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Abstract: Lipid rafts are critical cell membrane lipid platforms enriched in sphingolipid and choles-
terol content involved in diverse cellular processes. They have been proposed to influence membrane
properties and to accommodate receptors within themselves by facilitating their interaction with
ligands. Over the past decade, technical advances have improved our understanding of lipid rafts as
bioactive structures. In this review, we will cover the more recent findings about cholesterol, sphin-
golipids and lipid rafts located in cellular and nuclear membranes in cancer. Collectively, the data
provide insights on the role of lipid rafts as biomolecular targets in cancer with good perspectives for
the development of innovative therapeutic strategies.
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1. Introduction

Over the last two decades, scientific research has conceptually changed the structure
and function of the cell membranes described about 40 years ago. It was the faraway 1972
when Singer and Nicolson described the fluid mosaic theory, hypothesizing that the cell
membrane is composed of a homogeneous lipid bilayer formed by glycerophospholipids
and cholesterol, and inside proteins playing the main communication and response roles of
the cell membrane. Over time, a mosaic of domains with unique biochemical compositions
has been demonstrated, and among them, lipid rafts. Originally, lipid rafts were identi-
fied as ordered structures due to the aggregation of sphingolipids that were responsible
for their molecular composition and properties, different from those of the surrounding
membrane. Later, the presence of cholesterol within a liquid-ordered phase that interacted
with sphingolipids by stabilizing lipid rafts was demonstrated.

2. Lipid Rafts
2.1. Lipid Rafts in Cell Membrane

In the cell membrane, lipid rafts or cholesterol-sphingolipids enriched domains act as
platforms for cellular and/or exogenous proteins with different functions, including the
shuttling of molecules on the cell surface, organization of cell signal transduction pathways,
entry for pathogens and toxins, and the formation of pathological forms of proteins [1]. For
example, sphingomyelinase influences cell proliferation and migration by regulating the
ceramide/sphingomyelin balance in lipid rafts and thereby changing receptor-mediated
signal transduction [2].

In the brain, lipid rafts are found in neurons, astrocytes, and microglia and play a role
in the organization of multiprotein complexes involved in signal transduction. Cognitive
decline in aging and neurodegenerative diseases is associated with the destructuration of
lipid rafts [3]. Interestingly, gangliosides are enriched in lipid rafts and their levels change
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in healthy aging, Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, amy-
otrophic lateral sclerosis, stroke, multiple sclerosis and epilepsy [4]. Among gangliosides,
monosialoganglioside 1 (GM1) is the most common in lipid rafts of the brain. GM1 in lipid
rafts mediate the pathophysiology of several cellular processes, including development,
differentiation, and protection of neuronal tissue. GM1 has been proposed to play a nega-
tive role in Alzheimer’s disease by changing spatial organization of extracellular amyloid
β [5].

In the inflammation process, lipid rafts contribute to permitting of the entry of bac-
terial pathogens into non-phagocytic cells, i.e., Listeria monocytogenes. In this way, the
microorganism is capable of interacting and crossing physiological barriers, as intestinal,
blood-brain, and placental barriers with severe tissue damage [6]. Moreover, some recog-
nition receptors for viruses, including coronavirus, cluster into lipid rafts [7]. Thus, lipid
platforms are considered as potential targets to block virus entry into endothelial cells [8].

2.2. Lipid Rafts in Nuclear Membrane

Over the past 15 years, significant research has focused on the presence cholesterol-
sphingolipids enriched domains in the inner nuclear membrane. These lipid domains are
now clearly appreciated to function as essential platforms for nuclear function. The inner
nuclear membrane is a highly functional structure [9]. It is internally covered by the nuclear
lamina associated with transcriptionally active chromatin, which includes the site for the
nascent pre-mRNA transcripts. The “textbook” blueprint of nuclear structure and function
describes the periphery of the nucleus and provides a platform for sequestering transcrip-
tion factors away from chromatin, thereby modulating gene expression [10]. However, the
reality is much more complex. The link of active chromatin (chromatin whose DNA is being
duplicated or transcribed) to the nuclear lamina is due to specific lipid domains enriched
in sphingomyelin and cholesterol [11]. In this way, sphingomyelin participates in main-
taining the internal nuclear organization and function. Using sphingomyelinase, coupled
with colloidal gold grains and immune anti-bromodeoxyuridine (BrdU), colocalization of
sphingomyelin and nascent RNA has been demonstrated [12]. The intranuclear injection
of sphingomyelinase destructures the active chromatin with alteration of the RNA tran-
scription [12]. However, nuclear lipid domains contain transcription factors that regulate
mRNA synthesis, i.e., signal transducer and activator of transcription 3 [11]. Interestingly,
it has been demonstrated that both vitamin D3 and its receptor, which is a transcription
factor, are localized in nuclear lipid domains [13,14]. Moreover, dexamethasone, a drug
that acts directly in the nucleus by influencing RNA transcription, localizes in nuclear lipid
domains [15].

3. Sphingolipids in Cancer

Sphingolipids have been identified as key regulators of a wide variety of cellular
processes, including proliferation, differentiation, adhesion, autophagy, inflammation,
migration and angiogenesis, which are crucial in cancer [16].

3.1. Sphingomyelin

Increased levels of sphingomyelin have been found in tumoral tissues such as hep-
atocellular carcinomas [17], compared to normal ones, but the specific changes depend
on the type of cancers. However, sphingomyelin levels appear to be inversely correlated
with the aggressiveness of some colorectal and breast cancer cell lines. Lower levels of sph-
ingomyelin were found in prostate cancer, in nonsmallcell lung cancerand in esophageal
tumor compared with their respective normal tissue due to the dysregulation of its biosyn-
thesis [18]. Interestingly, sphingomyelin biosynthesis might be a downstream target of
oncogenes and might also alter oncogenic activity. For example, upregulation of sphin-
gomyelin synthase 1 transcription, translation and activity by the oncogene Bcr-abl has
been reported in chronic myelogenous leukemia cell lines [19,20]. Pharmacological and
siRNA-mediated inhibition of sphingomyelin synthase 1 in these cells reduced cell growth
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and induced the accumulation of ceramide, together with a reduction in diacylglycerol
levels [19]. However, the maintenance of the correct localization and/or level of sphin-
gomyelin at the plasma membrane is important to preserve the localization of oncogenic
KRAS at the inner leaflet of the membrane and its protumorigenic effects [21]. Interestingly,
the breakdown of sphingomyelin, due to the action of both acid and neutral sphingomyeli-
nases, with the consequent production of different species of ceramides, is involved in
the apoptosis of cancer cells. Notably, ingastric cancer cells gentamicin stimulates acid
sphingomyelinase [22] and vitamin D3 neutral sphingomyelinase [23]. Moreover, vitamin
D3 reduces glioblastoma cell aggressivenessvia neutral sphingomyelinase [24].

3.2. Ceramide

Ceramide is considered to be a mediator of cell death and senescence. Radiation treat-
ment and chemotherapicdrugs, such as doxorubicin, etoposide, vincristine, and celecoxi
band taxol, are known to induce ceramide accumulation, while decreased levels of ce-
ramide are associated with drug resistance [25]. However, accumulating evidence indicates
that distinct ceramide species, which are generated in different subcellular compartments
and/or by different metabolic pathways, might exert different functions. Indeed, the effects
of ceramides with specific chain lengths on cell fate appear to be cell-type specific. For
example, a shift in ceramide composition from C24 to C16 increases the susceptibility
to apoptosis in HeLa cells [26], but C16:0-ceramide generated by ceramide synthase 1
suppresses tumor growth, while C18:0-ceramide generated by ceramide synthases 5/6
protects tumors from apoptosis in human head and neck squamous cell carcinomas [27].
Celecoxib mediates its anti-proliferative effects, in part, by selectively activating ceramide
synthase 6 in human colon carcinoma cells, leading to an increase in C16:0-ceramide [28].
Ceramide synthase 6 and C16-ceramide levels are higher in acute lymphoblastic leukemia
cells compared to peripheral blood mononuclear cells and T lymphocytes derived from
healthy human volunteers and it has been demonstrated that ceramide synthase 6 interferes
with Fas-associated protein with death domain, death-inducing signaling complex (FADD
DISC). FADD DISC assembly inhibiting the extrinsic pathway of apoptosis upon drug treat-
ment, and thus inducing chemo-resistance in T-acute lymphoblastic leukemia cell lines [29].
The levels of C16:0-ceramide, C24:1-ceramide and C24:0-ceramide were found to be higher
in malignant breast tumors than in benign and normal tissue and to correlate with disease
severity [28]. By contrast, Moro et al. (2018) have found that the increased ceramide levels
are inversely associated with aggressive phenotypes in breast cancers [30]. The authors
also reported that a high ratio sphingosine-1-phosphate (S1P)/ceramide correlates with
high proliferation and that patients with high expression of ceramide-generating enzymes
exhibit worse prognosis, suggesting that this effect was probably due to the proliferative
effect of S1P originating from ceramide. Acid ceramidase, the enzyme that catalyzes the
formation of sphingosine, is over-expressed in 70% of head and neck squamous cell tumors
compared with normal tissues, suggesting that this enzyme may play an important role
in facilitating head and neck squamous cell cancer growth. Indeed, the over-expression
of acid ceramidase in SCC-1 cells increases resistance to Fas-induced cell death, whereas
down-regulation or chemical inhibition of acid ceramidase sesensitizes the SCC-1 cancer
cell line to Fas-induced apoptosis [31]. Immunohistochemical analysis of primary prostate
cancer samples showed that higher levels of acid ceramidase were associated with more ad-
vanced stages of this neoplasia [32]. Moreover, radiation-induced acid ceramidasee confers
prostate cancer resistance and tumor relapse [33]. It has been reported that acid ceramidase
promotes the nuclear export of phosphatase and tensin homolog (PTEN) through S1P-
mediated Akt signaling, leading to tumor cell proliferation, and resistance to therapy [34].
Elevated expression of acid ceramidase in breast and epithelial ovarian cancers has been
associated with positive outcomes [35,36].
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3.3. Ceramide-1-Phosphate

Ceramide kinase (CerK) phosphorylates ceramide to form ceramide-1-phosphate
(C1P), a molecule involved in proliferation, migration and inflammation [37] via the pro-
duction of several cytokines and chemokines [38]. C1P-enhanced pancreatic tumor cell mi-
gration and invasion are dependent upon PI3K, Akt1, mTOR1, ERK1-2, and RhoA/ROCK
signaling pathways [39]. CerK activity is required in the proliferation of neuroblastoma
cells [40], of breast cancer cells [41], and of Kaposi sarcoma stem cells [42]. In metastatic
breast cancer cells, CerK is upregulated and contributes to the migration and invasion
through PI3K/Akt/Rho kinase activation [43]. By contrast, downregulation of CerK
increases migration in A549 lung cancer cells by stimulating Rac1 activation and lamel-
lipodium formation [44].

3.4. Sphingosine-1-Phosphate

Sphingosine 1-phosphate (S1P) is generated by sphingosine kinases 1 and 2 (SphK1
and SphK2) and is a bioactive lipid mediator, which acts both as a second and a first
messenger. It is able to bind to five G-protein coupled receptors S1P1R-5 and to regulate
different aspects of cancer progression, including cell proliferation, apoptosis, migration,
inflammation and angiogenesis [16,45]. Many studies have suggested that the SphK1/S1P
axis could play a role in the promotion of several types of tumors, based on the overexpres-
sion of SphK1 in tumor cell lines and in patient samples, and sometimes, on the measured
increased S1P levels in tumors and/or in patient blood. These studies have recently been
reviewed for breast [46], ovarian, [47], and gastrointestinal cancers [48], hepatocellular
carcinoma [49], melanoma [50] and glioblastoma [51]. High S1P in breast tumor tissue
is significantly associated with lymphnode metastasis [52]. In addition, S1P increased
angiogenesis. Thus, in breast cancer, the SphK inhibitor decreases angiogenesis around the
primary tumor and in lymph nodes [53]. From these observations, SphK/S1P molecules
have been considered cancer biomarkers or therapeutic targets. However, the utility of
targeting S1P in tumors is hindered by the role of S1P1 on immune cell trafficking [54].
Recently, it has been proposed that targeting S1PR4, which has a minor effect on immune
cell trafficking, could be a successful alternative. Indeed, S1PR4 ablation reduces mammary
and colorectal tumor growth and improves chemotherapy [55].

3.5. Gangliosides

Some O-acetylated gangliosides, which are transiently expressed during development,
reemerge during tumorigenesis and can be used as tumor markers [56]. GM3 is expressed
in melanoma, but not in normal melanocytes [57]. Expression of disialoganglioside 2
(GD2) and GD3 leads to cell growth and invasion [58]. GD2 might have a role in the
fixation of melanoma cells at metastasized sites [59]. Moreover, it is highly expressed
in neuroblastoma [60] and an anti-GD2 antibody Dinutuximab (Unituxin™) has been
approved by Food Drug Administration and European Medicines Agency for the treatment
of high-risk neuroblastoma patients [61]. GM3 is associated with aggressiveness and
negative outcomes in many types of tumors, such as neuroblastoma, astrocytoma, thyroid
carcinoma, sarcoma, cutaneous melanoma, and non-small cell lung cancer [62]. In addition,
GM3 inhibits tumor cell proliferation through angiogenesis inhibition or decreases in cell
motility [63].

4. Cholesterol in Cancer

Today, the dysregulation of cholesterol metabolism, pathologically associated with
cancer, is the object of extensive discussion. Epidemiological studies reported an associa-
tion between cancer and serum cholesterol levels but these results have not been confirmed
by other authors [64]. Differences in the results might partly depend on the investigated
tumour. A positive association between elevated serum cholesterollevels and increased
cancer risk has been found in melanoma, prostate cancer, non-Hodgkin’s lymphoma,
endometrial and breast cancer [65]. In other types of cancers, no association with hyperc-
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holesterolemia [66] or hypocholesterolemia [67] was found. Another crucial aspect about
cholesterol in cancer relates to the diet. Even if several studies suggest a positive correlation
between dietary cholesterol uptake and cancer risk, these studies are considered to be
questionable, given the poor reliability of dietary investigations [68,69].

Interestingly, cancer development and progression is closely related to cholesterol
metabolism at the cellular level. Less important is the blood cholesterol level [70,71]. Fur-
thermore, studies on intracellular cholesterol traffic inhibitors showed the importance of
subcellular cholesterol distribution [72]. Once synthesized in the endoplasmic reticulum,
cholesterol is distributed to cell organelles, and to the plasma membrane, by sterol transfer
protein [73]. Intracellular cholesterol levels and its compartmentalization are modulated
by a complex and are integrated by a metabolic network involving de novo biosynthesis,
the LDL-cholesterol entry by LDL receptors, cholesterol distribution by sterol transfer-
ring proteins, and cholesterol efflux by ABCA1 and ABCG1 proteins [74]. More than one
gene and/or protein of this complex network can be deregulated in cancer. Indeed, it
has been observed that many enzymes involved in the de novo cholesterol biosynthe-
sis are deregulated in cancer cells, especially 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase (HMGCR), the rate-limiting enzyme of the entire biosynthesis process [75,76].
Statins, a class of HMGCR inhibitors, have anti-cancer activity in a wide range of both
liquid and solid tumours [77], not including invasive breast cancer in postmenopausal
women [78]. Oncogenic and tumor suppressor factors activate or inhibit, respectively, sterol
regulatory element-binding proteins, consequently regulating cholesterol synthesis [79].
Notably, the tumor suppressor protein p53 inhibits the sterol regulatory element-binding
proteins-mevalonate pathway [80]. The analysis of more than 800 human cancer cell lines
showed that inhibition of the mevalonate pathway by p53 activates mechanisms of tumor
suppression in many types of cancer [81]. A role of the interaction between p53 and Hippo
tumor-suppressor pathway in the coordination of cell proliferation has been reported [82].
In addition, several molecules derived from the cholesterol metabolism have also been
implicated in the development of several types of cancer [83], including oxisterols [84],
estrogens [85] and bile acids [86].

Moreover, a lot of experimental evidence underlines a close correlation between
lipid rafts present in tumor-associated macrophages, i.e., macrophages that change phe-
notypes in the tumor microenvironment, and tumor progression and invasion [87]. This
is relevant, considering that tumor-associated macrophages play a role in immunological
suppression [88].

5. Lipid Rafts in Cancer

A large body of work has netted several significant advances in the study of the
role of lipid rafts in cancer. These include molecular mechanisms that have led to the
elucidation of key functions of sphingolipids and cholesterol in the cell membrane and
nuclear membrane platforms. Unwittingly, these advances have highlighted previously
unappreciated complexities of interactions between lipid and protein components of lipid
rafts. Thus, an intensive 10 years of study has led to the discovery that well known proteins
involved in migration, cell adhesion, invasion, angiogenesis and metastasis are localized in
lipid rafts (Figure 1) [89].



Int. J. Mol. Sci. 2021, 22, 726 6 of 17
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Roles of lipid rafts in cancer NO. Lipid rafts are involved in proliferation, apoptosis, migration, cell adhesion, 
and metastasis. Many proteins involved in cancer are localized in rafts. For example, growth factors receptors (GFR) 
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and Fas activate caspase 8 and the apoptotic cascade; the chemokine receptor CXCR4 activation leads to migration; the 
transforming growth factor-1 β receptor (TGFR) is involved in epithelial to mesenchimal transition (EMT). CD44 is local-
ized in rafts, but its role is unclear (2). When it moves out of them, it is able to interact with the metalloproteinase 10 [90] 
and with ezrin, leading to actin remodelling and cell migration. Triangles: ligands of the receptors. See explanations and 
references in the text. 
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than in the respective normal cells [91]. Simulation analysis showed a higher stabilization 
of lipid rafts in cancer cells than in normal cells [91]. 
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membranes. Farnesyl-diphosphate farnesyltransferase 1, a key enzyme of cholesterol syn-
thesis, increases lipid raft content in the membranes of cancer cells [92]. Goossens et al. 
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caused by increased cholesterol efflux due to specific transporters, is responsible for the 
phenotypic reprogramming of macrophages into tumor-associated macrophages, making 
them more responsive to pro-tumor signals such as interleukin-4 and more resistant to the 
action of anti-tumor cytokines such as interferon-gamma [93]. 

Moreover, molecular localization of enzymes of sphingolipid metabolism in lipid 
rafts have led to elucidation of their key function in cancer cells and/or in drug sensitivity. 
SphKs and S1PRss are localized both inside and outside lipid microdomains [94]. SphK1 
phosphorylation and translocation to plasma membrane microdomains is important for 
its oncogenic effects while localization outside the microdomains leads to survival with 
inhibition of proliferation [95]. GMs present in lipid rafts of cancer cells are involved in 
signaling, cell-to-cell recognition, and invasion [57,60]. Notably, GD3 accumulation in 
rafts has been associated with apoptosis induction [96]. GD3 is normally localized at the 
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mitochondrial raft-like microdomains, may trigger events associated with apoptosis, in-
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Figure 1. Roles of lipid rafts in cancer NO. Lipid rafts are involved in proliferation, apoptosis, migration, cell adhesion, and
metastasis. Many proteins involved in cancer are localized in rafts. For example, growth factors receptors (GFR) through
activation of PI3K/AKT or MAPK pathways lead to survival and proliferation; dead receptors (DR) such as TRAIL and Fas
activate caspase 8 and the apoptotic cascade; the chemokine receptor CXCR4 activation leads to migration; the transforming
growth factor-1 β receptor (TGFR) is involved in epithelial to mesenchimal transition (EMT). CD44 is localized in rafts, but
its role is unclear (2). When it moves out of them, it is able to interact with the metalloproteinase 10 [90] and with ezrin,
leading to actin remodelling and cell migration. Triangles: ligands of the receptors. See explanations and references in
the text.

A proteomic analysis of lipid rafts and cytoskeleton demonstrated a stronger protein–
protein interaction network in breast cancer, melanoma, and renal carcinoma cells than in
the respective normal cells [91]. Simulation analysis showed a higher stabilization of lipid
rafts in cancer cells than in normal cells [91].

Significant research has focused on cholesterol and sphingolipids metabolism enzymes
in lipid rafts and has demonstrated that they act as stimulus responders/coordinators,
involved in the cell reaction to several pathophysiological conditions. Recently, cholesterol
metabolism is clearly appreciated to function as a regulator of lipid rafts in cell mem-
branes. Farnesyl-diphosphate farnesyltransferase 1, a key enzyme of cholesterol synthesis,
increases lipid raft content in the membranes of cancer cells [92]. Goossens et al. (2019)
demonstrated that, in ovarian cancer cells, cholesterol depletion from lipid rafts, caused by
increased cholesterol efflux due to specific transporters, is responsible for the phenotypic
reprogramming of macrophages into tumor-associated macrophages, making them more
responsive to pro-tumor signals such as interleukin-4 and more resistant to the action of
anti-tumor cytokines such as interferon-gamma [93].

Moreover, molecular localization of enzymes of sphingolipid metabolism in lipid rafts
have led to elucidation of their key function in cancer cells and/or in drug sensitivity.
SphKs and S1PRss are localized both inside and outside lipid microdomains [94]. SphK1
phosphorylation and translocation to plasma membrane microdomains is important for
its oncogenic effects while localization outside the microdomains leads to survival with
inhibition of proliferation [95]. GMs present in lipid rafts of cancer cells are involved
in signaling, cell-to-cell recognition, and invasion [57,60]. Notably, GD3 accumulation
in rafts has been associated with apoptosis induction [96]. GD3 is normally localized
at the plasma membrane but, it translocates to the mitochondrial membranes following
CD95/Fas-induced apoptosis [97]. It has been hypothesized that GD3, by interacting
with mitochondrial raft-like microdomains, may trigger events associated with apoptosis,
including changes in mitochondrial membrane potential, mitochondrial fission, and release
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of apoptogenic factors. Then, some GD3-containing “small” mitochondria, possibly derived
from their fission process, could reach the nuclear envelope and contribute to the execution
of apoptosis [98].

Thus, significant progress has been achieved in the past few years in understanding
specific cholesterol-sphingolipid pathways mediated by specific enzymes. This progress
is being translated in the development and optimization of novel therapeutic strategies
based on targeting lipid rafts of cancer cell membranes [99].

5.1. Lipid Rafts in Metastasis

Many processes involved in cancer metastasis are modulated by lipid rafts. They
include cell adhesion, migration and epithelial-to-mesenchimal transition (EMT), which
is characterized by the loss of contact between cells and acquisition of fibroblastic phe-
notype. There are recent reviews on the role of lipid rafts in metastasis and EMT [89,90].
For example, disrupting lipid rafts with cyclodestrin or nystatin reverses EMT induced
by TGF-β1 in breast cancer and gastric cancer cells, respectively [100,101]. Many studies
demonstrate that proteins localized in lipid rafts such as podoplanin, caveolin-1, flotillins
and CD44 are essential for EMT. For example, raft localization of podoplanin is necessary
for the recruitment and activation of proteins of the Ezrin family, induction of EMT and
thereby invadopodia function [102]. Upregulation of caveolin-1 is associated with EMT,
increased migration of bladder cancer cell lines and metastatic bladder cancer [103]. Over-
expression of caveolin-1 enhances EMT by increasing the transcription factor Slug, through
activation of the PI3K/AKT pathway [103], while knockdown of caveolin-1 reduces Slug
expression and EMT. Flotillins are upregulated in a variety of cancers [104], including
gastric cancer. Flotillin-2 is is required for TGFβ-induced EMT in gastric cancer cells [105]
since downregulation of flotillin-2 reduced the expression of the EMT markers vimentin
and N-cadherin. CD44 is a biomarker of cancer stem cells, it is involved in the regulation
of proliferation, invasion, metastasis and resistance and it is usually a marker of adverse
prognosis [106]. The proteolytic cleavage of CD44 is required for the migration of tumor
cells. CD44 localized in lipid rafts while its processing enzyme, the metalloproteinase 10, is
mainly found outside rafts. Localization of CD44 outside lipid rafts in human glioblastoma
allows metalloproteinase-mediated CD44 shedding and tumor cell migration [107] while
raft disruption by cyclodestrins or simvastatin increase CD44 shedding and migration.
Localization of CD44 in lipid rafts by palmitoylation limits the interaction of CD44 with its
migratory binding partner ezrin, and reduces breast cancer cell migration [108].

Other proteins involved in invasion and metastasis, including potassium channels,
urokinase-type plasminogen activator receptor and the type 1 transmembrane glycoprotein
mucin 1, are found in lipid rafts [90]. The association of the potassium channel, SK3 with
the calcium channel Orai1 in lipid rafts leads to the upregulation of calcium influx, increase
of breast cancer cell migration and bone metastasis [109]. The treatment with the alkyl-lipid
ohmline results in the translocation of the SK3–Orai1 complex out of lipid rafts, calcium
entry reduction and cell migration impairment [109].

Interestingly, Tisza et al. [110] have reported that lipid raft destabilization is necessary
for EMT. In breast cancer cells, this reduction in stability was necessary for the maintenance
of the stem cell phenotype and EMT-induced remodeling. When raft stability was increased
by adding docosahexaenoic acid, the metastatic capacity of the cells was reduced. Therefore,
not only disrupting lipid rafts prevents EMT signaling, but EMT also requires modification
of the physical properties of the lipid microdomains.

5.2. Lipid Rafts as Therapeutic Targets in Cancer

There are multiple lines of evidence that lipid rafts are promising targets in cancer
therapy (Table 1).

One interesting feature to consider in anti-cancer therapy is the recent use of anti-
cancer compounds with clinical efficacy as tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) that selectively induces the apoptosis pathway in tumor cells leading to



Int. J. Mol. Sci. 2021, 22, 726 8 of 17

tumor cell death. However, some compounds have entered clinical trials in oncology [111].
However, they have had some problems in their application due to drug resistance, off-
target toxicities, short half-life and limited uptake of TRAIL genes. Some interesting
results have involved lipid rafts. Edelfosine, aalkylphospholipid analog, recruiting the
death receptor into lipid rafts, is able to induce cancer cells apoptosis [112]. Moreover the
anticancer effect of endocannabinoids is mediated by the perturbation of lipid rafts [113].
Thus, the recruitment of death receptors into lipid rafts is essential for drug response
through apoptosis activation in cancer cells. However, the involvement of lipid raft is not
limited to death receptors, but includes other signaling molecules [114]. Upregulation of
lipid and protein metabolism enzymes of lipid rafts is involved in drug transport [115].
Gajate and Mollinedo (2015) reported that the presence of Fas/CD95 in lipid rafts is a
putative target for hematologic cancer therapy [116]. These data suggest that the quantity
and structure of cellular and nuclear lipid rafts are important for the therapeutic response
of cancer cells. This emerging role of lipid rafts has significant implications in different
liquid and solid tumors.

Table 1. Main papers showing lipid rafts of cellular and nuclear membranes as targets of anticancer
molecules.

MOLECULES TARGETING LIPID RAFTS IN CANCER

Cell Membrane Lipid Rats

Hydroxypropyl-β-cyclodextrin [100]
Nystatin [101]
TGF-β1 [100,101]

Podoplanin [102]
Caveolin-1 [103]

Flotillin [104,105]
CD44 [106–108]
SK3 [109]

Orai1 [109]
TRAIL [111,117]

Edelfosine [112]
Endocannabinoids [113]

Liver X receptor [118]
γ-tocotrienol [119]

Bufalin [120]
Resveratrol [121]

Methyl beta cyclodextrin [122]
Epidermal growth factor receptor [123]

β-elemene [124]
Fumonisin B1 [125]

Antagonist 20S-protopanaxadiol [126]
Lovastatin [127]
CXCL12 [128]

Temozolomide [129]
Nuclear membrane lipid rafts

Gentamicin [130]
Daunorubicin [131]

Lipid rafts are involved in liquid and solid cancers (Figure 2).
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of breast [118–122,133–139], stomach [123,124], liver [125,126,131,140,141], pancreas [127,142,143],
lung [144,145], endometrium [146], prostate [128,147], nervous system [129] and kidney [148].

5.2.1. Liquid Tumors

Lipid rafts were shown to control the drug response of patients affected by B-chronic
lymphocytic leukemia. It has been demonstrated that the susceptibility of patients with B-
chronic lymphocytic leukemia is linked to the embedding of the promoting death receptor
in lipid rafts and its exclusion is responsible for TRAIL resistance [117]. In non-Hodgkin’s
T cell human lymphoblastic lymphoma cells, serum cholesterol reaches inner nuclear
membrane by enriching it with lipid rafts content and regulating gene expression with the
overexpression of antioxidant proteins as superoxide dismutase 1 and 2, copper chaperone
for superoxide dismutase, peroxiredoxins 1, glutathione reductase, glutathione synthase,
catalase and polynucleotide kinase/phosphatase [132]. In the same cells, gentamicin
inhibits nuclear nSMase and stimulates SM-synthase by increasing SM content and thereby
making nuclear lipid rafts more rigid structures useful in regulating gene expression [130].

5.2.2. Solid Tumors

Several recent studies have disclosed specific functional and patho-biological roles of lipid
rafts in solid tumors, including breast, stomach, liver, and pancreas cancer [118–127,131,133–143].

5.2.3. Breast Cancer

The multiple advances in breast cancer have led to a better understanding of the molec-
ular mechanisms that occur in lipid rafts involved in migration, invasion, angiogenesis,
and metastasis. A proteomic study on lipid rafts purified from breast cancer cells showed
an abundance of groups of proteins specific for the progression toward malignancy [133].
Promotion of breast cancer cell migration by TNF-α-MAPK/ERK signaling pathway re-
quires translocation of membrane-type metalloproteinase 1 and matrix metalloproteinase
2 proteins into lipid rafts [134]. Moreover, localization of the epidermal growth factor
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receptor in lipid rafts induces activation of Akt epidermal growth factor receptor kinase-
independent [135]. However, downregulation of caveolin 1 in lipid rafts of lysosome is
responsible for enhanced autophagy in human breast cancer cells and tissues [136].

As a consequence of the interest in lipid rafts of breast cancer cells, the study of
pharmacological targets has also expanded. The liver X receptor that is implicated in
the cholesterol metabolism modulates lipid rafts integrity with consequent inhibition of
breast cancer cell growth [118]. It has been demonstrated that anticancer activity of γ-
tocotrienol is not only due to its accumulation in the lipid rafts, resulting in disrupting
of HER2 dimerization and activation in lipid rafts [119], but also to the reduction of
heregulin content in exosome with subsequent decrease in autocrine/paracrine mitogenic
stimulation [137]. Interestingly, bufalin stimulates the entry of death receptor 4 (DR4)
and DR5 into lipid rafts by promoting breast cancer cell apoptosis. In this way, the cells
that were TRAIL resistant became TRAIL sensitive [120]. Li et al. (2017) showed that
miR-3908 is involved in the migration process via lipid rafts that act as platform for
interaction between adiponectin receptor 1 and Flotillin-1 [138]. Thus, the authors suggest
that targeting miR-3908 and the lipid raft, might be the correct way to prevent and/or treat
breast cancer. Later is has been shown that resveratrol changes the distribution of flotillin-1
and flotillin-2 in lipid rafts with consequent anticancer effects [121]. The use of methyl beta
cyclodextrin, which extracts cholesterol from lipid rafts destroying them, has permitted
the identification of the location in lipid rafts of urokinase-type plasminogen activator
receptor and matrix metalloprotease-9 essential for breast cancer cell migration, invasion
and angiogenesis [139]. Nano assembly of methyl beta cyclodextrin with hyaluronic acid-
ceramide, which targets the CD44 receptor and destroys lipid rafts, has been developed for
breast cancer therapy [122].

5.2.4. Gastric Cancer

Gastric cancer cells are insensitive to TRAIL, but inhibition of epidermal growth factor
receptor activation and redistribution in lipid rafts can increase the sensitivity and therefore
stimulate apoptosis [123]. The anti-epidermal growth factor receptor monoclonal antibody
cetuximab facilitates the action of TRAIL in gastric cancer cells by promoting death receptor
4 clustering and FADD protein translocation into lipid rafts [123]. A drug extracted from
traditional Chinese medicinal herb, β-elemene, by acting on lipid rafts, reduces the drug
resistance to TRAIL by inhibiting proliferation and stimulating apoptosis in gastric cancer
cells [124].

5.2.5. Liver Cancer

In hepatocarcinoma cells, localization of CD44 in lipid rafts is promoted by cholesterol
with consequent inhibition of invasion and metastasis [140]. Sphingomyelin of lipid rafts
localized in inner nuclear membrane of hepatoma cells is richer in palmitic acid than
that of hepatocytes. It results in different dynamic properties of nuclear lipid rafts in
the two cell types and increased import-export of protein signaling molecules in cancer
cells respect to normal cells [141]. In the same nuclear rafts, daunorubicin changes the
neutral sphingomyelinase activity, resulting in the saturated long chain fatty acid sphin-
gomyelin decrease. Thus, nuclear lipid rafts change their function as platforms for active
chromatin and for transcription process [131]. Fumonisin B1, a mycotoxin that inhibits
Cer-synthases, promotes liver cancer by reducing sphingomyelin and by increasing free
cholesterol with the consequent modulation of lipid rafts [125]. Inhibition of Toll-like
receptor 7, a molecule belonging to a family of receptors playing an important role in
innate immune responses, with specific antagonist 20S-protopanaxadiol changes caveolin-1
and flotillin-1 molecules in lipid rafts of hepatic cancer cells delaying, consequently, cell
proliferation and migration [126].
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5.2.6. Pancreatic Cancer

CD133 pancreatic cancer marker co-localizes with signaling proteins for cancer aggres-
sion in lipid rafts [142]. Lovastatin by inhibiting mevalonic-acid-pathway in cholesterol
synthesis reduces chemoresistance in CD133Hi cells and in CD133lo cells [127]. Recently, it
has been reported that localization of complement component 1, q subcomponent binding
protein (C1QBP) in lipid rafts regulates the liver metastatic process induced by IGF-1/IGF-
1R [143]. The authors suggest that targeting C1QBP in lipid rafts could be a strategy to
limit hepatic metastasis [143].

5.2.7. Others

The attention of lipid rafts in lung cancer has been focused in non-small cell lung cancer
cell lines. The cells resistant to gefitinib have higher cholesterol levels than the gefitinib-
sensitive cell lines [144]. Squalene synthase, a key enzyme for the cholesterol synthesis,
enriches the content of tumor necrosis factor receptor 1 in lipid rafts, thereby cancer
metastasis. Activation of c-Met in rafts represents a key metabolic pathway responsible
for resistance to radiation [145]. Additionally, in endometrial cancer cells, CD24-mediated
amplification of the Met signaling is responsible for drug resistance [146].

The higher cholesterol content in prostate cancer cells than in results in increased
lipid raft formation and regulation of tumor progression [147]. In lipid rafts of prostate
cancer cells CXCL12 interacts with its receptor CXCR4, a G protein coupled receptor.
CXCL12/CXCR4 interaction transactivates EGRF2/HER2 stimulating invasion [128].

Pirmoradi et al. (2019) have suggested that targeting cholesterol metabolism in
glioblastoma cells might be promising since CHO regulates temozolomide-induced cell
death due to the accumulation and activation of death receptor 5 in lipid rafts [129].

In renal cell cancers, GalNAc-disialyl Lc4 forms a molecular complex with integrin
β1 and caveolin-1 in lipid rafts and increases malignant properties that can be reverted by
antibodies [148].

6. Conclusions

In this review, we have attempted to highlight novel insights into the role of lipid
rafts in cancer cells. The involvement of lipid rafts in signaling processes modulating
proliferation, death and metastasis suggests that they might be promising targets in cancer
therapy. Changes of rafts by manipulation of sphingolipid and cholesterol content or
by antibodies against gangliosides alter the signaling of the growth factor and death
receptors localized inside. Chemotherapy drugs may act on death receptor clustering
and/or disrupting receptor signaling. In the last years, the existence of lipid rafts in
different cell compartments such as plasma membrane, mitochondrion and nucleus and
their involvement in apoptosis and in the modulation of gene expression has become clear
in normal and cancer cells. However, further investigation is necessary to understand the
possible communication between rafts of different subcellular organelles and how this can
be used to improve cancer therapy.
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Abbreviations

C1P Ceramide 1 phosphate
CerK Ceramide kinase
GD Disialoganglioside
FADD DISC Fas-associated protein with death domain, death-inducing signaling complex
GM Monosialoganglioside
S1P Sphingosine 1 phosphate
S1PR Sphingosine-1-phosphate receptor
SphK Sphingosine kinase
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
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