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Abstract: This clinical trial was aimed to investigate the effects of fresh table grape intake on the serum
levels of the Omega-3 index, defined as the sum of eicosapentaenoic acid (EPA) + docosahexaenoic
acid (DHA) levels. Forty consecutive healthy subjects were randomly assigned to the control group,
receiving only dietary recommendations, and the grape group receiving a daily dose of 5 g of
fresh table grape per kg of body weight, for 21 days. Compared with baseline, the grape treatment
produced no significant difference in the serum levels of glucose, liver transaminase, and triglycerides,
with the exception of cholesterol value, which was significantly reduced in both control and grape
group (180.5 ± 20.32 vs. 196.1 ± 30.0 and 181.4 ± 21.9 vs. 194.3 ± 37.5, respectively). After 4 weeks
from the end of grape treatment, the analysis of single fatty acids showed a significant increase in oleic
acid content (14.15 ± 1.8 vs. 12.85 ± 1.6, p < 0.05) and a significant induction of the Omega-3 index
(8.23 ± 1.9 vs. 6.09 ± 1.2, p < 0.05), associated with increased serum levels of adiponectin (24.09 ± 1.08
vs. 8.8 ± 0.7, p < 0.001). In contrast, the expression of fibroblast growth factor 21 (FGF21), a molecule
associated with metabolic syndrome and liver disease, was significantly reduced (37.9 ± 6.8 vs.
107.8 ± 10.1, p < 0.001). The data suggest that the intake of fresh grape improves the Omega-3 index
in the serum and exerts beneficial effects on liver function through the overexpression of adiponectin
and the reduction in FGF21 levels.

Keywords: table grape; polyphenols; fatty acids; Omega-3 index; liver disease

1. Introduction

Fresh table grape is a rich source of bioactive components, particularly polyphenols,
with antioxidant and anti-inflammatory activities [1,2]. A regular consumption of dietary
polyphenols is associated with improvements in lipid profile, insulin sensitivity, and with
the reduction in the metabolic risk [3–5]. The protective role of dietary polyphenols in health
has been widely demonstrated [4–7], as well as their role in modulating gastrointestinal
function and inflammation [8–10].

Experimental in vitro studies have shown an increase in total polyunsaturated fatty
acids (PUFAs) levels in cells treated with Autumn Royal table grape extracts [11,12]. In
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particular, compared to untreated control cells, the grape extracts caused an increase
in essential fatty acids (EFAs), namely linoleic acid (LA) and α-linolenic acid (ALA). In
addition, in cell membranes, the grape treatment exerted a significant increase in total
PUFAs, associated with changes in their downstream metabolic pathways [11].

Moreover, several clinical and preclinical studies have suggested that polyphenols-
rich foods are capable of modulating the metabolism of Omega-3 PUFAs, specifically
they increase blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels
and modulate eicosanoid metabolism [13–16], with a significant impact on biomarkers of
oxidative stress and inflammation [7,10].

High circulating levels of Omega-3 PUFAs positively affect the serum content of
adiponectin [17], an adipocytokine able to increase the insulin sensitivity, influencing
glucose uptake, inhibiting gluconeogenesis [18]. Adiponectin has also been demonstrated
to inhibit inflammation, reducing the levels of pro-inflammatory cytokines [19,20].

Recently, the evaluation of serum levels of adiponectin and fibroblast growth factor 21
(FGF21) has been considered a valid tool for identifying the presence of metabolic syndrome
in children [21]. FGF21 is a hormone involved in the regulation of lipid and glucose
metabolism and its expression is regulated by a variety of physiological conditions [21–23].
Due to its association with obesity and liver injury, the high levels of circulating FGF21 are
often linked to different dysfunctional metabolic processes [24]. About this, higher serum
FGF21 levels have been also associated with worse survival in hepatocellular carcinoma
(HCC) patients [25].

The composition of circulating fatty acids is considered as a valid biochemical marker
for assessing the physiological status of various fatty acids including their possible correla-
tions with the diet [26–28]. Close correlations between the serum levels of Omega-3 PUFAs
and metabolic disease-related risk have been observed [29]. Moreover, the Omega-3 index,
defined as the sum of EPA+ DHA levels, has been demonstrated to be a novel, physiologi-
cally relevant risk factor for cardiovascular diseases [30] with a significant clinical utility.

Therefore, given the relationship between dietary components and serum fatty acids
profile, and considering that the effects of table grapes on lipidomic profile needs to be
confirmed by clinical studies, the main objective of the study was to investigate, in humans,
the effects of dietary intake of fresh table grape on the metabolism of PUFAs, particularly
the Omega-3 index.

The aim of this study was also to investigate the impact of dietary grape supple-
mentation on some candidate markers of early metabolic disorders, such as adiponectin
and FGF21.

The clinical data that will be obtained from this study could also be useful for identify-
ing patients with metabolic deficits or chronic metabolic diseases who could benefit from a
diet enriched with grapes.

2. Materials and Methods
2.1. Patients

Forty consecutive healthy subjects, mean age 45.36 ± 10.1 (13 males and 27 females)
were recruited on a voluntary basis from the Ambulatory of Nutrition of our Institute from
September to December 2019. The clinical trial, registered on http://www.clinicaltrials.
gov (6 August 2019) (reg. number: NCT04053569), was approved by the local Scientific
Committee and the Institutional Ethics Committee of Istituto Tumori Giovanni Paolo II,
Bari, Italy, Prot. N. 79/EC. Written informed consent was obtained from all the subjects
for blood testing and clinical data collection. The study was conducted in accordance with
the Helsinki Declaration and the participants were randomly assigned to two groups of
the study (control and grape group), as previously described [8]. Briefly, the grape group
consisting of healthy subjects was invited to daily consumption of 5 g of fresh table grape
per kg of body weight for 21 days (T1). Table grape used in this study was the black
seedless grape Autumn Royal, an experimental variety whose characteristics have been
previously described [8,11]. All enrolled subjects received dietary recommendations, as

http://www.clinicaltrials.gov
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limitation of alcohol, caffeine, and polyphenol-rich foods. The participants assigned to
the control group were asked to abstain from eating grapes. After 4 weeks from the end
of grape treatment, all subjects, including the controls, were asked to undergo a blood
draw for fatty acids evaluation and biochemical analyses (T2). The clinical trial flowchart
is shown in Figure 1 and the adherence to the grape consumption was estimated by an
adherence score described in Table S1.
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Figure 1. Flowchart of study design (Baseline, T0; Day 21, T1; Day 49, T2).

2.2. Blood Samples

Blood samples were collected in the morning after 12 h of fasting in vacutainer tubes
containing silica gel at T0 (baseline), T1 (day 21), and T2 (day 49). The samples were then
centrifuged at 2000× g for 10 min at 4 ◦C to obtain serum and stored at −80 ◦C until use.
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2.3. Serum Fatty Acids Extraction

Serum fatty acid extraction was performed using the Fatty Acid Extraction Kit, Low
standard (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions.
Briefly, serum samples were treated with 3 mL of Extraction Solvent and 0.5 mL of Aqueous
Buffer, vortexed, and placed inside a syringe to elute the lipids. The eluted lipids were
dried and esterified with 1 mL of Boron trifluoride-methanol solution and 0.3 mL of hexane.
After a period of incubation (1 h at 95 ◦C), 1 mL of hexane and 1 mL of distilled water were
added to the extracted mixture, which was vortexed and centrifuged at 500× g for 5 min.
The top of the hexane layer was transferred in a new tube and dried. The esterified lipids
were reconstituted with 100 µL of hexane and analyzed.

2.4. Serum Fatty Acids Analysis and Quantification

Fatty acid methyl esters extracted were analyzed by a gas chromatography equipment
with auto-sampler, a split/splitless injector, FID detector, and a hydrogen gas generator
(Thermo Fisher Scientific, Milan, Italy). The analysis was carried out on a BPX 70 capillary
column (SGE Analytical Science, P/N SGE054623, 60 m × 0.25 mm ID—BPX70 0.25 µM, SGE
Europe Ltd., Milton Keynes, UK). Hydrogen was used as carrier gas, 3.0 mL min−1, con-
stant flow mode; the amount injected was 1 µL in splitless mode (split flow 50 mL min−1,
splitless time 1 min). The temperature of the injector and the FID detector were 250 ◦C and
270 ◦C, respectively. The initial temperature of the oven was 40 ◦C, then it increased to
170 ◦C at 10 ◦C min−1 for 5 min, then to 200 ◦C at 4 ◦C min−1 for another 5 min, and finally
the temperature increased to 255 ◦C at 50 ◦C min−1 and held for 4.5 min. The identification
of each peak was obtained by comparing the retention times with those of a mixture of
standards (Supelco 37-Component FAME Mix, Sigma-Aldrich, Milan, Italy). Data were
expressed as percentage of each fatty acid calculated on the total amount of fatty acids.

2.5. Adiponectin and Fibroblast Growth Factor 21 (FGF21) Assay

Serum Adiponectin and FGF21 levels were evaluated in duplicate using commercially
available sandwich enzyme-linked immunosorbent assay kits (Human ADP Adiponectin
ELISA kit and Human FGF21 ELISA Kit, respectively, by MyBioSource, San Diego, CA, USA).

3. Results
3.1. Effect of Table Grape on Serum Biochemical Parameters

Table 1 shows the clinical and metabolic features of the participants who completed the
study. Compared to baseline, 21 days of grape treatment produced no significant difference
in serum levels of glucose, AST, ALT, and triglycerides. As previously reported, only the
cholesterol levels were significantly reduced at T1 compared to T0, in both experimental
groups (180.5 ± 20.32 vs. 196.1 ± 30.0 and 181.4 ± 21.9 vs. 194.3 ± 37.5, respectively).
Interestingly, at T2, the cholesterol values restored to the levels at the baseline. Moreover,
no adverse event was observed after the grape use.

3.2. Effect of Table Grape on Serum Fatty Acids Profile

Based on previous preliminary data, the study of fatty acids content in the serum
was conducted at T0 and T2 (4 weeks after the end of grape treatment), considered an
appropriate time to observe possible changes in fatty acids concentrations.

Table 2 shows the serum compositions of single fatty acids detected in two experimen-
tal subject groups. In the grape group, a significant effect of table grape intake on EPA and
DHA levels was observed and the Omega-3 index increased in a statistically significant
manner (6.095 ± 1.27 vs. 8.23 ± 1.89, p < 0.001, Paired t-test) when compared to the values
detected at baseline (Figure 2).
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Table 1. Clinical and Biochemical Characteristics of Participants at T0 (Baseline), T1 (Day 21), and T2
(Day 49).

Control Group
(n = 19)

Grape Group
(n = 21)

Sex
Male 4 9
Female 15 12

Age 44.1 ± 10.14 47.4 ± 9.5

Glucose (mg/dL)
T0 82.53 ± 6.05 79.33 ± 6.08
T1 84.05 ± 7.7 79.76 ± 5.43
T2 80.00 ± 9.81 77.41 ± 10.67

AST (U/L)
T0 18.89 ± 4.34 18.67 ± 3.54
T1 19.9 ± 7.34 18.48 ± 3.65
T2 19.07 ± 4.33 19.71 ± 5.64

ALT (U/L)
T0 22.47 ± 10.6 18.62 ± 7.26
T1 23.58 ± 12.0 19.9 ± 6.24
T2 19.93 ± 7.96 18.53 ± 7.19

γ-GT (U/L)
T0 19.32 ± 8.39 17.20 ± 9.30
T1 15.80 ± 7.40 16.20 ± 6.50
T2 15.47 ± 7.68 14.65 ± 6.65

Cholesterol (mg/dL)
T0 196.1 ± 30.0 194.3 ± 37.5
T1 180.5 ± 20.32 * 181.4 ± 21.9 *
T2 188.9 ± 33.96 198.8 ± 41.85

HDL-C (mg/dL)
T0 51.20 ± 12.80 54.62 ± 7.99
T1 49.70 ± 10.60 51.77 ± 4.24
T2 51.33 ± 11.60 54.88 ± 13.13

LDL-C (mg/dL)
T0 120.1 ± 21.6 116.1 ± 23.24
T1 118.3 ± 22.5 118.5 ± 21.5
T2 123.1 ± 27.33 120.7 ± 25.24

Triglycerides (mg/dL)
T0 87.50 ± 41.53 69.33 ± 37.34
T1 76.60 ± 29.03 67.35 ± 25.49
T2 72.53 ± 45.29 71.06 ± 39.53

Protein C reactive (mg/dL)
T0 0.14 ± 0.26 0.14 ± 0.26
T1 0.13 ± 0.36 0.18 ± 0.16
T2 0.24 ± 0.67 0.10 ± 0.26

Abbreviations: AST, aspartate transaminase; ALT, alanine aminotransferase; γ-GT, γ-glutamyl-transpeptidase;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. All values are expressed
as mean ± Standard Deviation. * p < 0.05, Paired t-test.

Table 2. Fatty Acids Content in the Serum from Control and Grape Group at Baseline (T0) and after
4 Weeks from the End of Treatment (T2).

Fatty Acid (%)
Control Group Grape Group

T0 T2 T0 T2

Palmitic acid 18.30 ± 2.80 19.98 ± 3.92 18.44 ± 1.91 18.27 ± 2.99
Stearic acid 14.33 ± 1.98 15.51 ± 2.42 14.27 ± 1.83 14.29 ± 2.12
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Table 2. Cont.

Fatty Acid (%)
Control Group Grape Group

T0 T2 T0 T2

Oleic acid 13.04 ± 1.87 14.38 ± 1.48 12.85 ± 1.60 14.15 ± 1.86 *
Vaccenic acid 0.89 ± 0.23 0.99 ± 0.21 0.83 ± 0.24 0.90 ± 0.35
Linoleic acid 10.61 ± 1.39 10.93 ± 1.21 11.00 ± 1.58 11.45 ± 1.66
γ-linoleic acid (GLA) 0.69 ± 1.74 0.59 ± 1.29 0.34 ± 0.85 0.37 ± 1.45
α-linolenic acid (ALA) 0.11 ± 0.07 0.13 ± 0.14 0.12 ± 0.11 0.16 ± 0.30
Arachidonic acid (AA) 18.25 ± 3.96 19.19 ± 3.43 17.72 ± 1.98 18.84 ± 3.43
Eicosapentaenoic acid (EPA) 1.65 ± 1.09 2.07 ± 1.15 2.02 ± 0.98 2.94 ± 1.18 *
Docosahexaenoic acid (DHA) 4.37 ± 1.53 4.60 ± 2.01 4.07 ± 1.19 5.29 ± 1.45 *
Saturated fatty acids 40.62 ± 3.91 41.67 ± 4.27 41.83 ± 2.82 41.65 ± 5.22
Monounsaturated fatty acids 17.65 ± 1.70 18.01 ± 1.41 17.26 ± 1.29 17.53 ± 1.64
Polyunsaturated fatty acids 38.67 ± 4.88 37.75 ± 4.35 37.76 ± 3.05 38.81 ± 5.71

Data expressed as the mean percentage ± standard deviation (SD); * p < 0.05, Paired t-test.

Table grape treatment also induced the serum oleic acid content (14.15 ± 1.8 vs.
12.85 ± 1.6, p < 0.05, Paired t-test), a monounsaturated fatty acid described to have anti-
inflammatory activity. No significant differences in fatty acid levels were observed between
baseline and T2 in the control group.

Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 11 
 

3.2. Effect of Table Grape on Serum Fatty Acids Profile 
Based on previous preliminary data, the study of fatty acids content in the serum was 

conducted at T0 and T2 (4 weeks after the end of grape treatment), considered an appro-
priate time to observe possible changes in fatty acids concentrations. 

Table 2 shows the serum compositions of single fatty acids detected in two experi-
mental subject groups. In the grape group, a significant effect of table grape intake on EPA 
and DHA levels was observed and the Omega-3 index increased in a statistically signifi-
cant manner (6.095 ± 1.27 vs. 8.23 ± 1.89, p < 0.001, Paired t-test) when compared to the 
values detected at baseline (Figure 2). 

Table grape treatment also induced the serum oleic acid content (14.15 ± 1.8 vs. 12.85 
± 1.6, p < 0.05, Paired t-test), a monounsaturated fatty acid described to have anti-inflam-
matory activity. No significant differences in fatty acid levels were observed between 
baseline and T2 in the control group. 

Table 2. Fatty Acids Content in the Serum from Control and Grape Group at Baseline (T0) and after 
4 Weeks from the End of Treatment (T2). 

Fatty Acid (%) 
Control Group Grape Group 
T0 T2 T0 T2 

Palmitic acid 18.30 ± 2.80 19.98 ± 3.92 18.44 ± 1.91 18.27 ± 2.99 
Stearic acid 14.33 ± 1.98 15.51 ± 2.42 14.27 ± 1.83 14.29 ± 2.12 
Oleic acid 13.04 ± 1.87 14.38 ± 1.48 12.85 ± 1.60 14.15 ± 1.86 * 
Vaccenic acid 0.89 ± 0.23 0.99 ± 0.21 0.83 ± 0.24 0.90 ± 0.35 
Linoleic acid 10.61 ± 1.39 10.93 ± 1.21 11.00 ± 1.58 11.45 ± 1.66 
γ-linoleic acid (GLA) 0.69 ± 1.74 0.59 ± 1.29 0.34 ± 0.85 0.37 ± 1.45 
α-linolenic acid (ALA) 0.11 ± 0.07 0.13 ± 0.14 0.12 ± 0.11 0.16 ± 0.30 
Arachidonic acid (AA) 18.25 ± 3.96 19.19 ± 3.43 17.72 ± 1.98 18.84 ± 3.43 
Eicosapentaenoic acid (EPA) 1.65 ± 1.09 2.07 ± 1.15 2.02 ± 0.98 2.94 ± 1.18 * 
Docosahexaenoic acid (DHA) 4.37 ± 1.53 4.60 ± 2.01 4.07 ± 1.19 5.29 ± 1.45 * 
Saturated fatty acids  40.62 ± 3.91 41.67 ± 4.27 41.83 ± 2.82 41.65 ± 5.22 
Monounsaturated fatty acids  17.65 ± 1.70 18.01 ± 1.41 17.26 ± 1.29 17.53 ± 1.64 
Polyunsaturated fatty acids  38.67 ± 4.88 37.75 ± 4.35 37.76 ± 3.05 38.81 ± 5.71 

Data expressed as the mean percentage ± standard deviation (SD); * p < 0.05, Paired t-test. 

 
Figure 2. Omega-3 index levels in the serum from control and grape group at baseline (T0) and after 
4 weeks from the end of grape treatment (T2). Data expressed as the mean percentage ± standard 
deviation. p-Value was determined by Paired t-test; *** p < 0.001. 

  

Figure 2. Omega-3 index levels in the serum from control and grape group at baseline (T0) and after
4 weeks from the end of grape treatment (T2). Data expressed as the mean percentage ± standard
deviation. p-Value was determined by Paired t-test; *** p < 0.001.

3.3. Impact of Table Grape on Serum Adiponectin and FGF21 Levels

The effect of table grape intake on the serum levels of adiponectin and FGF21 are
shown in Figure 3. The grape group presented a significant increase in adiponectin levels
compared to baseline. This increase was time-depending, so that the effects were more
evident at T2.

Opposite behavior was observed for the expression of FGF21; a statistically significant
reduction in FGF21 levels was detected in the serum of subjects treated with the grape-rich
diet. The grape effect was slightly more evident at T1 than T2.

Compared to baseline, no difference in serum adiponectin and FGF21 concentrations
was observed in the control group, both T1 and T2.
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4. Discussion

The Mediterranean Diet is characterized by an adequately balanced combination of
fruit and vegetables, fish, and cereals rich in polyphenols, fiber, and polyunsaturated fats,
contributing to maintaining a healthy status. This dietary pattern is essential as a preventive
measure against the onset of cancer and other chronic diseases and to reduce healthcare
costs. Consequently, it is necessary to continue investigating the molecular mechanisms
whereby the Mediterranean Diet exerts its protective effects.

Polyphenols, secondary plant metabolites, protect and reduce inflammation by dif-
ferent pathways, through mechanisms of down-regulation, balance, and up-regulation,
preventing obesity, cancer, and age-related diseases, in which inflammation has an impor-
tant pathological role [31].

Table grapes, in particular, are typical fruits of the Mediterranean tradition, character-
ized by a high content of polyphenols. On the effects of grape polyphenols on human health,
recently, we carried out some studies both in vivo and in vitro to clarify the molecular mech-
anisms involved. The Autumn Royal grape had already shown in vitro a great ability to
affect cell membrane PUFAs profile, as well as cell morphology and migration [11,12]. In
human colorectal cancer cell lines, the treatment with Autumn Royal grape variety exerted
a significant increase in total PUFAs and, notably, a significant reduction in the arachidonic
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acid content. These effects are probably due to its high content in flavonoid compounds,
known to be anti-inflammatory and antioxidant agents in the cells.

The Autumn Royal black table grape has been also demonstrated to influence the
expression of circulating coding and non-coding RNA sequences, namely microRNAs,
involved in the modulation of gastrointestinal cancer-related pathways [8]. The subjects
treated with Autumn Royal black grape showed a significant down-regulation of 18 miR-
NAs involved in pathways related to cancer. The down-regulation of these circulating
miRNAs linked to cell proliferation and inflammatory processes demonstrated that dietary
components can modulate gene expression, showing specific functional, preventive, and
therapeutic effects. Although the effects of these compounds depend upon the amount
consumed, their bioavailability and potential interactions with other nutrients, a lot of
experimental evidences have confirmed the ability of diet-derived polyphenols to modu-
late the metabolism of polyunsaturated fatty acids (PUFAs), both Omega-3 and Omega-6
PUFAs [7,10].

In the present study, we demonstrate a significant up-regulation of the Omega-3 index
in the healthy subjects, after 4 weeks from the end of grape treatment. Based on previous
preliminary data, we considered it an appropriate time to evaluate possible changes in
serum fatty acids content.

The mechanisms by which the daily use of grape increases serum EPA and DHA levels
are few studied, even if preclinical studies have showed that a diet rich in flavonoids may
induce the synthesis of EPA and DHA through the activation of their precursor α-linolenic
acid [7]. It has been also demonstrated that flavonoid and not flavonoid compounds of
Autumn Royal grape skin extracts modulate membrane PUFAs content in human colon
cancer cell lines [11]. These findings observed in vitro have been confirmed in humans,
showing the ability of the Autumn Royal grape variety to interfere with the metabolism
of PUFAs.

A previous nutrigenomic study [32] has demonstrated that the fresh table grape intake
exerted an up-regulation of the fatty acid desaturase 1 (FADS1) enzyme, also known as delta-
5 desaturase. This protein is one of the rate-limiting enzymes in the PUFA desaturation
pathway, involved in catalyzing the conversion of dihomo-γ-linolenic acid (DGLA) to
arachidonic acid (AA), EPA, and DHA. Notably, the dysregulation in FADS1 influences
hepatic lipid homeostasis by modulating the PPARα-FGF21 axis [33] and a decreased
hepatic FADS1 expression, associated with low levels of long-chain PUFAs, have been
detected in subjects with nonalcoholic fatty liver disease (NAFLD).

The significant induction of the Omega-3 index detected in the grape group was
associated with higher serum levels of adiponectin, a molecule known to have a key
regulatory role in promoting fatty acids oxidation in the liver [34,35]. It has been reported
that adiponectin release increases in response to EPA and DHA supplementation [20].

Moreover, experimental evidences have also suggested the ability of adiponectin to
inhibit inflammation, modulating the expression of NF-kB and reducing the expression of
TNF-α, IL-6, and IL-8 [36].

The anti-inflammatory activity of the grape-rich diet, was reported in Ammollo et al.,
2017 [37] with the decreased release of IL-1β in PBMCs in response to in vitro lipopolysac-
charide stimulation. Moreover, the array analysis [32] showed the down-regulation of
the IL-1β gene and other genes involved in the inflammation, such as some chemokines
and their receptors, as well as a down-regulation of the pathways involved in the cellu-
lar inflammatory response, such as TNF, NLR, and JAK/STAT. Therefore, high levels of
adiponectin observed in the subjects after grape treatment confirm data showing that fruits
polyphenols, as well as their metabolites have various beneficial effects on human health.

The reduction in FGF21 is also in line with well-known anti-inflammatory functions of
both EPA and DHA, since increased FGF21 levels have been associated with the presence
of inflammatory chronic diseases, including metabolic syndrome [20,34]. Furthermore,
FGF21 has been found to promote the metabolic events leading to type 2 diabetes mellitus,
NAFLD, and obesity [38,39]. Overall, the physiological role of FGF21 is to act on white
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adipose tissue lipolysis, increase insulin-dependent glucose uptake, and revert insulin
resistance [40,41]. In this context, some studies suggest that the FGF21/adiponectin ratio
may be a sensitive marker for the evaluation of liver steatosis [21,42].

Based on the data from this study, we can suggest that grape intake could also be
beneficial for individuals with impaired liver or glucose metabolism. In this regard, no
alteration of the biochemical parameters (as glycaemia, AST, ALT, etc.) was detected
after grape consumption suggesting that daily grape intake exerts beneficial effects in
maintaining metabolic homeostasis.

However, the study has some limitations due to the need to increase the sample size
and to investigate in the serum the bioaccessibility and bioavailability of the bioactive
compounds present in the grape. The strength of the study is the evidence which the use of
fresh grapes can be considered as a preventive option to reduce the risk or delay the onset
of multiple chronic pathological conditions.

5. Conclusions

The remarkable impact of the Autumn Royal grape on the stimulation of EPA and
DHA synthesis and, consequently, on the increase in the Omega-3 index in the serum,
translates into beneficial effects on liver function through the overexpression of adiponectin
and the reduction in FGF21 levels.

The results of this study are of interest since they also provide some indications
on which molecules to use for future nutrigenomics studies aimed to elucidate how the
deficiency of several macronutrients results in significant metabolic disorders.
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