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� Abstract
Last decade’s advancements in optofluidics allowed obtaining an ever increasing inte-
gration of different functionalities in lab on chip devices to culture, analyze, and
manipulate single cells and entire biological specimens. Despite the importance of opti-
cal imaging for biological sample monitoring in microfluidics, imaging is traditionally
achieved by placing microfluidics channels in standard bench-top optical microscopes.
Recently, the development of either integrated optical elements or lensless imaging
methods allowed optical imaging techniques to be implemented in lab on chip systems,
thus increasing their automation, compactness, and portability. In this review, we dis-
cuss known solutions to implement microscopes on chip that exploit different optical
methods such as bright-field, phase contrast, holographic, and fluorescence micros-
copy. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of Interna-

tional Society for Advancement of Cytometry.
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OPTICAL microscopy is one of the most widely used imaging tools in material sci-
ences, molecular biology, life sciences, and environmental monitoring. The continu-
ous improvement of spatial and temporal resolution of imaging systems has guided
the research and the industrial development of optical microscopy worldwide in the
last few centuries. At the same time, new contrast mechanisms have been continu-
ously conceived, implemented, and improved including, among others, brightfield,
darkfield, phase contrast, holographic, fluorescence, and Raman microscopies (1).

Several challenges need to be faced for the future development of optical
microscopy and its adoption in large scale applications, such as (i) point of care
diagnostics in healthcare (2), (ii) environmental and pollution monitoring (3),
(iii) field analyses and in situ measurement campaigns (4). A major challenge is the
reduction of the production costs, which should be compatible with mass produc-
tion. The need for low cost microscopes is particularly relevant in all developing
countries, considering the lack of analysis laboratories and large imaging
infrastructures (5–7). Then, for a widespread diffusion, the development of portable,
automated and easy to use optical microscopes is essential. In addition, future
microscopy devices should have a flexible design that allows for customization with
various samples. Finally, for the study of large sample populations the microscope
must have high throughput capabilities. This is required for the majority of pharma-
ceutical and drug-screening studies. Concerning throughput optimization, a possible
approach is to enlarge the field of view at given frame rate, so to image a larger
amount of samples per time, potentially without affecting the image quality (8). An
alternative approach consists in replacing the sample under analysis. This can be
done by flowing the sample through a fluidic channel, thus permitting a continuous
sample replacement in the detection region (9).

As a matter of fact, a valuable solution, which can fulfill all the previously men-
tioned requirements is given by the use of Lab On a Chip (LOC) platforms (10).
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These systems aim to concentrate different instrumentations
and functionalities, normally present in biological or chemical
laboratories, into a single platform with dimensions that typi-
cally range from millimeters to few centimeters. In the field of
life sciences, these devices offer the possibility to integrate a
broad spectrum of features, including chemical sensing, DNA,
protein and single cells analysis, single-cell sorting and PCR
or reactor vessels (11–16). Optofluidic platforms can be also
combined with techniques that allow optimizing the analysis
throughput (17,18). Furthermore, LOC allow one to manipu-
late cells, treat them mechanically and pharmaceutically (19),
create cell aggregates, complex three-dimensional tissue cul-
tures (20), and even replicate in vivo organ functions (21).

The core of LOC devices is usually a network of micro-
channels that are used to process the sample. The cross-
section of the channels can potentially be smaller than the
diameter of a human hair, from tens to hundreds of micro-
meters, allowing one to manipulate small volumes of liquids
(generally between 10−9 and 10−18 l)(22). The use of LOC has
several benefits: (a) the small size of the device reduces the
amount of required reagents, solvents and samples; (b) the
integration of processes that would require a whole set of bulk
instruments reduces the costs and lowers the risk of sample
contamination due to external contact; (c) the use of a micro-
fluidic system allows automatic delivery of samples, fostering
high throughput capabilities.

Due to these properties, LOC can be the answer to the
limits of standard microscopy, in the form of compact opto-
fluidic platforms where both optical and fluidic components
are integrated (23,24). We will refer at these implementations
as Microscopes On Chip (MOC), indicating in particular the
devices in which microfluidic channels are integrated with at
least one optical component within the lab-on-chip.

Optofluidics (25,26), being the science that originates
from the synergy of microfluidics and optics, allows one to
combine the advantages of the microfluidic handling with the
sensitivity of optical detection (27). Two different approaches
can be distinguished: the off-chip and the on-chip. The first
one envisages the use of microfluidic chips with external bulk
optical elements, permitting good sensitivity of the measure-
ments, but with the drawback of a potentially complex align-
ment of the optics with the fluidic microchannel and a
limited portability of the chip. The on-chip approach instead
consists in optical elements fully integrated in the microflui-
dic platform, guaranteeing the compactness and portability of
the devices and, in some cases, allowing a stable alignment of
the different components.

In this article, we present a review of different
approaches to develop MOCs distinguished on the basis of
the implemented optical method. We discuss two main cate-
gories, namely transillumination (including bright-field, phase
contrast and holographic) and fluorescence microscopy: each
category includes different devices that reinvent the standard
approach on a compact platform.

As we will discuss, these configurations not only address
and overcome the limitations of standard microscopy (i.e., the
throughput, the cost and the portability), but in some cases

guarantee diffraction limited resolution (or even super-resolu-
tion), comparable with the one obtained with classical instru-
ments. The samples that can be processed in MOCs range from
single cells (10–20 μm) to cellular spheroids (200–300 μm), to
worms or even embryos (≈1 mm), underlying the high versatility
of these platforms.

An additional feature of microfluidic devices is the possi-
bility to optimize the fluidic circuit (28–38) to maximize the
device throughput when combined with the proper optical
imaging technique, the sample portability, the automation, or
to facilitate the measurement protocols to perform imaging
under specific sample conditions, such as under different drug
exposures.

Due to their relevance in term of portability and low
cost, smartphone based MOCs are also described in the last
section. In these devices the phone can be used as a valuable
tool to provide both the light source and the optical detection,
while a microfluidic device is mounted on the phone and
used to process the sample (39). The use of the phone, both
as source and as detector, directly guarantees the compactness
of the system, making it potentially useful as a component of
the microscope (40) (Table 1).

Transillumination MOCs

Transillumination refers to microscopy methods that use
light transmitted through a specimen, with the light source
(coherent or incoherent) positioned on one side of the sample
and the detector on the opposite side. It includes, among others,
bright field, phase contrast and holographic microscopy.

Transillumination can be label-free, allowing in many
cases a direct analysis of the sample without the need of pre-
treatment or staining. In literature there are several examples
of devices that use transillumination microscopes integrated
on a chip, based on different imaging approaches
(23,24,41,42). A very simple but also effective method is the
shadow image microscope, which allows lens-less image
acquisition and does not need coherent light sources or com-
plex post image processing. Lange et al. pioneered this field
(43), introducing a robust and compact device for the investi-
gation of the effects of spaceflight on Caenorhabdtidis Elegans
worms in terms of ageing and longevity. The system includes
an LED light source and a microfluidic culture chamber
placed above a CMOS camera, so that the specimen casts a
shadow on the camera, once illuminated. This permits to
monitor the sample behavior even under unconventional set-
tings, such as spaceflight conditions. A device based on a simi-
lar principle was presented by Ozcan and Demirci (LUCAS),
where shadow images are acquired with a CCD camera placed
in proximity to the sample. They demonstrated the possibility
to count cells over a very large field of view, two orders of
magnitude larger than that of a conventional microscope (44).
Despite the great simplicity of this method, one main draw-
back of the shadow imaging approach is its low resolution.
This is limited by the pixel size (usually >3 μm) and it highly
affects the quality of the acquired images; smaller pixels may
be available, but at the price of a reduced light sensitivity.
Indeed, since resolution is an essential aspect in microscopy,
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several approaches have been adopted to overcome this issue.
The Optofluidic Microscope (OFM) (45,46), allows one to
acquire 2D images at a resolution higher than the pixel size
without affecting the device simplicity. To increase the resolu-
tion with respect to standard shadow imaging, a thin metallic
layer with apertures smaller than the pixel size is deposited
above the CMOS camera. The subsequent sample translation
allows recording the image of the whole sample at high resolu-
tion. A simplified version of the device foresees the use of only
two aperture grids (1 μm diameter) placed in correspondence
to the pixels and tilted with respect to the fluidic channel
where the sample is flowing, as shown in Figure 1a. This
device was validated on different biological samples
(C. elegans, Chlamydomonas cells) demonstrating that it is a
valuable tool for cell counting and potentially for screening of
diseases. The device resolution is related to the aperture size
and decreases by increasing the distance between the specimen
and the camera. To reduce possible motion artifacts, the fluid
velocity must be maintained constant and sample rotations
should be avoided.

A different approach named Holographic Optofluidic
Microscopy (HOM) was presented by Bishara et al., who
demonstrated high quality imaging of C. elegans, based on

partially coherent in line digital holography (DILH) and multi
frame pixel super-resolution (47). To highlight the advantages
of this method, it is useful to first recall the basic principles of
in line holography, which is based on the interference of the
light scattered by the sample and the unperturbed illumina-
tion light. The resulting pattern, which contains information
on the phase and the amplitude of the object wave was, in the
first implementation of holography, recorded on a photo-
graphic target. The reconstruction process mainly consisted
in illuminating the target with the same reference beam
(48,49). The original approach has been quickly replaced by
digital detection, which is performed by recording the pattern
on a sensor and simulating the illumination by the reference
beam with a computer, through an iterative wave propagation
algorithm (50). With respect to other approaches (51), the
configuration introduced by Ozcan’s group foresees a large
distance between the sample and the light source, with respect
to the sample-camera one, as indicated in Figure 1b. In this
way, the fringe magnification is approximately 1 and the field
of view equals the sensors active area. Moreover, a source
with low coherence can be used, due to the reduced path dif-
ference between the two interfering beams. In this specific
case an LED source filtered by a large aperture (50–100 μm)

Figure 1. (a) Scheme of the OFM, capable to acquire images at high resolution using a grid of small apertures placed in between the

sample and the acquisition camera (Reproduced from Ref. 46, with permission from the National Academy of Sciences). (b) Working

principle of the HOM presented by Bishara et al., where a microfluidic channel is placed directly over a CMOS camera and it is illuminated

by a partially coherent light source. The device uses digital in line holography and subpixel shift to acquire high resolution images

(Reproduced from Ref. 47, with permission from the Optical Society of America). (c) Scheme of the device presented by Bianco et al. 2017,

where a diffracting grating is integrated in a commercially available microfluidic chip, which allows off-axis digital holography by means of

a single beam (reproduced from Ref. 48, with permission from Springer Nature). [Color figure can be viewed at wileyonlinelibrary.com]
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placed several centimeter above the sample is used. With this
layout, the resolution limit is mainly given by the pixel size,
which still may undersample the lens-free holograms. To
overcome this further limitation, it was shown that it is possi-
ble to acquire multiple holograms sub-pixel shifted and to
process them through an iterative algorithm capable to recon-
struct the image with a resolution higher than the one based
on the physical pixel dimension (47). In the HOM device,
sub-pixel shifted frames are acquired while the sample flows
through the microfluidic channel placed above the camera.
Similar results have been obtained also shifting the light
source, which was accomplished in different ways, either
scanning the 2D light aperture or using a matrix of fiber-
coupled LED sequentially switched on in a very compact and
portable microscope device, and avoiding any mechanical
component translation (52,53). In these devices, using 2.2 μm
pixel size a resolution higher than 1 μm was achieved over a
24 mm2

field of view. Another version of DILH on chip, pre-
sented by Vercruysse et al. (54) is based on the close proxim-
ity of a point source to the microfluidic device; this was
obtained using a waveguide, placed just above the microflui-
dic chip. A nanosecond laser is coupled to the waveguide and
the light is scattered whenever a cell flows in the detection
region. Scattered and unscattered light interfere on a high-
speed CMOS camera, allowing them to image cells flowing at
c.a. 1 mm/s.

Another similar approach is the SROFM device (Sub-
pixel Resolving OFM) presented by Zheng et al. (55) who
combined OFM and digital in line holography using a micro-
fluidic channel in direct contact with a CMOS camera, but
without the need of a grid of thin aperture, since the resolution
in this case is obtained exploiting the sample flow to obtain
sub pixel image shifts. The main drawbacks of the methods
based on DILH are related to the complexity of the reconstruc-
tion algorithm and the fact that a solution of the iterative
phase recovery process is not always guaranteed. A different
example of MOC based on digital holography was presented
by Bianco et al. (48,56). The authors tried to overcome the lim-
itations of DILH approach presenting a lens based, off-axis
digital holography on chip. Their solution, schematically
reported in Figure 1c, foresees the integration on a commer-
cially available microfluidic chip of the microoptical elements
necessary for the holographic imaging (i.e., microlenses and
diffractive gratings), which are optimized to perform off line
holography with a single impinging beam, so as to give rise to
a very compact and robust platform for on chip microscopy
with no need of any complex external apparatus.

Fluorescence MOCs

Fluorescence microscopy is one of the major tools in bio-
medicine (57) and plays a relevant role in the observation of
cellular and subcellular details in biological specimens. With
respect to bright field microscopy, it allows one to investigate a
biological system with higher specificity, taking advantage of
fluorophores conjugated biomolecules or genetically encoded
probes.

Epifluorescence, laser scanning confocal and spinning disk
confocal microscopes are the most common equipments in
imaging facilities worldwide. Each microscope modality has
advantages and limitations compared to the others: epi-
fluorescence microscopes are systems that allow rapid acquisi-
tion of fluorescent specimens over a large field of view, but do
not provide optical sectioning (the ability to section a cell or a
tissue in virtual slices and in 3D). Confocal microscopes have
been developed to address this issue, but are strongly affected by
photo-bleaching and photo-toxicity in live imaging applications.

These fluorescence microscopy configurations have been
extensively used in combination with microfluidic devices,
primarily for two reasons: i) Microfluidic devices allow grow-
ing biological samples directly on a chip, controlling the envi-
ronment in which cellular systems are growing, injecting
nutrients or drugs, and reproducing the dynamic conditions
present in a living organ (58). In these systems, microscopy is
used as a tool to observe the biological samples within the
microfluidic channel, typically in time lapse. These devices
have been optimized to study samples in a variety of different
spatial scales, from single molecules (59), viruses (60), bacte-
ria (61), single cells (62) to mm-sized tissues or organisms,
including Caenorhabditis elegans (37,63) and zebrafish
embryos (29,64,65). ii) Microfluidic devices allow one to flow
the sample through a microscope, providing automatic sam-
ple scanning and increasing the imaging throughput. There-
fore, in the last years, these devices have been optimized for
many fluorescence-based applications: imaging flow cyt-
ometers and parallelized imaging devices have been developed
(31,32,38,66–68). In these examples, the microscope is not
necessarily integrated on the chip and bulk external instru-
mentations are still required to image the sample. More com-
pact solutions foresee the integration in a single chip of the
fluidic and the optical components for fluorescence excitation
and/or detection. A particularly compact MOC is the lens-less
fluorescence microscope (69–72), which is shown in some of
its implementations in Figure 2. In particular, Figure 2a
shows how fluorescence is directly detected, integrating an
image sensor-array on the chip. The samples are placed on
the sensor (or on a fiber optic faceplate coupled to the sensor)
and the excitation light is rejected through total internal
reflection that occurs at the bottom facet of the sample sub-
strate. The image is formed by deconvolution of the acquired
fluorescence with the point spread function of the lens-free
system, and the resolution is limited to a few microns
(< 4 μm) by the pixel size of the sensor (or by the fiber optic
diameter in the faceplate). To improve the resolution of lens-
free MOCs, Pang et al. (73) used an integrated Fresnel zone
plates array that allowed them to generate an array of focused
light spots (Fig. 2b). They collected the fluorescence from
samples flowing through the spots and rendered fluorescence
microscopy images at a resolution determined by the focused
light spot size (0.65 μm).

Within the realm of fluorescence microscopy, a remark-
able interest has been dedicated to Light-Sheet Fluorescence
Microscopy (LSFM), also called Selective Plane Illumination
Microscopy (SPIM) (74). This technique combines the optical
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sectioning capability, typical of confocal systems, with the
ability to rapidly scan a large field of view, typical of wide-
field epifluorescence microscopy. The major advantages of
LSFM include the high acquisition speed over an extended
3D samples, and the reduced photo-toxicity compared to con-
focal microscopy. Rapid acquisition is at the basis of high
throughput imaging and, for this reason LSFM can deeply
benefit from microfluidic integration. As a consequence, sev-
eral versions of light sheet based MOCs have been presented
in literature, each characterized by a different level of
integration.

The idea to combine fluidic devices with a light sheet
microscope was firstly proposed by Bruns et al. (75). The
authors used a glass capillary to hold the sample and deliv-
ered a fluorescent marker through the capillary. Wu
et al. used a different capillary to deliver a large number of
samples to the microscope, demonstrating the first flow cyt-
ometer based on LSFM. This system was specifically opti-
mized for phytoplankton analysis (76) and later extended to
two-color imaging (77). Gualda et al. developed a fluidic net-
work to scan large samples (as big as a zebrafish embryo)
automatically through a static light sheet (78).

The sample delivery system of the imaging flow cyt-
ometer was further integrated in a chip (Fig. 3a) by Regmi
et al. (79,82): a PDMS chip was coupled to a custom light
sheet microscope to flow cells at high rate. In parallel, Desch-
out et al. (80) created the first chip that included an optical
component for the generation of the light-sheet itself
(Fig. 3b). Being produced by spin coating deposition, this chip
had the advantage to be potentially compatible with mass
production, but the light sheet was created by a planar wave-
guide: the light was, therefore, inherently diverging, and it
was difficult to tailor the delivery system to samples that are
larger than fluorescent beads or membrane vesicles.

Both sample delivery and scan through the light-sheet,
were finally integrated by Paiè et al. (81) in a glass chip
(Fig. 3c). Here, using femtosecond laser micromachining, an
optofluidic device that fully integrates the illumination and
sample scanning was realized. The light sheet is formed by an
optofluidic cylindrical lens (83) and is focused in a microflui-
dic channel where the samples flow at a constant velocity

through the light sheet, thus allowing automatic imaging of
tissue mimics (cellular spheroids).

Future implementations of LSFM on a chip will likely
bring to even more compact and portable devices. A possible
strategy could come from the combination of lens-less
microscopy with tailored light sheet illumination. Conversely,
high-resolution imaging will be increasingly required for
accurate screening of cells and small organisms. So far, some
miniaturized chips have fostered high and even super-
resolution light sheet microscopy. In particular, micro-
fabricated reflective components have been developed and tai-
lored for light sheet illumination by Galland et al. and Zagato
et al. (84,85): in these implementations a laser beam is
reflected horizontally on the sample by a 45� mirror and
forms the light sheet in the image plane of the detection
objective of an upright or inverted microscope. The buffer
solution can be further exchanged automatically by a micro-
fluidic system coupled with the chip that incorporates the
mirrors (86). On the basis of this interest for high resolution
devices, we foresee that new solutions that fully integrate
super-resolution light sheet microscopy on a chip will be con-
ceived and implemented in the next future.

Mobile Phone MOCs

In the last decade, there has been an enormous develop-
ment of portable microscope systems based on mobile
phones. Thanks to the high quality electronical and optical
components already present in mobile phones, it is possible
to implement a compact digital microscope with a reduced
number of external components. In the next paragraphs, we
will report and discuss the existing attempts to perform digi-
tal microscopy with mobile phone based devices, discussing
them from an optical point of view. In the most recent exam-
ples, a dedicated software application (App) is always devel-
oped to control the device electronics and perform data
analysis, nevertheless the evaluation of the App performance
goes beyond the scope of the present review.

The first attempts to introduce mobile phones into
microscopy were focused in using the phone simply as the
imaging device (coupling the phone to a traditional micro-
scope) or as a data transmitter (87,88). It was in 2009

Figure 2. Examples of lens free fluorescence microscopes. (a) Cells are flown in a microfluidic chip that is in attached to a filter coated

imaging sensor; fluorescent excitation is achieved using side illumination through a rhomboid prism (reproduced with permission from

Ref. 71, with permission from The Royal Society of Chemistry). (b) A Fresnel Zone Plate creates an array of foci inside the channel; the

sample flows across the array of focused light spots and the fluorescence emissions are collected by the sensor (reproduced from Ref.

(73) with permission from The Royal Society of Chemistry). [Color figure can be viewed at wileyonlinelibrary.com]
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when, for the first time, a research group implemented an
entirely integrated mobile phone microscopy system that
allowed acquiring bright field and fluorescence images of
the specimens under test (7). The device needed external
optical components like two lenses (collector and con-
denser) for the illumination, a microscope objective, an eye-
piece for the imaging and filters for excitation and
emission. All these components were mounted onto an
optical rail system to keep them perfectly aligned with the
mobile phone camera. Although the system was smaller
than a traditional microscope, it was still cumbersome in
comparison with the mobile phone. More recently, Ganguli
et al. (89) developed a point-of-care platform for the detec-
tion of viruses as Zika, Chikungunya, and Dengue from
whole blood samples. Here the mobile phone was used to
image the fluorescence and to send the data to an external
computer for analysis.

Ozcan and coworkers (39,90) were the first to use a
mobile phone microscope to image “moving” specimens.
They developed an imaging cytometer that used the phone
camera to capture the fluorescence images of a sample flow-
ing inside a microfluidic channel. The excitation was per-
formed through external diodes and, thanks to proper lenses
and a filter to remove the excitation residual signal, they
acquired fluorescence images that were rapidly analyzed to
determine the particle/cell number flowing inside the

microfluidic channel. All the optical components and the
microfluidic chip were fixed into a mechanical support
attached to the mobile phone. A less compact cytometer has
been demonstrated by Jagannadh et al., this time exploiting
bright field imaging, achieving a counting throughput of
27,000 cells per minute (91).

Over the years the main developments in mobile phone
microscopy have been focused in increasing their portability
and demonstrating their applicability in several biological and
laboratory analysis tests. To increase the portability, it is
important to reduce the size and the number of external com-
ponents. One way consists in avoiding the external device,
as demonstrated by Hutchison et al. (92). Their system was
extremely compact, they used glass beads as lenses and
thanks to a 3D printed holder the lenses and microfluidic
chip were fixed to the mobile phone. As proof of concept,
their system was used to grow and detect Bacillus anthracis
spores. This “miniaturization” concept was also followed by
Martínez Vázquez et al. (93) to implement a fluorescence
flow cytometer on a mobile phone. Also in this case, all
the optical components and the microfluidic chip are fixed
to the mobile phone thanks to a dedicated 3D printed
holder. Notably, for the first time the illumination in this
device is done by exploiting the LED of the mobile phone.

From an analytical point of view, these microscopes have
been already used into a broad spectrum of experiments. For

Figure 3. Steps toward Light Fluorescence Microscopy on a chip. (a) A microfluidic chip is integrated in a custom Light sheet Microscope

(Reproduced from Ref. 79, with permission from AIP Publishing); used in accordance with the Creative Commons Attribution (CC BY)

license). (b) A planar waveguide is integrated on a chip to create a light sheet directly on the sample (Reproduced with permission from

Ref. 80, with permission from The Royal Society of Chemistry). (c) An optofluidic lens is integrated on a chip to focus a light sheet in the

center of a fluidic channel, where multiple samples are automatically scanned and reconstructed in 3D (reproduced from Ref. (81) with

permission from The Royal Society of Chemistry). [Color figure can be viewed at wileyonlinelibrary.com]
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example, Cho et al. (94) exploited a smartphone based fluo-
rescence microscope as an in situ monitoring tool for Organ
on chips experiments. They developed a dual-mode assay to
monitor the presence and the outflow of γ-glutamyl transpep-
tidase (GGT) from the organ on chip by the fluorescence
detection of captured and immunoagglutinated anti-GGT
conjugated nanoparticles. Kanakasabapathy et al. have devel-
oped an automated CD4 testing (HIV/AIDS) based on a com-
pact and cheap mobile phone cytometer (see Fig. 4). They
validated the system using HIV-infected and uninfected
whole blood samples, obtaining a good agreement with tradi-
tional laboratory detection systems (95). More recently, Yang
et al. (96) have developed a prototype called Mkit, based on a
smartphone fluorescence microscope to perform experiments
of cell migration and chemotaxis in 3D environments. The
platform was validated testing chemotaxis on purified human
blood neutrophils that were obtained either directly from can-
cer cell lines or from blood drops, demonstrating the possibil-
ity to use it for on-site clinical assays.

Moreover, the versatility of these smartphone microscopes
is favoring their use as rapid test readers for laboratory strip
tests. For example, in lateral flow immune-chromatographic
assays to detect malaria, HIV or tuberculosis (97) and also in
test involving the extraction and identification of Salmonella
pathogenic nucleics acids from field samples (98).

Thanks to the cost effective and compactness of the dedicated
supports, and the ubiquity of smartphones around the world, we
foresee in the next years a fast spread of the mobile phone micro-
scopes, mainly in low resource settings and telemedicine.

CONCLUSIONS

MOC are emerging as valuable tools for sample monitor-
ing in applications that include point of care diagnostics and

in situ measurements. The essential characteristics of low
cost, ease of use, portability, and high throughput can be all
satisfied by the development of multifunctional lab-on-chips.
In this review, we described MOC that integrate optical and
fluidic components, because we believe that this integration is
the roadmap to the realization of compact and portable sys-
tems. We expect that once the microscope is integrated on a
chip, low-consumption power supplies and detectors should be
included so as to achieve true portable microscope on chip
devices. Here we discussed different solutions reported in liter-
ature to implement MOC and we classified them on the basis
of the imaging methods, each of them having pros and cons
depending on the specific application. The lensless imaging
techniques, both in transillumination and in fluorescence
microscopy implementations, appear to be particularly appeal-
ing for the use of microscopes in areas with limited resources
as in developing countries since they allow detection, counting
and imaging of cells, with a simple hardware. The integration
of optical components, such as the implementation of light-
sheet illumination in microfluidic chips, allows for high-
resolution three-dimensional imaging with high throughput,
which is fundamental for accurate screening of cells. A signifi-
cant step forward toward the real portability of microscopes
has been instead made with the exploitation of smartphones in
the microscopes’ realization. We believe that the combination
of these compact and low cost implementations will contribute
to a wide spread of MOC devices and to their integration in
microfluidic platforms for real-time and in situ analyses.
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