measurements reported
were not independent. As the parameters of Max and Lat were
unchanged across the four measurements, the increase in the
%PLR would result in an increase in velocity.
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FIGURE 5 | (A) ROC analysis for the detection of driving fatigue with PLR variations. (B) ROC analysis for the detection of driving fatigue with HRV variations. Due to

missing data of HRV of two participants, and missing data of PLR of one participant, the data of 29 participants were used for ROC analysis. ACV, average

constriction velocity; AUC, area under the curve; Min, minimum pupil size; HF indicates high frequency; HFnu, normalization of HF power by the formula: HF / (LF +

HF) * 100; HRV, heart rate variability; KSS, Karolinska Sleepiness Scale; LF, low frequency; LFnu, normalization of LF power by the formula: LF / (LF + HF) * 100; MCV,

maximum constriction velocity; ROC, receiver operating characteristic curve; SDNN, standard deviation of the NN intervals; %PLR, constriction percentage; 1,

differences in all variables from baseline to the measurement at each timepoint.

To validate the effectiveness of HRV and PLR variations on
driving fatigue detection, significant correlations were found
between these two methods with KSS. ROC analysis also
showed PLR variations achieved high AUCs for driver fatigue
detection, with high sensitivities and specificities, a comparative
performance with HRV variations. However, a combination
of PLR and HRV variations did not significantly increase the
performance, suggesting that PLR variations, especially 1MCV,
could be potential indicators of driving fatigue in the future.

So far, no reliable commercialized driving fatigue detection
system has been developed. The technology used in the present
study lays a good foundation for the later development of such
a detection system. It is expected that the system will be reliable,
portable, sensitive and convenient to control, and can be applied
to a variety of scenarios.

This study also has several limitations. As a preliminary study
to determine the effectiveness of automated pupillometry to
detect driving fatigue, a uniform sample who were all medical
postgraduates with a fixed age, and a small sample size recruited
from a single institution, are potential limitations. Then, limited
degree of fatigue existed in the present fatigue model, the
results in a more fatigued state remain unknown. Thirdly, an
intervention outcome is not compared to a suitable control
group that undergoes a different experience to assess effects of
passage of time. Last, considering individual differences in pupil
measures, thresholds for pupillary variables should be further
validated through a large-scale, randomized, controlled trial in
the future.

Pupillary light reflex variation may be a potential indicator
in the detection of driving fatigue, achieving a comparative

performance compared with the combination with heart rate
variability. Further work may be involved in developing a
commercialized driving fatigue detection system based on
pupillary parameters.
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