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Deep learning enables automated 
localization of the metastatic 
lymph node for thyroid cancer 
on 131i post-ablation whole-body 
planar scans
MuthuSubash Kavitha  1,2,4, Chang-Hee Lee2,4, KattakkaliSubhashdas Shibudas3, 
Takio Kurita  1 ✉ & Byeong-cheol Ahn2 ✉

the accurate detection of radioactive iodine-avid lymph node (Ln) metastasis on 131i post-ablation 
whole-body planar scans (RxWBSs) is important in tracking the progression of the metastatic lymph 
nodes (mLNs) of patients with papillary thyroid cancer (PTC). However, severe noise artifacts and the 
indiscernible location of the mLN from adjacent tissues with similar gray-scale values make clinical 
decisions extremely challenging. this study aims (i) to develop a multilayer fully connected deep 
network (MFDN) for the automatic recognition of mLNs from thyroid remnant tissue by utilizing the 
dataset of RxWBSs and (ii) to evaluate its diagnostic performance using post-ablation single-photon 
emission computed tomography. image patches focused on the mLn and remnant tissues along with 
their variations of probability of pixel positions were fed as inputs to the network. With this efficient 
automatic approach, we achieved a high F1-score and outperformed the physician score (P < 0.001) in 
detecting mLNs. Competitive segmentation networks on RxWBS displayed moderate performance for 
the mLn but remained robust for the remnant tissue. our results demonstrated that the generalization 
performance with the multiple layers by replicating signal transmission overcome the constraint of local 
minimum optimization, it can be suitable to localize the unstable location of mLN region on RxWBS and 
therefore MFDN can be useful in clinical decision-making to track mLN progression for PTC.

Lymph node (LN) metastasis is one of the major prognostic factors in patients with differentiated thyroid 
carcinoma (DTC)1–3. The prevalence of cervical LN metastases in DTC patients is in the range 20%–90%4,5. 
Post-ablation whole-body planar scans (RxWBSs) can visualize hidden, radioactive iodine (RAI)-avid metastatic 
LNs in thyroidectomized papillary thyroid cancer (PTC) patients and help in accurately staging the disease6,7. 
However, severe noise artifacts, scarcity of anatomical features on RxWBS, and the chance of RAI uptake make 
precise detection challenging, examples of which are shown in Fig. 18,9. To overcome these problems, the assess-
ment is usually based on three-dimensional single-photon emission computed tomography/computed tomog-
raphy (3D SPECT/CT) data to detect the metastatic lymph node (mLN) on an RxWBS9–11. However, SPECT/
CT-based differentiation and tracking the progression of mLN stages are tedious, expensive, and time consum-
ing12,13. In addition, when the cancer treatment is successful, the mLNs decrease in size; thus, subjectively tracking 
the mLNs every time may result in errors. A practical solution to this issue is the automatic assessment of mLNs 
using RxWBS without any additional cost or radiation.

Several studies have focused on the higher recognition ability of RxWBS compared with using other imag-
ing modalities for the detection of cervical mLNs in patients with PTC14,15. Ultrasound (US) has been a widely 
accepted first imaging tool for cervical mLNs14. However, small sized mLNs located in deep regions affected by 
thyroid tissues could influence low sensitivity. Furthermore, US is almost always used in a pre-operative condition 
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and is believed to fail in distinguishing the hidden RAI-avid mLN found on post-ablation SPECT/CT15. The 
drawbacks of US have led to the use of other imaging techniques for PTC diagnosis. Several studies have encour-
aged the use of CT because of its higher sensitivity in locating the mLN compared with using magnetic reso-
nance imaging1,16,17. However, CT is not recommended as a routine imaging tool for patients with PTC. Although 
the aforementioned imaging tools are considered superior in a number of instances, a 131I RxWBS is the only 
standard and possible modality for post-therapy imaging18. Nevertheless, it is complex, not always very precise, 
and sometimes provides a not clearly visible mLN position because of noise artifacts, thereby making accurate 
diagnosis challenging on RxWBS. Therefore, this study preliminarily attempts to adopt a learning-based pattern 
recognition methodology to automate the mLN for a precise PTC diagnosis.

Most of the automated studies in the literature have evaluated the use of various imaging modalities in pre-
dicting the status of LNs based on handcrafted features such as textures and morphological features in generating 
classification models19,20. Specifically, support vector machine-based methods have been frequently implemented 
and have subsequently produced better results for the discrimination of benign and malignant LNs21,22. Although 
conventional studies achieved highly satisfying results, they relied strictly on handcrafted features. In addition, 
identifying the most relevant features for the diagnosis required assistance. Furthermore, features such as bound-
ary irregularity degree and shape may not be appropriate for mLN identification. To overcome all these problems, 
recent studies have focused on using a pre-trained neural network that automatically learns effective features 
to differentiate the nature of LNs23,24. However, the limitation of using deep learning is that a large number of 
datasets are required to increase the learning ability of the network. Several studies reported that deep convolu-
tional neural networks (CNNs) required a minimum of 100 samples of each class for acceptable results25,26. In 
contrast, this study used a smaller number of mLN regions to develop the network. The multiple layers of the deep 
neural network scored competitive predictions in dealing with the complex and imbalanced class relationships 
of the samples by adding the number of hidden layers between the input and output layers27,28. We intended 
herein to propose a pixel-wise MFDN model that automatically extracts features from 131 I RxWBS and enables 
a computer-assisted automated technique for mLN localization. We are also interested in evaluating the perfor-
mance of mLN localization with the competitive segmentation architectures because of its promising results in 
various medical imaging applications29,30.

Figure 1. Original input 131I post-ablation whole-body planar scans affected by noise artifacts showing (a) both 
the metastatic lymph node and remnant tissue and (b) background oral cavity regions without the metastatic 
lymph node and remnant tissue (A). Proposed multilayer fully connected deep network for automatic 
recognition of the metastatic lymph node (B).
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The main challenges of this study are related to the highly complex RxWBS dataset along with the signifi-
cantly limited number of training classes of the mLN region. To the best of our knowledge, no previous study has 
tackled the problem of the automatic distribution of mLNs based on RxWBS. This study aims to (1) develop and 
investigate whether the proposed MFDN is efficient for the automatic recognition ofunstable location of cervical 
mLNs on RxWBS, (2) evaluate the cross validation performance of the proposed system against the gold standard 
detection results using post-ablation SPECT/CT, (3) demonstrate the robustness of the proposed approach over 
the manual and CNN-based methods, and (4) confirm the feasibility of the automatic approach on a pilot study 
with an additional physician’s labels.

Materials and methods
patients. This retrospective study was approved by the Institutional Review Board of Kyungpook National 
University Hospital, which waived the necessity of acquiring written informed consent. A total of 230 PTC 
patients who underwent total thyroidectomies, followed by RAI ablation at Kyungpook National University 
Hospital between March 2013 and December 2017, were reviewed.RAI ablation was performed at a median 
interval of 7 weeks (range: 4–14 weeks) after the total thyroidectomy.

Data acquisition. The patients were orally administered with 131I (3.7 GBq, 100 mCi). A post-ablation 131I 
planar scan was then performed 4–5 days after 131I administration using a dual-head gamma camera equipped 
with 1.5875-cm NaI crystals and a 16-row multidetector spiral CT scanner (NM670; General Electric Medical 
Systems, Milwaukee, WI). SPECT/CT images were reconstructed with the Xeleris software (General Electric 
Medical Systems, Milwaukee, WI). No contrast medium was used during the procedure. All images from the 
RxWBSs and the post-ablation SPECT/CT were analyzed by nuclear medicine physicians. On RxWBS, the RAI 
uptake in the esophageal tract and salivary glands was considered to be physiological. The other focal tracer 
uptake on the background that was not compatible with the residual thyroid tissue or physiological activity was 
considered to be a pathological uptake. The SPECT/CT images were classified as (a) remnant tissue if the median 
foci were localized either in the upper thyroid bed in the thyroglossal duct remnants or in the lower thyroid bed 
or (b) RAI-avid LN metastasis if the focus was on a co-localized LN on CT.

Data enhancement. The RxWBSs were highly complex and usually affected by noise artifacts, and over-
lapped with the other physiological uptake regions (Fig. 1A). We proposed herein an automatic approach 
(Fig. 1B) to localize the mLN on RxWBS. In addition, directly training an original RxWBS with MFDN was 
not appropriate. We enhanced the training set by the augmentation method. Image patches of 230 × 230 px 
focused on mLNs, and remnant tissues were cropped from the original anterior image (Fig. 2A). For augmenta-
tion, each image is flipped along the horizontal and vertical axis, and rotated using an angle of 900, 1800 and 2700. 

Figure 2. Cropped input image focused on the metastatic lymph node and remnant tissue from the original 
anterior 131I post-ablation whole-body planar scans (A). Enhancing the train data variations by augmentation 
using (top row from left to right) flip horizontal, flip vertical, rotate 900, 1800, (bottom row from left to right) 
rotate 2700 and Gaussian kernels with varying sigma values (B). Estimation of the pixel positions in an image: 
(a) metastatic lymph nodes and (b) remnant tissues (C).
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Augmentation with the gaussian filtering kernels with varying size σ, such as 2, 4, and 8 was computed which 
represented the different standard deviation of the gaussian distribution. The size of the kernel is based on the 
sigma value and hence square shaped kernel was used.The gaussian filtering estimated on each pixel, generated 
additional training sets with Gaussian pixel features31. Figure 2B shows examples of the data augmentation. The 
regions of interest (ROIs) on the gray-scale image were used by setting a threshold value of 160 px, which is a 
value determined by an experiment preserving the foreground pixels of the ROI. We calculated the label image to 
remove some unwanted objects such as physiological uptake and background. It generated a masked image with 
the desired object, where all pixels having the same value belonged to the same object. The resultant binarized 
image was then multiplied with the Gaussian kernel images, which produced multidimensional masked images 
with high-level representations of object pixels. The likelihood of a pixel position in an image being an mLN or 
remnant tissue (Fig. 2C) was calculated by normalizing the ground truth label values of pixels for all the training 
images using the following equations:
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where P m R( )pl rem|  denotes the probability of a pixel position being remnant and |P m R( )pl met  denotes the proba-
bility of a pixel position being an mLN, both at the pixel position mpl. GTi denotes the ground truth labels of the 
training images N. The extracted high-level representation of the object pixels and the probability of the pixel 
positions of the mLN and remnant tissues were used as inputs for network training.

Architecture design for localization. Deep network architectures have been efficiently applied to image 
segmentation and classification to solve different tasks32–34. We proposed herein a MFDN model to recognize 
more complex and nonlinear relationships of pixels by incorporating the number of hidden layers between the 
input and the output. Our proposed architecture for localization was constructed with an image input layer, 10 
fully connected hidden layers, and classification output layer (Fig. 3A). The number of nodes in the image input 
layer was equal to the number of pixel values associated with the image objects. The number of output layers was 

Figure 3. Multilayer fully connected deep network architecture for localization of the metastatic lymph node 
from thyroid remnant tissue (A). The learning curve for the best performing layers (10 fully connected hidden 
layers) on the training set (B).
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decided by the number of output classes. Similarly, in the intermediate hidden layers, each layer of nodes was 
trained on a discrete feature set based on the previous layers’ output. The number of neurons used in the fully 
connected hidden layer was increased by 32, 64, 128, 256, and 512 and then decreased by 256, 128, 64, 32, and 3. 
Combinations of the outputs from each hidden layer were executed by a linear function followed by a nonlinear 
transformation of the weighted sums. Three different nonlinear activation functions, namely, logistic sigmoid 

= + −s r r( ) 1/(1 exp( )), hyperbolic tangent rtanh( ), and rectified linear unit (ReLU) =s r a( ) max(0, ), were 
applied to train our network model. The output of node p in layer +k 1 indicated by +Qp
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where k = 0, …, K and p = 1, …, nk+1. The linear combinations of the outputs are represented as +rp
k( 1), and wpt
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denotes the weights of the linear function. The total number of hidden layers and the total number of nodes in the 
layer are represented by K and k, respectively. The bias node in layer k is denoted by m k

0
( )with a value of 1. ReLU 

was observed to be optimal because it was faster and produced robust performance among the other activation 
functions. After the fully connected layers were completed, the prediction map related to the likelihood of the 
pixel matching to a specific ROI class was obtained from the output vector of the class scores using the pixel-wise 
softmax cost function defined as
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where P v( )i  is the probability that the pixel assigns the output vector v that corresponds to the ROI i, and T is the 
total number of ROIs. Classes (such as mLN, remnant tissue and background) were labeled on the ground truth 
datasets as 1, 2 and 0, respectively.

The dataset was randomly divided into 60%, 20% and 20% for train, validation and test, respectively. The 
network used the augmented classes along with the original classes by increasing the training data variations. It 
trained on the train data while evaluating the fitness of the model on the validation data with fine-tuned opti-
mal parameters to minimize the overfitting of the model. The number of epochs set to train the model was 20 
that possess 212760 maximum numbers of iterations throughout the training while keeping 10638 iterations per 
epoch.The generalization of the model complexity was evaluated by setting to shuffle the train data before each 
training epoch and shuffle the validation data before each validation network frequency of 1200 iterations. To find 
the best model the network was trained by increasing the number of fully connected hidden layers from three to 
10. We used Adam optimizer for cross-entropy minimization with a batch size of 64 and the learning rate of 0.001. 
The initial learning rate is updated every 10 epochs by multiplying with drop factor 0.1, which decreased the 
learning rate according to the piecewise linear method. We set weight decay using L2 Regularization of 1.0000e-
04 and gradient moving average decay rate of 0.9000 and denominator offset epsillon 1.0000e-08 in the network 
parameter updates to avoid division by zero. The fitness of the model was learned from the validation data by 
minimizing the training error and maximizing the accuracy between the detected and true segmentation labels. 
On the basis of the learning curve, the best model with the number of fully connected hidden layers of 10 was 
identified and showed a sufficiently higher ability in segmenting the mLNs from remnant tissues with high accu-
racy (93.49%) and low error value (0.237), implies the model efficiently fits the datasets (Fig. 3B). We followed 
the post-processing method for the removal of incorrect regions, especially the overlapped regions of remnant 
tissue with the oral cavity regions. The size filtering of 30 pixels was chosen by an experiment and applied on 
the segmented output image. It removed the small incorrect regions. Figure 4 shows the localized final output 
regions from the proposed approach. The network was implemented using Matlab R2019b with 16 GB memory 
of NVIDIA GTX TITAN. The proposed segmentation network took 6.5 hours to train because of its large number 
of network parameters and test one RxWBS image in 1.3 s.

experimental setup. Comparison methods and evaluation metrics. The proposed automatic method was 
evaluated by comparing its output to the ground truth segmentation using post-ablation SPECT/CT. Network 
training and testing included mLNs, remnant tissues, and background regions without either mLN or remnant 
tissue. The localization performance of the proposed, proposed with post-processing, and physician’s manual 
methods in detecting the mLN, remnant tissue, background, and overall regions was evaluated. Manual detection 
without ground truth was performed by the same physician, who prepared the ground truth labels for the mLN 
and remnant detection. Network performance and manual detection were validated using precision, recall, and 
the F1-score. We also computed the Dice similarity coefficient (DSC), which is the most widely used parameter 
for measurement of the agreement of two segmentations (i.e., G and H). It is defined as ∩ +G H G H2 /( ), 
with a range of [0, 1]. The higher the DSC value, the better the overlap between the two segmentations. The gen-
eralization performance of the proposed architecture in recognizing mLN, remnant tissue, background and over-
all was evaluated using a five-fold cross-validation by partitioning the datasets into k folds (k = 5). The network 
was trained on k–1 fold with one held back, and tested on the held back fold. It continued five times separately by 
using different members of the training and testing data that includes compositions different from those of the 
other experiment.

We conducted a pilot study using 30 independent RxWBSs with highly unbalanced classes of mLNs (9) and 
remnant tissues (60). None of the 30 RxWBSs in the pilot study were included for training and testing the net-
work. For the pilot study, we compared the performance of the proposed approach with the manual segmentation 
labels of two additional physicians in localizing the mLN from the remnant tissues. The physicians were blind to 
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the patients’ clinical history and pathology and independently evaluated the RAI-avid LN metastasis and remnant 
tissue on the RxWBSs. The statistical significance of the observed differences of the performance metrics between 
the proposed method and the physicians was evaluated using a two-tailed, paired t-test, for which a P value of 
0.05 was considered significant (Minitab 19.0.2 Statistical Software). Furthermore, we were interested in compar-
ing the performances of mLN localization from the thyroid remnant tissue regions of our proposed model over 
the CNN-based architectures such as, 2DU-net30 and SegNet35. Given the training dataset, the CNN architectures 
were learned by minimizing the training error (cross-entropy error) between the detected and true segmentation 
labels using the same optimized parameters of the proposed network.

Results
RxWBSs were efficiently constructed for the train (1794), validation (46) and test sets (46) with the proposed 
automatic approach. The augmentation technique was carried out only on the training set. Thus the training set 
consisted of 2366 remnant tissue regions and 478 mLN regions. The validation and test set included 56 and 59 
remnant tissue, respectively and 12 and 10 mLN regions, respectively. Table 1 demonstrates the mean values of 
the performance measures of the proposed method without or with post-processing and the physician’s manual 
method in evaluating the mLN, remnant tissue, background, and overall regions on the test scans. Compared 
with the manual detection method in localizing the mLN, the automatic methods (i.e., proposed and proposed 
with post-processing methods) achieved the highest ranges of mean precision (84.7%–85.3%), mean recall 
(77.8%–84.2%), and mean F1-score (82.3%–84.4%). Similarly, these methods showed the highest recognition rate 
in localizing the thyroid remnant tissue compared with the manual method. Manual detection without ground 
truth showed low to moderate performance in detecting both the mLN and the remnant tissue, demonstrating 
that the proposed MFDN can learn to be more descriptive and better classify between regions compared with the 
manual method. Figure 5A demonstrates the differences of the DSC using the three methods evaluated herein in 

Figure 4. Localization results of the metastatic lymph node (red) and remnant tissue (green). (a) Original input 
131I post-ablation whole-body planar scans, (b) true segmentation results by SPECT/CT, (c) proposed method, 
and (d) proposed method with post-processing.
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differentiating the two groups of mLN and remnant tissue. The diagnostic performances of the proposed method 
with or without post-processing were almost similar. It is also confirmed in the overall differences of the preci-
sion, recall, F1-score, and DSC using the three methods evaluated herein in differentiating mLN, remnant tissue 
and background regions (Fig. 5B). The post-processing method efficiently removed some incorrect regions that 
overlapped with the remnant tissue; however, it did not improve diagnostic performance. Thus, the MFDN local-
ization algorithm without post-processing is sufficient to differentiate the mLN from the thyroid remnant tissues. 
The generalization complexity of the proposed MFDN is also confirmed with the results of the five-fold cross 
validation performance in evaluating the mLN, remnant tissue, background, and overall regions (Table 2). The 
five-fold cross validation performance in evaluating the mLNs from remnant tissues revealed model’s generali-
zation error values (0.2731, 0.2018, 0.3010, 0.2145, 0.2932, respectively) denoting the optimal model complexity 
with low bias and variations in locating mLN for PTC.

Table 3 confirms the feasibility of the proposed approach from a clinical standpoint on an independent dataset 
and demonstrated significantly high performance measures in diagnosing mLNs compared with the manual 
segmentation labels of an additional two physicians represented by P1 and P2 in the table. The box plot presents 
the distribution of the precision, recall, and F1-score metrics of the pilot study dataset in detecting both mLN and 
remnant tissues (Fig. 6A–C). For utilization in clinical settings, the recall of an analysis should also support clini-
cal decisions. From this point of view, the recall values in detecting the mLN by physicians, which varied between 
28.9% and 59.2% via manual discrimination, may not be adequate. The differences between the mean precision 
and the mean F1-score values of the proposed and physician’s methods in detecting the mLNs were statistically 
significant (P < 0.001). The observed mean values in recognizing the remnant tissues with a precision of 97.5%, a 
recall of 90.0%, and an F1-score of 93.6% using the proposed method were high. The difference between the mean 
F1-score value of MFDN and P1 was not statistically significant (P = 0.29); however, the difference was statisti-
cally significant (P < 0.001) with P2. The imperfect agreement between the physician manual labels indicated the 

Region Method
Pre 
(%)

Rec 
(%)

F1-score 
(%)

DSC 
(%)

mLN

Proposed 85.3 77.8 82.3 83.0

Proposed with post-processing 84.7 84.2 84.4 82.6

Manual 51.2 76.5 61.3 57.5

Remnant tissue

Proposed 95.9 84.3 89.7 88.4

Proposed with post-processing 96.0 84.5 89.9 89.0

Manual 73.0 92.4 81.6 79.4

Background

Proposed 99.93 99.1 99.5 99.9

Proposed with post-processing 99.97 99.9 99.9 99.9

Manual 99.30 99.26 99.28 99.0

Overall

Proposed 93.7 87.0 90.5 90.4

Proposed with post-processing 93.5 89.5 91.4 90.5

Manual 74.5 89.39 80.73 78.6

Table 1. Comparison of the performance of the proposed method without and with post-processing and the 
physician’s manual method using post-ablation SPECT/CT. mLN: metastatic lymph node; Pre: precision; Rec: 
recall; DSC: Dice similarity coefficient.

Figure 5. Performance comparison among the proposed, proposed with post-processing, and manual methods 
for localization of the metastatic lymph node and remnant tissue in terms of mean dice similarity coefficient 
(A). Overall performance comparison among the proposed, proposed with post-processing, and manual 
methods for localization of the metastatic lymph node, remnant tissue and background in terms of precision, 
recall, F1-score and dice similarity coefficient (B).
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superimposition of the RAI uptake areas of the remnant tissue and the high noise that makes the manual inter-
pretation challenging (Fig. 7). The consistencies between the SPECT/CT-based ground truth on each RxWBS and 
the proposed and manual segmentation contours of the two physicians were summarized using DSC in Table 3. 
The DSC value of the proposed method for mLNs over their ground truth of SPECT/CT was 73. 0%, this is almost 
44.0% higher than the manual contours of the physicians. No significant difference was found between the man-
ual contours of the physicians (P = 0.253) in recognizing mLNs on RxWBSs.

The diagnostic performance in differentiating the mLN and the thyroid remnant tissue using U-net archi-
tecture showed precision values of 66.4% and 96.5%, recall values of 48.6% and 84.8%, F1-scores of 56.0% and 
90.3%, and DSC scores of 57.7% and 89.6%, respectively. The diagnostic performance in differentiating the mLN 
and the thyroid remnant tissue using SegNet architecture revealed better performance by utilizing more global 
contextual features than U-net and shows high precision values of 77.3% and 88.1%, recall values of 62.1% and 
94.9%, F1-scores of 68.9% and 91.4%, and DSC scores of 70.0% and 91.0%, respectively. For the mLN evaluation, 
both the U-net and SegNet architectures showed a low performance with high error values of 0.605 and 0.379, 
respectively. It showed inability and optimization instability in locating the mLNs. However, it may be possible to 
increase the capacity of those networks on RxWBS datasets by setting the network weight initialization towards 
the mLN region at the start of the training model using optimized loss and sampling methods. Although the 
proposed sequence of fully connected layers consists of a large number of parameters, the multiple layers by rep-
licating signal transmission in MFDN overcome the constraint of local minimum optimization and thus it can be 
suitable to localize the unstable location of mLN region on RxWBS datasets.

Region Five-fold Pre (%) Rec (%) F1-score (%) DSC (%)

mLN

Fold 1 87.0 88.0 87.5 86.7

Fold 2 82.9 83.2 83.0 80.2

Fold 3 90.1 69.7 78.6 79.3

Fold 4 90.0 70.2 78.4 77.0

Fold 5 72.0 70.4 71.1 71.5

Remnant tissue

Fold 1 97.0 77.5 86.2 87.1

Fold 2 88.2 89.0 88.5 90.0

Fold 3 98.3 81.0 88.8 88.0

Fold 4 97.0 72.8 83.2 85.7

Fold 5 98.0 79.0 87.5 88.0

Background

Fold 1 96.0 94.3 95.1 97.0

Fold 2 99.5 100.0 99.7 99.3

Fold 3 100.0 99.4 99.7 99.7

Fold 4 99.0 99.2 99.1 99.0

Fold 5 100.0 100.0 100.0 99.9

Overall

Fold 1 93.3 85.1 88.9 88.1

Fold 2 90.9 90.7 90.8 90.5

Fold 3 96.1 83.4 89.0 89.0

Fold 4 92.3 82.1 86.6 87.2

Fold 5 92.3 83.1 87.3 87.7

Table 2. Five-fold cross validation performance of the proposed method using post-ablation SPECT/CT. mLN: 
metastatic lymph node; Pre: precision; Rec: recall; DSC: Dice similarity coefficient.

Method Pre (%) Rec (%) F1-score (%) DSC (%)

mLN

Proposed 74.2**a 73.0*a 73.5**a 73.0**a

P1 42.59**b 28.92**b 34.45**b 29.92**b

P2 20.89*c 59.21*c 30.88# # c 25.96# # c

Remnant tissue

Proposed 97.5**a 90.0# # a 93.6**a 94.7**a

P1 82.80# # b 80.23# # b 81.49# # b 79.71# # b

P2 34.51# # c 95.50# # c 50.70*c 47.22**c

Table 3. Pilot study datasets showing the performance metrics and significance results of the proposed 
approach and each physician expert to localize the metastatic lymph node and remnant tissue. mLN: metastatic 
lymph node; Pre: precision; Rec: recall; DSC: Dice similarity coefficient; P1: physician 1; P2: physician 2. 
*P < 0.05, ##P > 0.05. **P < 0.001. aComparison between proposed and P2. bComparison between proposed 
and P1. cComparison between P1 and P2.
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Discussion
The accurate detection of mLNs on RxWBS is essential in setting up management and follow-up plans for PTC 
patients3. However, the highly complex RxWBS with severe artifacts and overlapped ROIs along with the limited 
amount of mLN data for training were key challenges in this study. Our proposed MFDN on RxWBS involved 
no manual interaction. Furthermore, the simplified description of the learning-based approach facilitates efficient 
automated localization of mLNs in clinical practice. To the best of our knowledge, this is the first study to develop 
successful adoption of the deep neural network architecture on RxWBSs, which is capable of recognizing the mLN 
and the remnant tissue. The promising experimental results of our proposed MFDN without post-processing dis-
played robust performance measures over the manual detection method. With this efficient automatic approach, we 
achieved a high F1-score (82.3%), which was 21.0% higher than that of the manual contour detection method. The 
performance of our approach in locating mLN regions was always higher than those achieved via the physicians’ 
manual segmentation labels; however, the performance remained robust in locating the thyroid remnant tissue. 
Similarly, the CNN showed moderate performance in mLN detection and robust performance in thyroid remnant 
tissue detection. Our results demonstrated that the MFDN model is a useful tool for RxWBS because it especially 
improved the generalization performance in localizing the mLN with the increase in the number of hidden layers.

The approaches extracted hand-engineered features in the image, and the designed complicated quantification 
methods for LN localization gave recall rates of 82.0%16, 60.0%17, 86.0%36, and 90.0%37. However, they were not 
appropriate for the detection of mLNs, which is often indiscernible from adjacent tissues with similar gray-scale 
values. In addition, compared with some existing deep learning-based techniques for the automated identifi-
cation of PTC, our method demonstrated the use of a simple multilayer stacked framework. Li et al. developed 
a detector network based on the CNN, particularly for PTC on US, and reported a recall rate of 93.5%38. Their 
detector cannot identify cancer regions if a particular layer fails to extract whole features in the image. Halicek et 
al. developed a CNN-based model for classifying head and neck cancer on a small subset consisting of 21 hyper-
spectral images and reported a recall rate of 86.0%39. Ma et al. concatenated several network training stages on 
the basis of the CNN for the thyroid and achieved a recall rate of <90.0% from the SPECT images40. However, the 
aforementioned approaches implemented different learning designs and imaging modalities for thyroid cancer, 
which were not appropriate in directly gauging our outcome. Though the combination of radiomic features and 
CNN served a high performing tool for classifcation task, directly accessing the raw data may not be suitable for 
the segmentation of regions on homogeneous classes with noisy background28,41. The CNN-based architecture 
evaluated herein demonstrated lower performance in differentiating the mLN than our approach. It may be due to 

Figure 6. Box plot distributions and comparison of the proposed and two physicians represented as P1 and P2 
for localization of the metastatic lymph node and remnant tissue on the pilot study dataset in terms of precision 
(A), recall (B), and F1-score values (C).
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the patchwise splitting of minor variations of image objects using CNN architecture prone to loss certain degrees 
of required information28. Hence, it may poorly generalize the mLN location on the unseen data. Hence an exper-
iment using an explicit regularizer with an appropriate loss function could be helpful to improve the CNN net-
works on RxWBS datasets. This is beyond the scope of the current study. As mentioned earlier, the purpose of 
our study was not to deeply explore the learning strategies of the imbalance problem, but to make a preliminary 
attempt to adopt a deep learning-based technique for the accurate localization of the mLN for PTC. Our approach 
offered the advantages of a single deep framework with highly acceptable performance in segmenting mLN from 
noisy RxWBSs.

Additional evaluations were performed during this study, especially focusing on clinical perspectives. The vali-
dation and comparison of the discrimination results between the automatic deep learning approach and the manual 
contour labels were intriguing. As can be seen in Fig. 6, the performance of manual discrimination indicated more 
variation. It also showed lower performance than the proposed automatic technique. The DSC of the proposed 
automatic method was higher than those of the physicians; hence, with a lack of ground truth, the physicians were 
challenged in accurately identifying the mLN on RxWBSs15,18. Furthermore, the superimposition of the RAI uptake 
areas of remnant tissue and the high noise affecting manual interpretation were observed with the number of false 
positives and false negatives (Fig. 7). The automatic approach utilized the intensity statistics of entire image patches 
containing the ROIs and surrounding tissues, thereby reducing errors, which human observers hardly understand. 
The results were encouraging, but there is still much improvement required in the system in terms of stability by 
including a large number of mLN patterns in the training. Therefore, we expect that our proposed deep learning 
segmentation tool could be used as a support in clinical practice and increase a physician’s performance by reducing 
the interobserver variation, interaction time, and workload required for mLN recognition.

The limitation of this study is that a small amount of representative training data was used to build the learn-
ing model. The mLN patterns on the datasets seemed to not sufficiently comprise the training set. Additionally, 
the RxWBSs were collected using the same scanner and with the same acquisition protocols for effective training. 
Hence, our proposed approach must be optimized using a large number of mLN input patterns with different 
RxWBS scanners and acquisition protocols. Finally, different CNN-based neural network architectures with var-
ious learning strategies will be evaluated in future.

Figure 7. Localization results of the metastatic lymph node (red) and remnant tissue (green) using the pilot 
study dataset. (a) Original input 131I post-ablation whole-body planar scans, (b) true segmentation results by 
SPECT/CT, (c) proposed, (d,e) two physician’s manual labels represented as P1, and (e) P2.
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conclusions
In the approach proposed herein with the high noise levels of the ROIs, RxWBSs were efficiently constructed 
using the MFDN model, thereby offering excellent diagnostic performance to recognize the mLNs. Our model 
is simple, cost-effective, and does not require expert knowledge for successful implementation. Compared with 
the manual contour labels from the physicians and the CNN-based segmentation network, our proposed MFDN 
model gave highly acceptable localization performance, thereby acting as a promising substitute for the precise 
discrimination of mLNs and remnant tissues on RxWBSs. The experimental results strongly suggest that the 
proposed automated deep learning model can be used as a support in clinical practice to track the progression of 
mLNs for effective cancer treatment.

Received: 28 May 2019; Accepted: 16 April 2020;
Published: xx xx xxxx

References
 1. Dornheim, J. et al. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models. Academic Radiology 14, 

1389–1399 (2007).
 2. Taïeb, D. et al. Current approaches and recent developments in the management of head and neck paragangliomas. Endocrine 

Reviews 35, 795–819 (2014).
 3. Crile, G. J. The pattern of metastasis of carcinoma of the thyroid. Annals of surgery 143(5), 580–587 (1956).
 4. Grebe, S. K. & Hay, I. D. Thyroid cancer nodal metastases: biologic significance and therapeutic considerations. Surgical Oncology 

Clinics of North America 5(1), 43–63 (1996).
 5. Wang, T. S. et al. Incidence of metastatic well-differentiated thyroid cancer in cervical lymph nodes. Archives of Otolaryngology–Head 

& Neck Surgery 130(1), 110–113 (2004).
 6. Pacini, F. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular 

epithelium. European Journal of Endocrinology 154, 787–803 (2006).
 7. Fatourechi, V. et al. Are post therapy radioiodine scans informative and do they influence subsequent therapy of patients with 

differentiated thyroid cancer? Thyroid 10, 573–577 (2000).
 8. Oh, J. R. & Ahn, B. C. False-positive uptake on radioiodine whole-body scintigraphy: physiologic and pathologic variants unrelated 

to thyroid cancer. American Journal of Nuclear Medicine and Molecular Imaging 2(3), 362–385 (2012).
 9. Garger, Y. B. et al. In thyroidectomized thyroid cancer patients, false-positive I-131 whole body scans are often caused by 

inflammation rather than thyroid cancer. Journal of Investigative Medicine High Impact Case Reports 4, 1–7 (2016).
 10. Jeong, S. Y. et al. Clinical applications of SPECT/CT after first I-131 ablation in patients with differentiated thyroid cancer. Clinical 

Endocrinology 81, 445–451 (2014).
 11. Hannoush, Z. C.et al.Falsepositive findings on I-131 WBS and SPECT/CT in patients with history of thyroid cancer: case series. Case 

Reports inEndocrinology, 1–5 (2017).
 12. Munn, L. L. & Padera, T. P. Imaging the lymphatic system. Microvascular Research 96, 55–63 (2014).
 13. Wong, K. K. et al. Endocrine scintigraphy with hybrid SPECT/CT. Endocrine Reviews 35(5), 7171–746 (2014).
 14. Zhang, Y.et al.Combination of serum microRNAs and ultrasound profile as predictive biomarkers of diagnosis and prognosis for 

papillary thyroid microcarcinoma. Oncology Reports, 3611–3624 (2018).
 15. Lee, C. H. et al. Risk factors for radioactive iodine-avid metastatic lymph nodes on post I-131 ablation SPECT/CT in low- or 

intermediate-risk groups of papillary thyroid cancer. PLoS One. 13(8), 1–12 (2018).
 16. Commowick, O., Grégoire, V. & Grégoire, M. Atlas-based delineation of lymph node levels in head and neck computed tomography 

images. Radiotherapy and Oncology 87, 281–289 (2008).
 17. Gorthi, S. et al. Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas 

registration. IEEE Journal of Selected Topics in Signal Processing 3(1), 135–146 (2009).
 18. Szujo, S. et al. The impact of post-radioiodine therapy SPECT/CT on early risk stratification in differentiated thyroid cancer; a bi-

institutional study. Oncotarget. 8(45), 79825–79834 (2017).
 19. Raghavendra, U. et al. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions. 

Ultrasonics 77, 110–120 (2017).
 20. Acharya, U. R., Faust, O., Vinitha, S. S., Molinari, F. & Surie, J. S. Thyroscreen system: high resolution ultrasound thyroid image 

characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Computer 
Methods and Programs In Biomedicine 107(2), 233–241 (2012).

 21. Chen, H. L., Gang, B. Y., Liu, W. J., Chen, Y. D. & Liu, D. Y. A three-stage expert system based on support vector machines for thyroid 
disease diagnosis. Journal of Medical Systems 36(3), 1953–1963 (2011).

 22. Dogantekin, E., Dogantekin, A. & Avci, D. An expert system based on generalized discriminant analysis and wavelet support vector 
machine for diagnosis of thyroid diseases. Expert Systems with Applications 38(1), 146–150 (2011).

 23. Li, H. et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Scientific Reports 8, 
6600 (2018).

 24. Halicek, M. et al. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. Journal of 
Biomedical Optics 22(6), 060503 (2017).

 25. Obermeyer, Z. & Lee, T. H. Lost in Tought - Te Limits of the Human Mind and the Future of Medicine. The New England Journal of 
Medicine 377, 1209–1211 (2017).

 26. Lee, J. G. et al. Deep Learning in Medical Imaging: General Overview. Korean Journal Of Radiology 18, 570–584 (2017).
 27. Zhao, Z. et al. Investigation and improvement of multi-layer perception neural networks for credit scoring. Expert Systems with 

Applications 42, 3508–3516 (2015).
 28. Yun, J. et al. Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing 

glioblastoma from primary central nervous system lymphoma. Scientific Reports 9(1), 5746 (2019).
 29. Zhou, Z., SiddiqueeM. M. R., Tajbakhsh, N., Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In 

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Lecture Notes in Computer 
Science, 11045 (2018).

 30. Ronneberger,O., Fischer, P., Brox, T.U-net: Convolutional networks for biomedical image segmentation. In: International Conference 
on Medical Image Computing and Computer-assisted Intervention. 234–241 (2015).

 31. Behrenbruch, C. P. et al. Image filtering techniques for medical image post-processing: an overview. The British Journal of Radiology 
77, S126–S132 (2004).

 32. Jianga, F. et al. Abdominal adipose tissues extraction using multi-scale deep neural network. Neurocomputing 229, 23–33 (2017).
 33. Qi, X. et al. Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171, 1230–1241 (2016).
 34. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networking 61, 85–117 (2015).

https://doi.org/10.1038/s41598-020-64455-w


1 2Scientific RepoRtS |         (2020) 10:7738  | https://doi.org/10.1038/s41598-020-64455-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

 35. Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 39(12), 2481–2495 (2017).

 36. Stapleford, L. J. et al. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. International Journal 
of Radiation Oncology Biology Physics 77(3), 959–966 (2010).

 37. May, S. et al. Computer-assisted interpretation of planar whole-body bone scans. Journal of Nuclear Medicine 49(12), 1958–1965 
(2008).

 38. Li, H. et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Scientific Reports 
8(1), 6600 (2018).

 39. Halicek, M. et al. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. Journal of 
Biomedical Optics 22(6), 60503 (2017).

 40. Ma, L, Ma, C., Liu, Y. & Wang, X.Thyroid diagnosis from SPECT images using convolutional neural network with optimization, 
Computational Intelligence and Neuroscience (2019).

 41. Kavitha, M. S. et al. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced 
pluripotent stem cells. PLOS ONE 12(12), e0189974 (2017).

Acknowledgements
M.S.K. and T.K. are thankful to the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number: 
18F18112).

Author contributions
Conception and design (M.S.K.); analysis and interpretation (M.S.K., C.H.L., and B.C.A.); writing the article 
(M.S.K.); critical revision of the article (K.S.S., T.K., and B.C.A.); final approval of the article (M.S.K., C.H.L., 
K.S.S., T.K., and B.C.A.); data collection (M.S.K. and C.H.L.); statistical expertise (M.S.K.); literature search 
(M.S.K. and C.H.L.).

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.K. or B.-C.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64455-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning enables automated localization of the metastatic lymph node for thyroid cancer on 131I post-ablation whole-bo ...
	Materials and methods
	Patients. 
	Data acquisition. 
	Data enhancement. 
	Architecture design for localization. 
	Experimental setup. 
	Comparison methods and evaluation metrics. 


	Results
	Discussion
	Conclusions
	Acknowledgements
	Figure 1 Original input 131I post-ablation whole-body planar scans affected by noise artifacts showing (a) both the metastatic lymph node and remnant tissue and (b) background oral cavity regions without the metastatic lymph node and remnant tissue (A).
	Figure 2 Cropped input image focused on the metastatic lymph node and remnant tissue from the original anterior 131I post-ablation whole-body planar scans (A).
	Figure 3 Multilayer fully connected deep network architecture for localization of the metastatic lymph node from thyroid remnant tissue (A).
	Figure 4 Localization results of the metastatic lymph node (red) and remnant tissue (green).
	Figure 5 Performance comparison among the proposed, proposed with post-processing, and manual methods for localization of the metastatic lymph node and remnant tissue in terms of mean dice similarity coefficient (A).
	Figure 6 Box plot distributions and comparison of the proposed and two physicians represented as P1 and P2 for localization of the metastatic lymph node and remnant tissue on the pilot study dataset in terms of precision (A), recall (B), and F1-score valu
	Figure 7 Localization results of the metastatic lymph node (red) and remnant tissue (green) using the pilot study dataset.
	Table 1 Comparison of the performance of the proposed method without and with post-processing and the physician’s manual method using post-ablation SPECT/CT.
	Table 2 Five-fold cross validation performance of the proposed method using post-ablation SPECT/CT.
	Table 3 Pilot study datasets showing the performance metrics and significance results of the proposed approach and each physician expert to localize the metastatic lymph node and remnant tissue.




