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Abstract

Arsenic (As), a toxic element, has impacted life since early Earth. Thus, microorganisms

have evolved many As resistance and tolerance mechanisms to improve their survival out-

comes given As exposure. We isolated As resistant bacteria from Centralia, PA, the site of

an underground coal seam fire that has been burning since 1962. From a 57.4˚C soil col-

lected from a vent above the fire, we isolated 25 unique aerobic As resistant bacterial strains

spanning seven genera. We examined their diversity, resistance gene content, transforma-

tion abilities, inhibitory concentrations, and growth phenotypes. Although As concentrations

were low at the time of soil collection (2.58 ppm), isolates had high minimum inhibitory con-

centrations (MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most

isolates were capable of arsenate reduction. We screened isolates (PCR and sequencing)

using 12 published primer sets for six As resistance genes (AsRGs). Genes encoding

arsenate reductase (arsC) and arsenite efflux pumps (arsB, ACR3(2)) were present, and

phylogenetic incongruence between 16S rRNA genes and AsRGs provided evidence

for horizontal gene transfer. A detailed investigation of differences in isolate growth pheno-

types across As concentrations (lag time to exponential growth, maximum growth rate, and

maximum OD590) showed a relationship with taxonomy, providing information that could

help to predict an isolate’s performance given As exposure in situ. Our results suggest that

microbiological management and remediation of environmental As could be informed by

taxonomically-linked As tolerance, potential for resistance gene transferability, and the rare

biosphere.
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Introduction

Arsenic (As), a toxic metalloid, is naturally present in soil, but levels are generally low

(<10 ppm) [1]. Because of the ubiquity of As and its toxicity, bacteria have evolved a variety

of As-specific detoxification mechanisms [2]. Bacterial strains have been shown to oxidize,

reduce, methylate, and demethylate As [3]. The toxicity and mobility of As can change

depending on its oxidation state with arsenate (As5+) being less soluble and less toxic than

arsenite (As3+) [4]; thus, environmental bacteria are considered important constituents of the

biogeochemical cycling of As because the presence and transfer of the resistance genes encod-

ing these activities affect the mobility of As.

As resistance genes (AsRGs) can be located on chromosomes, plasmids, or both [2]. Several

studies indicate that horizontal gene transfer (HGT) has occurred with AsRGs [5–9], suggest-

ing the potential exists for AsRGs to propagate in a microbial community given a selective

pressure of As exposure; however, timing of HGT is difficult to determine [9]. In addition to

As-specific mechanisms of resistance conferred by AsRGs, microorganisms can also employ

nonspecific and transient cellular mechanisms to withstand As exposure. Cell envelope perme-

ability to As, oxidative stress response, and heat shock proteins have all been shown to be dif-

ferentially regulated in response to As [2,10–14]. These are collectively referred to as As

tolerance mechanisms [11,15]. However, tolerance in the absence of resistance (i.e. AsRGs) is

often not enough to enable cell survival given lasting As exposure [15].

Much of the current understanding of As resistance and tolerance has come from the

detailed study of As resistant isolates that have been cultivated from As contaminated sites

(e.g., [5,6,16–21]. More broadly, culture-dependent approaches to improve knowledge of

microbial diversity and functions are experiencing a renaissance in today’s age of high-

throughput meta ‘omics (e.g., [22–24]. In addition to direct assessment of physiology and

functional capabilities, characterized isolates can provide high quality genome references for

culture-independent metagenome and single-cell genome assemblies [25–27]. Thus, culture-

dependent approaches continue to offer opportunity to examine several aspects of As resis-

tance that are not captured with culture-independent approaches. For example, growth pheno-

types in As and minimum inhibitory concentrations (MICs) are best determined directly with

isolates. Additionally, it is difficult to assess potential horizontal gene transfer (HGT) from cul-

ture-independent methods [28,29], and HGT is an important consideration in AsRG ecology.

Finally, cultured isolates provide access to microorganisms that may be used to support appli-

cations like bioremediation of contaminated sites (e.g., [25,27]). Though isolate collections do

not provide comprehensive knowledge of microbial diversity and are limited by cultivation

conditions, these collections can be used to inform isolate ecology in the context of their larger

microbial community, especially when coupled with culture-independent approaches (e.g.,

[30]).

The underground coal seam fire in Centralia, PA ignited in 1962 and has been burning ever

since. The soil microbial communities overlying the underground fire experience a multitude

of fire-related stressors, including high temperatures and exposure to coal combustion prod-

ucts and CO, CO2, and NH4 gas emissions; these coal fire pollutants impact local biogeochem-

istry [31–33]. Because As is naturally present in coal, exposure to the coal seam fire is expected

to influence soil microbial As resistance and AsRG transfer. Along with lead, zinc, mercury,

and copper, As has been documented in increased concentrations near active vents, which are

steaming surface fissures created by instability from the underground coal fire [34].

Our objective was to characterize As resistant bacterial isolates from an active thermal vent

(57.4˚C) in Centralia in order to expand knowledge of the characteristics of As resistant bacte-

rial isolates from a coal mine contaminated site. This knowledge will improve metagenome
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analysis and genomic analysis of similar organisms, as there is a move towards expanding cul-

ture collections and knowledge of cultivated organisms (e.g., [27]). We aimed to gain insights

into their genetic mechanisms of As resistance, growth consequences under increasing arsenite

and arsenate exposure, and potential for interspecies transfer of As resistance. Our culture-

dependent approach provided insights into isolate distinctions in growth phenotypes given As

exposure. Considering culture-independent information (16S rRNA gene amplicon sequenc-

ing) additionally allowed us to determine the relative contributions of these isolates to their

larger community. These findings bring to light complexities of predicting microbial commu-

nity-level response to As.

Materials and methods

Soil collection and site description

The Pennsylvania Department of Environmental Protection provided permission to access to

the field site. The field site is not a protected area. This work did not involve endangered or

protected species. This study did not involve vertebrates. A soil surface core (20 cm depth and

5.1 cm diameter) was collected in October 2014 from an active vent (steam escaping) in Cen-

tralia, Pennsylvania. This vent (site Cen13, GPS coordinates: 40 48.070, 076 20.574) was

selected because it has had historical fire activity since at least 2007 [33] and was the hottest

detected at the time of sampling with a measured surface temperature (10 cm depth) of 57.4˚C

(ambient air temperature was 13.3˚C). Detailed soil geochemical data was assayed by the

Michigan State University Soil and Plant Nutrient Laboratory (East Lansing, MI, USA, http://

www.spnl.msu.edu/) according to their standard protocols, and total As was measured by Ele-

ment Materials Technology using the Environmental Protection Agency’s method 3050B for

sample preparation and ICP-MS (S1 Table). Upon sampling, the soil was kept on ice until

transport to the lab where it was manually homogenized, sieved through 4 mm mesh, and

stored at -80˚C until further processing.

Cultivation-dependent soil bacterial community growth

Five grams of soil was removed from -80˚C and kept at 4˚C for 48 h. The soil was warmed to

room temperature for 1 h and then suspended in 25 mL of sterile Dulbecco’s phosphate-buff-

ered saline (ThermoFisher; dPBS), vortexed for 2 min, and allowed to settle for 2 min. The

supernatant was plated onto 50% tryptic soy agar (Becton Dickinson and Company; TSA50)

with 200 μg mL-1 of cycloheximide added to inhibit fungal growth. Plates were incubated at

27˚C for 24 h. To obtain a culture-dependent bacterial community representative of these

growth conditions, overgrown plates were scraped to make a 25% glycerol stock and stored at

-80˚C for future assays.

Isolation of As resistant bacteria

Twenty mL of trypticase soy broth (TSB50) was inoculated with the bacterial community glyc-

erol stock and grown for 6 h with shaking at 200 rpm and 12 mm amplitude. As was not

included in the medium to avoid transfer of AsRGs. The culture was plated onto TSA50 with

either 10 mM Na2HAsO4 or 1 mM NaAsO2 to screen for arsenate or arsenite resistant colo-

nies, respectively. Ninety-four total colonies (35 from sodium arsenate; 59 from sodium

arsenite) were streaked to purity (3x) on their respective media type; 69 pure isolates were

recovered and made into 25% glycerol stocks for long term storage at -80˚C. From these pure

cultures, 25 distinct isolates were identified by genotype with 16S rRNA gene sequencing and

by phenotype using MIC assays.
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Morphological characterization and temperature maxima

Overnight cultures of isolates grown in 3 mL TSB50 were examined using a Nikon E800

Eclipse microscope. Cell morphology was visualized using a photometrics CoolSnap MYO

microscope camera (Tuscan, AZ, USA) and Micromanager 4.22 [35] was used for image

acquisition. Cell size was measured using Fiji image analysis software [36]. Colony morphol-

ogy on TSA50 plates was imaged after incubation at 27˚C for 24 h. To measure growth temper-

ature maxima, isolates (2% culture in fresh TSB50) were incubated in a T100 Thermo Cycler

(BioRad) for 24 h with a thermal gradient (32–52˚C). Optical density at 590 nm (OD590) was

measured using an Infinite F500 plate reader (Tecan). The maximum temperature for growth

was determined as the highest temperature with an increase in OD590 from background. This

process was repeated for a minimum of two biological replicates per isolate.

DNA extraction and quantification

Freezer stocks of isolates were inoculated into 3 mL TSB50 and shaken at 27˚C at 200 rpm

with a 12 mm amplitude until turbid. Genomic DNA (gDNA) was extracted using the E.Z.N.

A. Bacterial DNA Kit (Omega Bio-Tek) according to the manufacturer’s instructions. Isolated

gDNA was quantified with fluorometry using the Qubit dsDNA broad range assay kit (Invitro-

gen) and a Qubit 2.0 (Invitrogen) according to the manufacturer’s instructions. DNA was

stored in sterile Tris-EDTA buffer (Sigma; pH 8) at -20˚C.

Endpoint PCR and amplicon sequencing

The near full length 16S rRNA gene was amplified for each isolate using the universal primer

pairs Uni-27F and Uni-1492R (S2 Table). PCR amplification of 16S rRNA was carried out in a

T100 Thermo Cycler (BioRad) using 25 μL total volume including 30 ng genomic DNA, 0.4 μM

of each primer, 0.8 mM dNTPs (Sigma), 2.5 μL 10X Pfu Buffer (Promega), 2X high fidelity Pfu

DNA Polymerase (Promega), and nuclease free water to a final volume of 25 μL. The 16S rRNA

PCR reaction cycle included a 2 min initial denaturation at 95˚C, 30 cycles of denaturation at

95˚C for 30 s, annealing at 55˚C for 30 s, extension at 72˚C for 1 min, and a final extension at

72˚C for 10 min. PCR products were run on a 1% agarose gel for 45 min at 700 mV. The PCR

product of 1.4 kb from the 16S rRNA gene was gel extracted using the Wizard SV Gel and PCR

Clean Up System (Promega) according to the manufacturer’s instructions. Gel extraction prod-

ucts were quantified as described above. Purified 16S rRNA amplicons were sequenced using

the ABI Prism BigDye Terminator Version 3.1 Cycle sequencing kit by the Michigan State Uni-

versity Genomics Core Research Technology Support Facility. Forward and reverse 16S rRNA

sequences were aligned using CAP3 (v. 3.0,[37]) to obtain near full length 16S rRNA gene

sequences, except for isolates A2707, A2723, and A2735 which could not be sequenced using

the 1492R primers. For these three isolates, primer U515F [38] was used to obtain a near-full

length 16S rRNA sequence. Sequences were assigned taxonomy using both the Ribosomal Data-

base Project (RDP) 16S rRNA database (v. 2.10, [39]) and the EzTaxon server [40].

Isolates were screened for the following AsRGs: arsB, ACR3(1), ACR3(2), arsC, arrA, aioA,

and arsM using published primers that were chosen because of their continued use in the litera-

ture (S2 Table; [5,7,41–44]). All PCRs were carried out with published reaction conditions in a

T100 Thermo Cycler (BioRad). While amplicons were obtained for all primer sets used, only

products confirmed by sequencing were considered positive hits. Once a product was con-

firmed, the PCR was repeated using the confirmed isolate as a positive control. All amplicons

were gel extracted and sequenced as described above. At least one forward and one reverse gene

sequence was merged in CodonCodeAligner (v. 6.0.2, Codon Code Corporation) to create

AsRG contigs. All sequences>200 bp were submitted to NCBI, and sequences can be accessed
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from GenBank with the following accession numbers: 16S rRNA KX825887- KX825911, arsC
KY405022- KY405029, ACR3(2) KY405030- KY405032, and arsB KY405033- KY405040. Four

arsC contigs were< 200 bp and are included in S3 Table. Amino acid sequences for each pro-

tein-coding gene are also available in NCBI GenBank.

Phylogenetic analysis

To compare the 16S rRNA phylogenetic diversity of Centralia As resistant isolates to previous

reports, isolates from existing literature were included in the phylogenetic analysis. Only stud-

ies with both 16S rRNA sequences > 700 bps and confirmed As resistance (selection on As-

containing media) were included. Ultimately 6 studies [5,18,45–48] were included, and all

sequences from relevant lineages were included in the final tree (55 sequences total). Closest

16S rRNA gene relatives deposited at the NCBI (http://www.ncbi.nlm.nih.gov/) were also

included in the analysis. Sequences were aligned using the RDP aligner [49]. RDP characters

were removed from aligned sequences using BioEdit (v. 7.2.5, [50]). 16S rRNA gene trees were

made with MEGA7.0 [51] and constructed with the Neighbor-joining algorithm using the

Kimura 2 parameter model with 1000 bootstrap replications.

To examine the phylogeny of arsC, arsB, and ACR3(2) sequences, AsRG sequences from the

isolates were compared with homologous, chromosomal sequences from related organisms

deposited at the NCBI. Sequences from phylogenetic relatives were found by searching chro-

mosomes deposited at the NCBI, and closest NCBI matches for AsRG sequences were deter-

mined using BLAST. A corresponding 16S rRNA tree was made using sequences from the

isolates and their phylogenetic relatives. The sequences obtained from NCBI can be found

with the following accession numbers: Acinetobacter baumannii strain A1 (CP010781.1),

Enterobacter cloacae subsp. cloacae ATCC 13047 (296100371), Pseudomonas aeruginosa PAO1

(AE004091.2), Enterobacter kobei strain DSM 13645 (CP017181.1), Escherichia coli str. K-12

substr. MG1655 (NC_000913.3), Enterobacter asburiae L1 (NZ_CP007546.1), Bacillus cereus
ATCC 10987 (AE017194.1), Paenibacillus terrae HPL-003 (374319880), Bacillus thuringiensis
strain Bc601 (CP015150.1), Shewanella oneidensis MR-1 (NC_004347), Stenotrophomonas
maltophilia K279a (AM743169.1), Bacillus thuringiensis strain 97–27 (CP010088.1), Rhodo-
ferax ferrireducens T118 (CP000267.1), Cyclobacterium marinum DSM 745 (CP002955.1)

Trees were constructed using MEGA7.0 [51] and constructed with the maximum likelihood

algorithm using the Kimura 2 parameter model with 100 bootstrap replications. Distances

between As resistance and 16S rRNA gene trees were calculated using the R environment for

statistical computing [52] with the Phangorn package [53].

To further investigate evidence for HGT, the GC content of AsRG sequences was compared

with reference GC content from whole genomes of related species. Reference GC content was

calculated by averaging the GC content of all organisms in NCBI “Genome Groups” for the

related taxon.

Cultivation-independent 16S rRNA amplicon sequencing and analysis

Soil DNA was extracted, sequenced, and analyzed in a previous work [54] from the same sam-

ple used for isolation. Using BLAST (v. 2.2.26), a database of representative 16S rRNA gene

sequences was constructed. Isolate 16S rRNA gene sequences from Sanger sequencing were

used as queries against this database to find top hits and to estimate the relative abundance of

our isolates in the microbial community. The top hit was determined as the hit with the highest

percent identity for that isolate with a minimum percent identity of 96%, and the relative

abundance of representative sequence [54] was used as the estimate of the relative abundance

of each isolate.
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As transformation capabilities

The ability of the isolates to reduce arsenate or oxidize arsenite was measured using a slightly

modified (described below) silver nitrate colorimetric assay as described previously [55]. 0.1 M

Tris-HCl (pH 7.3) was used as a reaction buffer instead of 0.2 M, and 1.33 mM sodium arse-

nate or sodium arsenite was used instead of 0.67 mM. Cells were inoculated in 3 mL TSB50

and incubated at 27˚C for 15 h before plating. Cells were washed with sterile reverse osmosis

(RO) water to remove culture media as indicated in Simeonova et al. [55], and 20 μL of the

washed cell suspension was incubated with 80 μL of 0.1 M Tris-HCl and 1.33 mM As in a

96-well plate for 72 h at 27˚C. Two standard curves with different ratios of sodium arsenate

and sodium arsenite (0:100, 10:90, 25:75, 50:50, 75:25, 90:10, 100:0) were also included along-

side the cells. After a 72 h incubation, cell viability was tested. Cells were patched onto fresh

TSA50 plates to test cell viability. The reaction was initiated by adding 100 μL of sterile 0.1M

AgNO3 to each sample in the 96-well plate. After the silver nitrate reaction was initiated, plate

photographs were taken, and colorimetric changes were assessed. This protocol was performed

with at least two biological replicates plated in duplicate.

Minimum inhibitory concentrations (MICs)

To determine the MICs of arsenate and arsenite as well as their growth phenotypes, isolates

were inoculated from 25% glycerol stocks into 3 mL TSB50 and incubated with shaking at 200

rpm with a 12 mm amplitude at 27˚C for 6 h. Inocula were added to a 96-well plate with As-

containing TSB50 to make a 1% inoculum. Concentrations tested include 0, 10, 50, 100, 150,

200, 250, and 300 mM sodium arsenate and 0, 1, 3, 5, 7, 10, 14, and 20 mM sodium arsenate.

Plates were shaken continuously at 288 rpm with a 3 mm amplitude in an Infinite500 plate

reader (Tecan) for 72 h at 27 ± 1˚C. OD590 was measured every 15 min. Growth experiments

were repeated with at least two biological replicates for each isolate, and growth curves for fur-

ther analysis were made using technical triplicates.

The R environment for statistical computing [52] was used to plot growth curves and ana-

lyze key features of growth inhibition across the range of arsenate and arsenite concentra-

tions tested using a modified script (http://bconnelly.net/2014/04/analyzing-microbial-

growth-with-r/). Using the GroFit package [56], splining was used to extract growth parame-

ters including time to exponential growth (λ), maximum growth rate (μ), and maximum

OD590 (A). When splining was not appropriate (e.g. curves do not have a smooth fit), param-

eters were estimated parametrically using either Logistic, Gompertz, or Richards models

informed by their Akaike information criterion (AIC) [57]. Parameters for each isolate in

TSB50 containing As were normalized to As-free controls. We used hierarchical clustering

to examine similarities in growth phenotypes in As for genera with more than two represen-

tatives (n > 2). The clustering included growth parameters (λ, μ, and A) in 1 mM sodium

arsenite and 10 mM sodium arsenate for each isolate. Only one As concentration was used

so that MIC NA values did not impact the clustering. All R scripts are available on GitHub

(https://github.com/ShadeLab/Arsenic_Growth_Analysis/tree/master/R_scripts) for future

studies interested in isolate fitness in As.

Results

Taxonomic diversity and composition of arsenic resistant isolates

As resistant isolates were cultivated from soil near an active vent (S1 Table) of the Centralia

coal seam fire with low As (2.58 ppm) by screening for As resistance on 10 mM sodium arse-

nate and 1 mM sodium arsenite. Isolates spanned seven genera, including Acinetobacter,

Taxonomically-linked growth phenotypes during arsenic stress in soil bacteria from a coal seam fire
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Bacillus, Enterobacter, Microbacterium, Olivibacter, Paenibacillus, and Pseudomonas (Fig 1

and S4 Table). The colony morphologies of the isolates aligned with expectations given 16S

rRNA gene classification (near full length sequences were obtained), and all isolates grew in

24 h at or above 39˚C (S4 Table). This cultivation effort resulted in an abundance of Firmi-

cutes (48% of isolates). To determine the relative abundances of these As resistant isolates

within their larger community, we used BLAST to query isolate full-length 16S rRNA

gene sequences against representative 16S rRNA gene sequences of operational taxonomic

units from amplicon data (948,228 raw reads) obtained in our previous study [54]. The

relative abundance of top hits for each isolate ranged from 6.23x10-6 to 1.59x10-4 (Table 1),

suggesting that all As resistant isolates isolated in this study are rare members of this soil

community.

Genetic characterization of As resistance

As resistance genotypes of the isolates were characterized using endpoint polymerase chain

reaction (PCR) with a collection of published primers (S2 Table) specific for genes encoding

resistance via diverse mechanisms, including arsenate reduction, arsenite oxidation, methyl-

ation, and arsenite efflux (Fig 2A). After endpoint PCR, all amplicons were sequenced to

confirm their identities. Eight isolates (32%) had the gene encoding the arsenite efflux pump,

arsB. The majority of arsB-positive isolates belonged to the genus Enterobacter with the

exception of one Acinetobacter isolate. Three isolates (12%) had the gene encoding arsenite

efflux pump, ACR3(2). Twelve isolates (48%) had the arsenate reductase gene, arsC. We did

not find evidence for genes encoding other resistance mechanisms including dissimilatory

arsenate reductase (arrA), arsenite oxidase (aioA), arsenite efflux pump (ACR3(1)), or arse-

nite methyltransferase (arsM) in the isolate collection. Thus, only genes related to arsenate

reduction and arsenite extrusion were detected among these Centralia isolates using promi-

nent primer sets. Notably, five isolates (20%) did not test positive for any AsRGs tested

using published primers, suggesting sequence diversity of tested genes that are not captured

with these primer sets, undescribed resistance genes, or resistance through general stress

responses.

As transformation

We determined the abilities of isolates to transform arsenate and arsenite using a published

semiquantitative measure of percent As transformation without growth media [55]. No iso-

lates oxidized arsenite in this assay (data not shown). However, we observed a wide range of

capabilities for arsenate reduction that generally corresponded to isolate taxonomy (Fig 2D).

All isolates belonging to the genus Enterobacter had transformation capabilities at or above

50%. Isolates belonging to Bacillus had varied arsenate reduction capabilities ranging from

0–90%. The Microbacterium isolate (I2748) reduced 10–25% of arsenate in solution, and Aci-
netobacter isolates reduced 0–10% of arsenate. While nine isolates (36%) reduced arsenate in
vitro and tested positive for arsC, there were discrepancies between the in vitro and genetic

data. Isolates belonging to genera Olivibacter, Paenibacillus, and Pseudomonas did not reduce

arsenate in this assay (Fig 2D). An additional three isolates (12%) tested positive for arsC but

did not reduce arsenate in this assay. It is possible that arsC is nonfunctional in these bacterial

strains, not active in these conditions, or that arsenate reduction occurred but was below the

limit of detection of this assay. Additionally, eight isolates (32%) reduced arsenate in this assay

but did not test positive for the genes encoding arsenate reductases (arsC or arrA). These iso-

lates may contain less characterized arsenate reductase genes [58].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0191893 January 25, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0191893


Fig 1. Phylogenetic tree of 16S rRNA sequences from Centralia As resistant isolates. Isolates from this study were compared with isolates from other studies

that cultivated As resistant isolates from soil. (A) Actinobacteria, Proteobacteria, and Sphingobacteria. (B) Firmicutes. Scale bars indicate the percent difference

in nucleotide sequence.

https://doi.org/10.1371/journal.pone.0191893.g001
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Incongruent phylogenies of As resistance and 16S rRNA genes

Maximum likelihood trees of detected AsRGs were compared with their corresponding 16S

rRNA gene trees, and there was incongruence in all instances (Fig 3). All arsB sequences were

related to Enterobacter, including those from an Acinetobacter isolate (Fig 3A). Three isolates

spanning two genera (Pseudomonas, Bacillus) tested positive for ACR3(2), and all had high

sequence homology to Stenotrophomonas-derived ACR3(2) (Fig 3B). Comparing the arsC and

16S rRNA phylogenetic trees revealed several inconsistencies between gene sequence and phy-

logeny (Fig 3C). Twelve isolates spanning three genera (Bacillus, Paenibacillus, and Enterobac-
ter) had high sequence homology to Bacillus-derived arsC, suggesting HGT. Closest NCBI

BLAST hit and GC content for each AsRG and corresponding taxa further suggested

Table 1. Relative abundance of isolate 16S rRNA gene sequences from our amplicon survey of the same soil.

Taxonomic group Isolates Relative abundance

Acinetobacter I2759, A2705, A2716 6.23×10-6

Bacillus anthrasis I2723, I2745, A2707, A2723, A2735 3.12×10-6

Bacillus subtilis A2708, A2733 1.03×10-4

Bacillus nealsonii I2716, I2742 1.59×10-4

Enterobacter I2706, I2707, I2726, I2727, A2706, A2724, A2731 3.12×10-5

Microbacterium I2748 3.12×10-6

Paenibacillus I2746, I2747 3.12×10-6

Pseudomonas A2712, A2727 9.35×10-6

Olivibacter I2749 2.49×10-5

https://doi.org/10.1371/journal.pone.0191893.t001

Fig 2. As resistance genotypes and phenotypes of isolated bacterial strains. (A) Presence of AsRG from end-point PCR are indicated (+). MICs of (B) sodium arsenate

and (C) arsenite. (D) Categorical range of arsenate reduced based on standard curve of known ratios of arsenate and arsenite.

https://doi.org/10.1371/journal.pone.0191893.g002
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Fig 3. Comparison of AsRG sequences and 16S rRNA gene sequences from As resistant isolates. Maximum likelihood trees for AsRGs (left panel) (A) arsB, (B) ACR3
(2), and (C) arsC are shown alongside trees of corresponding 16S rRNA genes (right panel). Incongruence is highlighted with grey lines between the two trees. Scale bars

indicate the percent difference in nucleotide sequence. Bootstrap values greater than 50% are indicated at the corresponding node, and boxes are colored based on isolate

genus.

https://doi.org/10.1371/journal.pone.0191893.g003
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incongruence (S5 Table). Collectively, these data suggest past, and potential future, movement

of these AsRGs via HGT.

MICs and growth phenotypes in As

In parallel to characterization of genetic mechanisms of As resistance, we determined the

MICs of arsenate and arsenite for each isolate (Fig 2B and 2C). MIC phenotypes ranged from

50 mM to>300 mM for sodium arsenate and from 3 to 20 mM for sodium arsenite. Both

Pseudomonas isolates could withstand >300 mM sodium arsenate, which is typical for previ-

ously reported pseudomonads resistant to As [18,59]. High sodium arsenate resistance (>200

mM) [60] was observed in 20% of the isolates. High sodium arsenite resistance (>15 mM) [18]

was observed in 16% of the isolates, all of which belong to phylum Firmicutes.

We also analyzed growth phenotypes (lag time, maximum growth rate, and maximum

OD590) in As, and our results highlight a nuanced relationship between growth in As and tax-

onomy that was more informative than the observed MIC data alone (Fig 4, S1 and S2 Figs).

Limited conclusions can be made about Paenibacillus, Microbacteriun, Olivibacter, and Pseudo-
monas isolates due to the small sample size (n� 2) of these genera. Maximum growth rate (μ)

and maximum OD590 (A) showed similar patterns in each isolate, so we only report μ here and

provide A in supporting materials (S2 Fig). In general, relative growth phenotypes were similar

between arsenate and arsenite. Firmicutes isolates maintained basal growth rates in the pres-

ence of As. Here we offer a qualitative description of the isolates’ growth phenotypes in As.

Fig 4. Growth phenotypes of isolates in increasing concentrations of As. Lag time (λ) and maximum growth rate (μ) of isolates in TSB50 with increasing

concentrations of (A) arsenate and (B) arsenite normalized to growth without As.

https://doi.org/10.1371/journal.pone.0191893.g004
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More work will be needed to understand how general these growth phenotypes may be within

lineages. While Paenibacillus isolates had the lowest MICs, they showed the least overall

growth phenotype change in As. Bacillus isolates, however, exhibited larger increases in lag

time (λ) as compared with Paenibacillus isolates. Conversely, the Olivibacter isolate showed an

increase in lag time along with reductions in growth rate. Again, because there was only one

Olivibacter isolate, we cannot know how general its growth trends in As are. Members of

Enterobacter had reductions in growth rate as well as increased lag time with increasing As

concentrations despite their high MICs. Hierarchical clustering of growth phenotypes in gen-

era with more than two isolates revealed clustering based on taxonomy rather than genotype

or MIC (S3 Fig). Despite variability in λ in Acinetobacter isolates, they clustered apart from

Enterobacter and Bacillus and had comparably higher values. Similarly, Bacillus strains clus-

tered together despite variability in μ observed within genus. Again, because we have limited

representatives of Paenibacillus, Pseudomonas and Microbacterium, future studies should

investigate the generality of their growth phenotypes in arsenic. These results suggest that,

aside from the concentration of As exposure, growth changes in lag time, rate, and maximum

OD may impact an isolate’s survival outcomes in situ. More work is needed to determine if col-

lective growth phenotype changes among As resistant isolates within a soil community may be

in part predicted by taxonomy and by occurrence of HGT.

Discussion

Our results from characterizing this modest isolate collection of As resistant soil bacteria

expose two considerations regarding the microbial community ecology of As exposure. First,

our data show that members of the rare biosphere harbor AsRGs that appear to be transferred

via HGT in the past and therefore could have potential for transfer in the future. Second, our

results suggest that nuanced growth phenotypes in As may be predictable by the taxonomic

identity of the microorganism that has not been described previously. This has implications

for understanding a microbial community’s response to As, as it suggests there are differential

growth responses, and therefore different competitive abilities, of resistant taxa. Thus, while

the distribution and transfer of AsRGs in the microbial community have implications for fil-

tering of community members given As exposure, knowledge of As growth phenotypes could

be used to predict the compositional outcome (re-structuring) of an As-exposed community;

however, more work examining consistency of growth phenotypes in As within and among

lineages would inform the feasibility of such forecasting.

In this study, we described a collection of 25 aerobic As resistant bacterial strains isolated

from soils of active vent from an underground coal seam fire in Centralia, PA, a unique terres-

trial environment. We subsequently determined that, despite the fire activity at this particular

site, the soil had relatively low As concentrations at the time of soil collection (2.58 ppm). This

is not surprising, given that 1) the fire is dynamic and past As concentrations at the vent may

have been higher given the natural occurrence of As as a byproduct of coal combustion [32,34]

and 2) the widespread observation of microbial As resistance from soils that have generally

low contamination [41,60–63]. While our isolation resulted in an abundance of Firmicutes,

this is not surprising since members of phylum Firmicutes have been shown to be resistant to

As previously with varied MICs [60,64]. Additionally, we acknowledge cultivation bias and

that freezing soil prior to cultivation may have influenced our ability to resuscitate some strains

[65]. Accordingly, all 25 isolates were rare within their soil microbial community (Table 1).

Previous studies have shown that cultivation from soil can isolate rare community members

[30], but this is the first specific documentation of enrichment of As resistant bacteria from the

rare biosphere. This is relevant to the Centralia community because soil As concentrations
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may increase due to coal combustion [32,34]. While we cannot determine the response of the

general community to additional As deposition, our results suggest that members of the rare

biosphere are capable of surviving As stress and have potential to transfer resistance genes.

We also found that growth phenotypes in As provided richer context for tolerance than

MICs. Our results are consistent with previous reports that Proteobacteria often have high

MICs (Fig 2B) [5,19]; however, when simultaneously analyzing reductions in growth with

As, our results show distinct growth strategies among lineages, in both arsenate and arsenite

(Fig 4 and S3 Fig). While other reports have examined growth reduction in the presence of

As to find suitable strains for bioremediation [17,62,63,66,67], a suite of growth parameters

are not typically investigated. Our full characterization of growth in increasing concentra-

tions of As showed a modest relationship between growth phenotype and taxonomy and

highlights discrepancies between fitness in As and MIC. This taxonomic delineation of

growth phenotypes may be attributed to lineage-distinct mechanisms of As tolerance; how-

ever, limited conclusions can be made for genera with small sample sizes (Paenibacillus,
Microbacteriun, Olivibacter, and Pseudomonas). Jobby and colleagues [10] found an

increased lag time with As addition in an Enterobacter isolate from Navi Mumbai, which is

similar to the lag times observed of Enterobacter isolates from Centralia, PA. This further

implicates taxonomy as an important factor in an organism’s tolerance to As in liquid cul-

ture. Accounting for tolerance mechanisms may explain some of the discrepancies between

MIC and As resistance genotype [41] and between MIC and isolate abundance in contami-

nated sites [64]. Valverde and colleagues [64] observed an increase in Firmicutes with

increasing As concentrations despite their lower MICs in vitro. Our findings suggest that As

resistant Firmicutes, in general, had modest changes in growth phenotypes in As. Generally,

this result questions the precision of MICs in predicting the success of a microorganism in

the presence of As. While this report is descriptive and not an exhaustive look at the relation-

ship between growth phenotype in As and taxonomy, consideration of both growth pheno-

type and taxonomy may offer additional predictive value and future studies should further

examine growth phenotypes in As.

Microbial arsenate reduction and the transfer of associated functional genes are important

environmental health concerns because these processes increase the mobility of environmental

As [4]. Incongruence between the phylogenetic alignment of arsC, arsB, and ACR3(2) and the

16S rRNA gene within this isolate collection suggests horizontal transfer of AsRGs (Fig 3),

despite low As and therefore low direct-selection pressure at this site. Determining the genetic

environment of these AsRGs (chromosomal location or plasmid-borne) through whole

genome sequencing would further determine whether these genes were horizontally trans-

ferred and provide insights into mechanisms of transfer. These results further emphasize the

potential HGT seen of genes encoding arsenite efflux pumps and arsenate reductase seen pre-

viously [6,19]. Specifically, HGT of the gene encoding arsenite efflux pump (arsB) has been

seen in environments with low As concentrations [19]. Notably, these data indicate potential

HGT from multiple species, suggesting community-level contributions to As resistance rather

than a limited source of resistance genes. Investigating interactions among community mem-

bers in the context of As contamination may provide insights into the sources and sinks under-

lying the movement of resistance genes.

Finally, we observe multiple discrepancies between genetic and functional assays when

characterizing the isolates’ As resistance. Despite using twelve published and commonly used

primer sets to screen for AsRGs, three isolates with relatively high MICs did not test positive

for any AsRGs screened in this study, highlighting a caveat of using primers for detection

[5,41]. We also observe inconsistencies between genetic results and arsenate transformation

capabilities, suggesting divergent gene sequences, presence of untested AsRGs (including the
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possibility of novel genes [20]), or general stress responses. A wider breadth of AsRG diversity

is likely to be captured using complementary cultivation-independent methods.

Our focus on growth phenotypes in As revealed a relationship with taxonomy that has not

been described previously. Additionally, our data show that rare community members can

exhibit As resistance and contain AsRGs. These observations have implications not only for As

tolerance but also for mechanisms supporting general microbial community robustness to As

stress.
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