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Abstract
Much of our current knowledge regarding the association of FOXP2 with speech and lan-

guage development comes from singleton and small family studies where a small number

of rare variants have been identified. However, neither genome-wide nor gene-specific

studies have provided evidence that common polymorphisms in the gene contribute to indi-

vidual differences in language development in the general population. One explanation for

this inconsistency is that previous studies have been limited to relatively small samples of

individuals with low language abilities, using low density gene coverage. The current study

examined the association between common variants in FOXP2 and a quantitative measure

of language ability in a population-based cohort of European decent (n = 812). No signifi-

cant associations were found for a panel of 13 SNPs that covered the coding region of

FOXP2 and extended into the promoter region. Power analyses indicated we should have

been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or

greater with 80% power. This suggests that, if a common variant associated with language

ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that

while genetic variants in FOXP2may be significant for rare forms of language impairment,

they do not contribute appreciably to individual variation in the normal range as found in the

general population.

Introduction
Language acquisition requires the interplay of complex biological and behavioural/learning
systems, combined with a stimulating and responsive environment where language serves as a
tool for social engagement. There is now strong evidence that the neurobiological pathways
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supporting language learning are genetically influenced (see for instance [1]). Some of the
strongest evidence in support of this comes from findings of rare mutations in FOXP2.

FOXP2 was identified via a large multi-generational pedigree—the so-called ‘KE’ family—
that appeared to show an unusual autosomal dominant pattern of inheritance for speech and
language impairment. Historically, there has been considerable disagreement over how impair-
ments in this family are best characterized. The first published report described “a severe form
of developmental verbal apraxia”, since both articulation and expressive language were noted
to be affected (p. 352 [2]). The same year Gopnik [3] published work characterising the family’s
communication difficulties as “developmental dysphasia” (more commonly known as Specific
Language Impairment; p. 715). She described affected family members as “feature-blind”; argu-
ing for a selective grammatical deficit in the use of rule-based morphological paradigms (e.g.,
the grammatical features that mark tense, number and agreement [3,4]). This was soon con-
tested by evidence showing that affected family members are impaired in aspects of language
unrelated to syntax, including phonology and semantics [2,5]. Fletcher [6] proposed a more
likely source of the deficits to be in the speech and language production system.

More recent accounts of the KE phenotype have placed greater emphasis on the motor
speech aspects of the family’s impairment. The dyspraxic elements first noted by Hurst et al.
(1990) affected not just articulation, but also non-linguistic oromotor movements [7–9]. How-
ever, they were best exemplified in speech because of the fine-tuned motor movements neces-
sary for oral language. In addition to oromotor weakness, family members presented with
mixed dysarthric features [10]. It has been hypothesized that the expressive language impair-
ments (e.g., phonological and syntactic) seen in this family derive from these lower level deficits
in oromotor planning and execution [8,11].

Although the literature has primarily focused on expressive language, the KE phenotype is
broader and includes deficits in receptive vocabulary [5], grammatical, and syntactic abilities
[7]. There is also evidence of cognitive impairment, with more profound deficits in the verbal
domain [7]. Because of the involvement of speech, cognitive and motor impairments, not all
family members of the KE family would meet the selection criteria for studies of atypical forms
of language development (or SLI), as proposed in Gopnik’s original assessment of the family
[3, 4]. The discovery of frank neurological dysfunctions among some family members [12] also
runs contrary to the current definiton of the disorder [13]. This might lead us to question the
relevance of understanding the genetic underpinnings of this severe phenoype for ‘common
forms’ of language impairment (e.g., SLI). “However, (it is also possible that) the identification
of a specific candidate gene and mutations . . . can allow the development of targeted investiga-
tions in cellular or animal models, which, in turn, can point to mechanisms that might be rele-
vant to more common forms of language-related conditions” (p. 287; [14]).

The initial linkage study of the KE family mapped FOXP2 to a 5.6-cM region of 7q31
between D7S2459 and D7S643, a region that became known as SPCH1 (MIM 602081; [15]).
Linkage analysis of the family, and mapping of a translocation breakpoint in an unrelated child
with a similar phenotype, led to the identification of a gene in this region, FOXP2 (forkhead
box P2; [15,16]). Affected members of the KE family were found to carry a heterozygous point
mutation in exon 14 of the gene that was absent in unaffected relatives [16]. This yielded an
arginine-to-histidine substitution, R553H (G -> A transition), altering a key residue (Arg553).
Lai et al. (2001) proposed that the KE phenotype is caused by haploinsufficiency of FOXP2 dur-
ing embryogenesis, leading to the abnormal development of neural structures for speech and
language [16].

The FOX genes encode a family of transcription factors with a characteristic winged-helix—
or forkhead box (“fox”) DNA-binding domain [17]. They regulate a wide variety of cellular
and developmental processes, including some in the central nervous system [18]. FOXP2 is
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highly conserved across species with only three amino acid changes between mice and humans,
two of which have occurred in the human lineage since diverging from the chimpanzee [19,
20]. The gene is organized into 19 exons, three of which are alternatively spliced leading to dif-
ferent isoforms [16, 21]. Exons 12–14 encode the DNA-binding domain necessary for tran-
scription factor function [17, 22].

Since the discovery of the KE family mutation, many cases of de novo and familial muta-
tions in FOXP2 have been reported in the form of point mutations (missense, nonsense and
frameshift mutations), small and large scale deletions, sequence alterations; as well as chromo-
somal alterations, including translocations and genomic copy number variants [23–33]. With
such heterogeneity, delineating the precise phenotype(s) associated with the gene is challeng-
ing. Individuals with a disruption in FOXP2 typically present with a severe motor speech disor-
der, usually verbal dyspraxia. Beyond that, receptive and/or expressive language and/or
cognitive abilities and/or more generalised motor skills may also be affected (for a comprehen-
sive review of singleton and family case studies, see [32]). While motor speech impairments
seem to be universal in these cases, language impairments are also common and usually consid-
ered a core feature of the phenotype [34].

These reports of speech and language impairments in individuals and families with FOXP2
mutations raise the question as to whether common variants in the gene might be associated
with individual differences in the general population. Sequencing of FOXP2 in children with
severe dyspraxia has suggested a low prevalence for etiological variants of approximately 2%;
[26]. Studies that have screened moderate-sized samples of children with and without language
impairment have found no evidence of a common variant associated with language [35–37].

Despite the lack of positive findings, it would be unwise to reject the possibility that FOXP2
has a connection to individual differences in language ability on the basis of these mutation
searches alone. O’Brien et al. (2003) used sib-pair linkage and family-based association meth-
ods to investigate three microsatellites within FOXP2; [36]. They found no evidence of linkage
or association to SLI as either a binary or quantitative trait. Further sequencing of exon 14 in a
subgroup of the sample showed no evidence of functional mutations. Newbury et al. (2002)
used a combination of SNPs and microsatellite markers spanning the coding regions of FOXP2
to investigate quantitative measures of SLI [37]. No mutations were found in the forkhead
region of the gene. More recently, however, Rice et al. [38] reported nominally significant asso-
ciations for four SNPs proximal or within FOXP2 to a general measure of language ability.

A series of genome-wide linkage and association scans have also failed to detect any signal
of association to FOXP2 for either typical [39, 40] or impaired language abilities [41–52]. Col-
lectively, cohort studies of FOXP2 suggest that common variants are unlikely involved in more
‘common’ forms of developmental language impairment identified via clinical and population-
based samples [36, 37]. However, these studies have been limited in number, by relatively small
sample sizes, and by low density gene coverage. They have also focussed only on individuals
with impaired speech and language abilities, with unaffected family members comprising the
control group.

This study differs from previous research in that, as well as including a large sample of chil-
dren with language impairment, it also contains a large number of individuals with abilities
across the normal spectrum. Thus, it is sensitive to the discovery of a quantitative trait locus.
Additionally, this study employed a more extensive panel of tag SNPs to cover the linkage dis-
equilibrium (LD) structure of FOXP2 than previous studies, including markers in the promoter
region of the gene. By comprehensive SNP genotyping of FOXP2 in a large population-based
sample with a continuum of language ability, the current study aimed to address the question
of whether common genetic variants in FOXP2 contribute to individual differences in language
development.
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Results
The primary data for this study came from two earlier studies conducted in Iowa and Illinois.
The first group of participants (the Longitudinal cohort) was originally ascertained as part of a
cross-sectional study on the prevalence of language disorders in kindergarten [53]. Subse-
quently, another group (the School-Based cohort) was recruited from a separate study on lan-
guage abilities in school-aged children. Combined, the total sample comprised 812 children.

All children had been tested for spoken language ability as part of their original study using
age-appropriate standardized tests (see Materials and Methods for details). These children rep-
resented the full range of spoken language ability, although children with low language abilities
were oversampled. As a consequence, the average language ability of the sample in this study
was approximately one-third of a standard deviation below the mean (mean Z-score = -.35,
SD = 1.10), with a range of -3.35 to 2.59.

Children also provided DNA samples. Thirteen tag SNPs were selected to cover the haplo-
type block structure of FOXP2, and genotyped using Taqman single SNP assays. Details regard-
ing sample recruitment, assessment of language abilities and genotyping methods are detailed
further in the Methods Section.

Tests for association to language ability as a quantitative trait (LCOMP; see Methods) con-
sisted of 13 one-way ANOVAs using Proc GLM within SAS, where the genotype at each tag
SNP was treated as a class variable. Table 1 summarizes language ability according to genotype
at each tag SNP, and the results of the genotype test for association. Overall, we found no statis-
tically significant association between FOXP2 and language ability (p> .05, Table 2). In one
case (rs12155328) the nominal p level approached significance; however the effect size was
quite small, and the p level was substantially higher than the .0038 level needed to exceed cor-
rection for multiple testing.

The data above were based on the Longitudinal and School-Based samples combined.
Although the phenotype measures overlapped in these two cohorts and prior research based
on the Longitudinal sample has demonstrated that all measures for the two cohorts are highly
correlated [54], the two groups were ascertained differently. The Longitudinal cohort over-
sampled children with low language ability, whereas the School-Based cohort was truly a popu-
lation sample. These differences resulted in the Longitudinal sample having a lower average
language ability level (M = -0.51, SD = 1.11) than the School-Based one (M = -.09, SD = .99).
Thus, it remained possible that combining groups might obscure statistically-significant
associations.

Therefore, the data were analysed for an interaction of genotype effects at each tag SNP with
sample membership. One SNP yielded a significant genotype by phenotype interaction
(rs1916988: F(2,772) = 5.76, p = .003) after adjustment for multiple testing (see Table 2). A test
for simple effects of genotype by cohort showed a significant genotype effect in the School-
Based sample, F = (2, 302) = 4.24, p = .015. There was no significant effect of this SNP in the
Longitudinal sample. A comparison of genotype means in the School-Based sample (Table 2)
showed that the TT genotype group had significantly lower language abilities than the TC
group (p< .05), suggestive of a dominance effect for the C allele. By comparison, in the Longi-
tudinal sample, the TT group averaged higher scores than groups carrying the C allele,
although these were non-significant. Thus, the direction of the effect in the two samples was in
the opposite direction.

These results leave the status of association between rs1916988 in FOXP2 and individual dif-
ferences in language ability unclear. The School-Based sample that yielded a significant associa-
tion had a distribution of language abilities that was very similar to the normative samples used
in the design of the designated language tests, whereas the Longitudinal sample comprised an
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Table 1. Means and standard deviations (SD) of language composite scores for tag SNP genotypes within FOXP2 and effect sizes (R2) of geno-
types on language in the combined Iowa sample.

G11 G21 G22 R2 F p

rs7791396 C/C C/G G/G 0.004 1.60 0.20

Mean -0.38 -0.28 -0.49

SD 1.06 1.13 1.08

Count 295 357 101

rs12155328 C/C C/T T/T 0.007 2.38 0.09

Mean -0.36 -0.23 -0.46

SD 1.10 1.12 1.08

Count 242 326 161

rs10447760 C/C C/T T/T 0.0005 0.17 0.84

Mean -0.38 -0.33 -0.39

SD 1.07 1.11 1.07

Count 446 269 51

rs10953754 A/A A/G G/G 0.00007 0.03 0.97

Mean -0.36 -0.35 -0.38

SD 1.10 1.07 1.15

Count 280 373 111

rs2244419 C/C C/T T/T 0.0004 0.15 0.86

Mean -0.34 -0.39 -0.21

SD 1.11 1.03 0.77

Count 676 114 4

rs1668335 AA A/G GG 0.001 0.46 0.63

Mean -0.26 -0.32 -0.37

SD 1.11 1.12 1.07

Count 78 352 359

rs2396720 A/A A/C C/C 0.0009 0.71 0.40

Mean -0.15 -0.40

SD 1.03 1.09

Count 0 23 768

rs1916988 C/C C/T T/T 0.0003 0.13 0.87

Mean -0.30 -0.35 -0.36

SD 1.04 1.10 1.10

Count 76 354 348

rs11505922 C/C C/T T/T 0.0008 0.32 0.73

Mean -0.31 -0.35 -0.40

SD 1.10 1.10 1.08

Count 177 399 215

rs7785701 C/C C/G G/G 0.0005 0.22 0.80

Mean -0.32 -0.32 -0.38

SD 1.06 1.12 1.09

Count 165 371 238

rs2106900 A/A A/G G/G 0.001 0.45 0.64

Mean -0.37 -0.30 -0.38

SD 1.01 1.10 1.06

Count 170 360 241

rs7799652 G/G G/T T/T 0.003 1.18 0.31

Mean -0.26 -0.39 -0.28

(Continued)
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excess of children with poor language abilities. It is therefore possible that the strength associa-
tion is dependent upon the overall level of language ability in the sample tested.

In order to resolve this ambiguity, we obtained data from a third sample of participants in a
longitudinal birth cohort study (Early Language in Victoria Study: ELVS; [55]). ELVS was a
population sample assessed for language ability with a subset of the same measures used in the
Iowa Longitudinal and School-Based samples.

Mean z-scores for the ELVS’ sample by genotype are shown in Table 2. A test for genotype
effects at rs1916988 showed no differences between mean language scores across the three
genotype groups, F(2, 305) = 1.23, p = .29. Thus, these data are consistent with the results of
the Longitudinal sample. The effect sizes for the ELVS and Longitudinal samples were similar
and the direction of the effects, albeit non-significant, was the same. When the Longitudinal
and ELVS samples were combined via meta-analysis, the weighted R2 effect size was .086. How-
ever, the lower bound of the 95% CI was -0.009 and the upper bound was 0.18. Thus, even in
the combined samples, the effect was small and non-significant.

In order to assess whether a combination of SNPs were predictive of the language phenotype
in a multivariate setting, we also fit a predictive model using Random Forests (RF; [56]). In
essence, this analysis fits decision trees by splitting the data (i.e. the individuals) recursively
based on genotypes at the different SNPs. In doing this, it aims to group individuals with simi-
lar language scores together. Data are divided into a training set and a test set, resulting in a
less biased estimate of the predictive power of the RF. Random Forests have been repeatedly
used in such genetic association settings, especially where genetic interactions (epistasis) are of

Table 1. (Continued)

G11 G21 G22 R2 F p

SD 1.10 1.10 1.06

Count 179 370 206

rs1005958 C/C C/T T/T 0.002 0.92 0.40

Mean -0.29 -0.32 -0.43

SD 1.11 1.08 1.08

Count 161 380 218

doi:10.1371/journal.pone.0152576.t001

Table 2. Means and standard deviations of language composite scores by genotype at rs1916988.

Sample rs1916988 genotypes R2 F p

CC TC TT

Longitudinal

Mean -0.63 -0.60 -0.41 0.0078 1.89 0.16

SD (1.07) (1.07) (1.02)

Count 42 211 219

School

Mean 0.16 0.03 -0.28 0.03 4.24 0.015

SD (0.83) (1.04) (1.02)

Count 33 143 129

ELVS

Mean -0.23 -0.11 0.02 0.0082 1.23 0.29

SD (1.10) (1.02) (0.80)

Count 31 144 133

doi:10.1371/journal.pone.0152576.t002
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interest [57–59]. The advantage to RF is that it looks at all SNPs simultaneously, rather than in
isolation, and if there are interactions between SNPs, or other kinds of combinations that are
predictive, these will be detected.

When using LCOMP as the response variable (quantitative outcome), the correlation
between the prediction on an independent test set (i.e., subjects held out of the training set)
and the actual LCOMP values was r = -.0178, 95% CI (-0.09, 0.05), p = 0.61; power = 0.8 for
r = 0.115 at α = 0.05). RF also has a built-in measure of variable importance, which can be used
as an indicator of how much predictive power a SNP carries alone or in combination (e.g. epis-
tasis) with other SNPs. No SNP had an importance score significantly greater than those
obtained through permutation of the data. These results were robust even in the face of RF
parameter tuning (RF typically needs little or no parameter tuning for optimal performance).
Taken together, these results suggest that even in a multivariate machine learning paradigm,
SNPs in FOXP2 have little or no explanatory power for language phenotypes in our sample.

Discussion
This is the first study to investigate the association of common variants in FOXP2 to individual
differences in language ability in a large sample with a range of language abilities. Much of our
current knowledge regarding the neural correlates of FOXP2 comes from intensive study of a
single multiplex family (the ‘KE’ family) that display an unusual speech and language pheno-
type due to a missense mutation in the FOX domain. Etiological point mutations and gross
chromosomal rearrangements (e.g., deletions and translocations) have also been reported in
singletons and small family studies [23–33].

A few studies have considered whether common variants in FOXP2 are associated with lan-
guage impairment (e.g., [37, 38]). However, these have been limited with regards sample size,
comprising a relatively small number of affected individuals and their family members. O’Brien
et al. (2003) have previously tested for association of common variation within FOXP2 and a
sample with a range of language abilities (i.e., the Longitudinal cohort 1 in the current study);
however coverage of the gene was limited [36].

In this study, we considered the full range of language abilities existent in the general popu-
lation of unrelated individuals, and selected tag SNPs to cover the majority of LD structure
found in FOXP2. We genotyped 13 common polymorphisms in 812 individuals, testing for
association to a quantitative measure of language ability, with null results. One SNP provided
evidence of an association in a subgroup of the participants in this study; however, these find-
ings did not replicate. In conjunction with previous research indicating the rare and specific
nature of FOXP2mutations in the etiology of speech and language disorders, these findings
lead us to conclude that common variants are unlikely to exert a large effect in typical language
development. Using the combined longitudinal and school samples this study was powered to
detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80%
power [60]. This means we had sufficient power to detect genetic effects responsible for at least
2% of the variance in our composite measure of language ability. Furthermore, this study had
the additional advantage of an independent sample to test for replications of any positive find-
ings. Our largest effect size (R2) for the combined sample was 0.001; thus it is possible that
small genetic effects from FOXP2 contributing to individual differences in language ability may
exist. One possibility is that the SNPs within FOXP2 each contribute some unique effects and
that a combination of these effects could be large enough to be detectible; however our use of
Random Forest regression analysis did not yield any significant evidence of such effects. If so,
these effects are likely very small and would therefore be a part of a large ensemble of polyge-
netic background for individual differences in language.
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In spite of this being one of the largest studies of its kind, we may still have been underpow-
ered to detect common risk variants in FOXP2 of small effect size (i.e., those which affect less
than 2% of variance in the composite language measure). This issue could be addressed by
screening SNPs in a larger sample size, which would boost power. Also, with the advent of
cost-effective whole exome and whole genome sequencing, it should soon be possible to deter-
mine the population effect of rare variants (i.e., infrequent alleles of large effect) in FOXP2 for
phenotypes involving speech and language.

Nevertheless, FOXP2 has been critical in providing ‘a molecular window’ into the genetic
bases of speech and language impairments [34] in that identification of the gene has opened up
avenues of investigation into signaling pathways [61–64]. In part, this is because FOXP2 serves
as a regulatory gene—whose primary role is to modify the timing and expression of down-
stream genetic targets [17]. As such, it likely represents one of many elements in gene networks
involved in speech and language development

This role for FOXP2 as a regulator in a network of genes important for language is demon-
strated by evidence showing that up-regulation of FOXP2 coincides with the down regulation
of expression in another gene in the 7q region, CNTNAP2 [64, 65]. CNTNAP2 encodes
CASPR2, a neurexin found at the nodes of Ranvier in myelinated nerve fibers. It is expressed in
the human cerebral cortex, specifically the frontal and temporal lobes and the striatum [66];
regions that are important for language and cognition [67]. Common polymorphisms in
CNTNAP2 have been associated with language delay in autism [66] and the general population
[68]; and more specifically to phonological memory [65] and reading abilities in language
impairment [69, 70].

The null findings from this study may have implications for the study of the evolutionary
properties of FOXP2. These data suggest that the mutations in FOXP2 with negative functional
consequences may be under considerable selection pressure. Whether this selection is based on
poor language or other concomitant functions is not clear. A study by Ayub et al. (2013) inves-
tigated whether recent positive selection on FOXP2 is also associated with positive selection on
any known target genes [18]. They examined four different populations and found strong evi-
dence for selection in Europeans, but not in the Han Chinese, Japanese or Yoruba populations.
This may suggest selection of FOXP2 targets has occurred fairly recently, after the divergence
of the populations, from local adaptation.

This study failed to reject the null hypothesis that common polymorphisms in FOXP2 are
associated with population differences in language ability, building on previous research by
examining coding regions in the 5’ promoter region of the gene that could affect transcription
factor binding. However, sequence analysis of FOXP2 indicates a promoter region flanking
exon s1 upstream of the gene [21], and it is entirely possible that our approach to genotyping
failed to detect a putative signal from this region. Therefore, we cannot exclude the possibility
that regulatory processes governing the expression of FOXP2 are important for individual dif-
ferences in language development. This is important because FOXP2 expression levels in turn
affect the expression of putative target genes, including those involved in neurite outgrowth
and striatal plasticity [63, 71]. Gene knock-in of the humanized version of FOXP2 to mice has
been found to specifically affect cortico-basal ganglia circuits (including the striatum; [72]),
and facilitate both declarative and procedural learning [73]—two learning processes thought to
be crucial for language acquisition.

Ultimately, the aim of future research into FOXP2 will be to characterize the regulatory net-
works or pathways of which the gene is a part, the implications of these for cellular and
neuronal processes (for example, synaptic plasticity), and the role of these in shaping the mech-
anisms for language learning.
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Materials and Methods
The study was approved by the Institutional Review Board at the University of Iowa, which
subscribes to the basic ethical principles underlying the conduct of research involving human
subjects, as laid out in "The Belmont Report". Parents provided written consent for their chil-
dren’s participation in the project and for use of their DNA.

Participants were a sub-set of two larger studies on childhood language development and
disorders.

Longitudinal Sample
Participants. The Longitudinal cohort (n = 500) was initially ascertained as part of a cross-

sectional study on the prevalence of language disorders in kindergarten (7,218 participants
screened; [53]); and were subsequently enrolled in a longitudinal study of outcomes in children
with and without language impairment (see [74]). All children in this sample were mono-
English speakers, had normal hearing and no reported neurodevelopmental disabilities. Because
the longitudinal study was concerned with language impairment, it was intentionally designed
to oversample for children with poor language abilities. To correct for this in the current study,
we employed a weighting system. Children were assigned a weight value that represented the
reciprocal of the probability that the child would be sampled from the original population. Chil-
dren with high probabilities were given low weighting values, and children with low probabili-
ties were given high values. This has the effect of reducing the contribution of children with
language impairment to the study norm, and means the study sample approximates the original
cross-section sample from which it was drawn (see [54] for details of this weighting method).

Language Phenotype. The phenotype employed in the Longitudinal sample (see Table 2)
is based on a scheme proposed by Tomblin et al. (1996; [75]). It comprised five subtests from a
standardized language measure, the Test of Language Development-2:P (TOLD-2:P; [76]), and
a narrative production and comprehension screen [77]. The subtests were selected to represent
norm-based performance across three domains (vocabulary, grammar, and narration) and two
modalities (comprehension and expression) of language. Raw scores were converted into stan-
dard scores based upon local norms [75] and combined to form an overall language composite.
Factor analysis of these five measures of language showed that a single factor accounted for co-
variance among the measures [78]. Thus, a composite score can be used as an appropriate
representation of the language phenotype. This has the advantage of limiting the number of
inferential tests, and enhancing reliability.

Participants also completed the Block Design and Picture Completion test of theWechsler
Preschool and Primary Scale of Intelligence (WPPSI; [79]). These tests of nonverbal (or perfor-
mance) IQ were chosen to prevent confound with language abilities, as assessed by verbal and
total IQ scores. Any proband with a nonverbal IQ<70 was excluded from the study on the
basis of intellectual disability.

School Sample
Participants. In addition to the prevalence/longitudinal sample described above, a sepa-

rate group of participants (n = 318) were recruited in 2007/2008 from a study on language abil-
ities in school-aged children.

Language Phenotype. Children in participating schools in grades one to four were
screened using the verbal subscales of the Iowa Tests of Basic Skills [80], which have been found
by our laboratory to be good predictors of receptive and expressive language abilities. Children
with scores suggestive of poor language abilities, along with a random sample likely to have
normal language, were then administered a more comprehensive test battery for their age (see
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Table 3). Again, all children were tested for normal hearing and according to parent report had
no neurodevelopmental disability. The assessment of language ability in the School-Based sam-
ple paralleled that of the Longitudinal sample, although specific measures were changed to
reflect the different age levels of participants [81, 82]. A composite language score (LCOMP)
was derived in the same way as for the Longitudinal sample, although scores were not
weighted. Similarly, participants also completed a nonverbal IQ test [83]. Again, any proband
with a nonverbal IQ<70 was excluded from the study on the basis of intellectual disability.

ELVS Sample
Participants and Phenotypes. Participants in the ELVS sample were part of a birth cohort

(Early Language in Victoria Study, N = 1,910) recruited in and around the metropolitan area of
Melbourne, Australia. Data for the current study was obtained when children were around
seven years of age. Consent for participation was obtained from the parents of all children and
the children also assented to participate. As a part of the 7-year wave of assessment, partici-
pants provided DNA from saliva samples. As with the Iowa sample, all children were of Euro-
pean ancestry and had no developmental disabilities or hearing loss. Measures of language
ability were age appropriate measures of listening and speaking similar to those used in the
Iowa Longitudinal and School-Based samples (Table 3; [82, 84]). Again, a composite score was
derived to represent the children’s overall language ability. DNA and language phenotypes
were available for 308 participants in the current study.

Participants from all cohorts were monolingual speakers of English with normal hearing and
without any comorbid neurodevelopmental disorders (e.g., autism), based on parental report.

DNA Processing and Genotyping
DNA for the Iowa cohorts was obtained for 818 probands from blood, buccal swabs and saliva,
and processed using standard protocols. DNA for the ELVS’ group (n = 308) comprised saliva

Table 3. Languagemeasures in each sample.

Language Domain Sample

Longitudinal (5–7 years) School (7–9 years) ELVS (7 years)

Vocabulary TOLD-2: P PPVT-R PPVT-IV

Picture Vocabulary

Oral Vocabulary

Sentence TOLD-2: P CELF-III CELF-III

Grammatic Understanding Sentence Structure Sentence Structure

Grammatic Completion Concepts & Directions Concepts & Directions

Sentence Imitation Recalling Sentences Recalling Sentences

Word Structure Word Structure

Narrative Culatta, Page & Ellis (1983) CELF-III

Story Retell Recalling Paragraphs

Story Comprehension Story Generation

Non-verbal IQ WPPSI WISC-III

Block Design Block Design

Picture Completion Picture Completion

TOLD-2:P = Test of Oral Language Development-2:Primary; PPPVT-R = Peabody Picture Vocabulary Test-Revised; PPVT-IV = Peabody Picture

Vocabulary Test, 4th Edn; CELF-III = Clinical Evaluation of Language Fundamentals-III; Story Retell and Story Comprehension = Culatta, Page & Ellis,

1983; WPPSI = Weschler Preschool Primary Scales of Intelligence; WISC-III = Wechsler Intelligence Scales for Children-III.

doi:10.1371/journal.pone.0152576.t003
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samples only. Briefly, DNA was extracted from buccal swabs using procedures described in
Richards et al. [85], and from whole blood using a modified version of Qiagen’s DNA Blood
Maxi Kit (Qiagen, Inc., Valencia, CA). Samples derived from saliva were processed using Ora-
gene’s standard 0.5mL and 4mL protocols (DNA Genotek, Ontario, Canada).

Single nucleotide polymorphisms (SNPs) were selected to cover the haplotype block struc-
ture of FOXP2, including exonic regions of high linkage disequilibrium in the 5’ promoter and
3’ ends of the gene (Fig 1; [86–89]). We included variants in the promoter region of the gene
because these can result in different isoforms, which affect the amount and timing of protein
production during gene expression. Sequence analyses have provided evidence for at least one
promoter region flanking exon s1 of the gene, located more than 300kb 5’ to exon s1 as first
described by Bruce and Margolis [23].

Note: LD structure from http://www.hapmap.org. Base-pair location is based on the
National Center for Biotechnology Institute db SNP Build 131 of the human genome (NCBI
dbSNP 131).

SNPs were selected on the basis of minor allele frequency (MAF) greater than 0.2 in the
CEPH population (Utah Residents with Northern andWestern European Ancestry; Table 4
The International HapMap Project). Selection of the correct reference population is an impor-
tant design consideration because alleles and haplotypes vary by ethnicity [90]. The rationale for
using a minimumMAF of 0.2 meant we should have been able to detect a QTL variance of 0.02
for an associated allele with MAF of 0.2 or greater with 80% power in our study population.
Exceptions to this are rs2244419 and rs2396720, which have lower MAFs, but were chosen only
after assays in that region of linkage disequilibrium (LD) failed quality control (QC) standards.
A senior geneticist, with extensive experience in this area, approved all SNP selections.

Fig 1. Linkage disequilibrium structure of FOXP2 with candidate SNPs.

doi:10.1371/journal.pone.0152576.g001
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Because allele frequencies can vary by population, we aimed to minimize potential con-
founds arising from genetic ancestry by genotyping only samples from Caucasian individuals.
Ethnicity was determined via parental report. Allelic variation was determined via the
Sequence Detection Systems 2.2 software (SDS, Applied Biosystems). Genotype data was
uploaded into a Progeny database (Progeny Software, LLC, South Bend, IN) and integrated
with phenotypic information via Microsoft Access.

Quality Control and Statistical Analyses
DNA samples can vary in both quality and concentration, affecting both genotype call rate and
accuracy. DNA that is poor quality results in low call rates and inaccuracies in genotyping. Ini-
tial quality control steps included both biological and technological quality checks. Prior to
genotyping, biological samples were quantified using The Thermo Scientific NanoDrop™ 1000
Spectrophotometer. Samples that were suspected to be contaminated, and those of low grade
quality, were excluded from the study. Taqman Pre-designed Genotyping Assays (Applied Bio-
systems, Foster City, CA, USA) were tested prior to use with CEPH control plates.

Genotyping was performed using Taqman Pre-designed Genotyping Assays under standard
reaction conditions (Applied Biosystems, Foster City, CA, USA). Genotypes for each SNP and
each individual were called using the algorithm in SDS, which is based on the relative signal
intensity of each allele for each SNP. Plots were then inspected manually by a lab technician
with special expertise in this area. Low quality genotype calls were excluded from data analysis.
There was no reassignment of SNP genotypes.

Further steps in quality control were performed using PLINK (v1.07; [91]). The first of
these involved calculating SNP call rates. The call rate per SNP is the percentage of individuals
whose genotypes are called for a given SNP. It is an important part of quality control because
low call rates can lead to inaccuracies in genotype calls.

Table 4 details chromosomal location, alleles, minor allele frequencies, and call rates for the
SNPs genotyped in this study. In general, call rates were higher in the School-Based Sample

Table 4. SNP location, minor allele frequency and call rates for markers in FOXP2.

SNP Location MAF Alleles* SNP call rate

Longitudinal School Combined

rs7791396 113,414,165 .3744 G/C .92 .94 .93

rs12155328 113,489,236 .4471 T/C .87 .94 .9

rs10447760 113,510,501 .243 T/C .92 .97 .94

rs10953754 113,550,510 .3924 G/A .93 .96 .94

rs2244419 113,579,759 .08037 T/C .98 .98 .98

rs1668335 113,647,888 .3245 A/G .96 .99 .97

rs2396720 113,688,077 .0148 A/C .96 .99 .97

rs1916988 113,716,698 .3279 C/T .95 .98 .96

rs11505922 113,797,887 .4796 C/T .97 .97 .97

rs7785701 113,856,772 .4465 C/G .94 .98 .95

rs2106900 113,909,742 .456 A/G .94 .97 .95

rs7799652 114,077,719 .4832 G/T .91 .95 .93

rs1005958 114,090,091 .4635 C/T .92 .96 .93

* The A1 allele is the minor allele. Base-pair location is based on the National Center for Biotechnology Institute db SNP Build 131 of the human genome

(NCBI dbSNP 131).

doi:10.1371/journal.pone.0152576.t004
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than the Longitudinal Sample. With the exception of rs12155328 in the Longitudinal cohort,
all SNP call rates were� 90% (see Table 4 for call rates of individual SNPs).

Another indicator of data quality is heterozygosity. An excessive or reduced proportion of
heterozygous genotypes may be indicative of sample contamination or of inbreeding. The het-
erozygosity of samples was in this study .40, compared to .41 in the reference dataset (CEU
population, NCBI Genome Build 131), which is not statistically significant.

Hardy Weinberg Equilibrium (HWE) may also be used as a measure of the fidelity of geno-
typing. Genotyping error is indicated by SNPs that show significant deviation from HWE,
based on a pre-specified level of significance (p� .001). However, such deviation may also be a
signal of genetic association. For this reason, HWE was tested only in the control samples.
There was no significant deviation from HWE in any of the cohorts.

Tests for association to language ability as a quantitative trait comprised 13 one-way ANO-
VAs using Proc GLM within SAS, where the genotype at each tag SNP was treated as a categor-
ical variable. In addition to performing univariate statistical association tests, we also examined
whether the genotyped SNPs were predictive of language phenotypes in a multivariate setting.
It is conceivable that SNPs interact or otherwise show combined predictive power that might
not be uncovered by traditional tests of association. To examine this possibility, we used Ran-
dom Forests [56], a machine learning approach that fits an ensemble of decision trees to the
data. In this setting, the SNP genotypes were the predictor variables, and the quantitative
LCOMP trait was used as the response or outcome variable. These analyses were performed
using R (www.r-project.org) version 3.2.3 and the R randomForest package version 4.6–12.
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