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Unambiguous inference that a cellular
phenotype is caused by a genotype
can only be achieved by their measure-
ment from the same single cell.

Estimating RNA and DNA copy num-
ber abundance in single cells is now
possible using a variety of experimental
approaches.

Parallel measurement of single-cell epi-
genomes and transcriptomes provides
further insight into the regulation of cel-
lular identity and phenotypes.

Parallel measurement of single-cell
transcriptomes and protein abundance
(by FACS, proximity ligation assays/
PEA or mass cytometry) allows insight
into expression dynamics.

Our understanding of cancer progres-
sion and diversity is likely to be
advanced greatly by the multiomics
investigation of single cells, as is our
understanding of normal developmen-
tal and other disease processes.

Ongoing technological advances will
see improvements in the coverage,
sensitivity of multiomics approaches,
as well the number of analytes that
can be surveyed in parallel.
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Single-cell sequencing provides information that is not confounded by geno-
typic or phenotypic heterogeneity of bulk samples. Sequencing of one molecu-
lar type (RNA, methylated DNA or open chromatin) in a single cell, furthermore,
provides insights into the cell's phenotype and links to its genotype. Neverthe-
less, only by taking measurements of these phenotypes and genotypes from the
same single cells can such inferences be made unambiguously. In this review,
we survey the first experimental approaches that assay, in parallel, multiple
molecular types from the same single cell, before considering the challenges
and opportunities afforded by these and future technologies.

Multiple Molecular Types in Cells
The cell is a natural unit of biology, whose type and state can vary according to external
influences or to internal processes. In multicellular organisms, all cells are derived from a single
zygote which, through regulated programmes of proliferation and differentiation, generates all of
the diverse cell types that populate the organism. Dysregulation of these programmes in single
‘renegade’ cells can lead to diseases such as cancers [1], neurological disorders [2] and
developmental disorders [3].

Sequencing technologies now permit genome [4], epigenome [5], transcriptome [6], or protein
[7] profiling of single cells sampled from heterogeneous cell types and different cellular states,
thereby enabling normal development and disease processes to be studied and dissected at
cellular resolution. However, the sampling of just one molecular type from individual cells
provides only incomplete information because a cell's state is determined by the complex
interplay of molecules within its genome, epigenome, transcriptome and proteome. To more
comprehensively understand and model cellular processes, new technologies are required to
simultaneously assay different types of molecules, such as DNA and RNA or RNA and protein, to
survey as much of the cellular state as possible.

Such multiomics approaches will enable, amongst other things, the generation of mechanistic
models relating (epi)genomic variation and transcript/protein expression dynamics, which in turn
should allow a more detailed exploration of cellular behaviour in health and disease. In this
review, we discuss the developments, opportunities and challenges of sequencing technolo-
gies, which have enabled single-cell multiomics, and provide an outlook on future research and
technological directions.

Parallel Interrogation of Genomes and Transcriptomes
The ability to survey both the genome and the transcriptome of the same single cell in parallel
will offer a number of unique experimental opportunities. Primarily, it would directly link the
wild-type or modified genotype of a cell to its transcriptomic phenotype, which reflects, in
Trends in Genetics, February 2017, Vol. 33, No. 2 http://dx.doi.org/10.1016/j.tig.2016.12.003 155
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tig.2016.12.003&domain=pdf
http://dx.doi.org/10.1016/j.tig.2016.12.003
http://creativecommons.org/licenses/by/4.0/


*Correspondence:
Iain.Macaulay@earlham.ac.uk
(I.C. Macaulay),
Chris.Ponting@igmm.ed.ac.uk
(C.P. Ponting),
thierry.voet@kuleuven.be and
Thierry.Voet@sanger.ac.uk (T. Voet).

Box 1. Isolation of Single Cells

Ensuring that a sample contains only a single cell remains technically challenging. The first key step is to generate a single-
cell suspension. This varies considerably between tissue types and optimisation is required to ensure analysis of a viable,
unbiased, cell population. When tissue complexity or handling prohibits intact cell isolation, suspensions of single nuclei
can be prepared [68,69]. Single nucleus (epi)genomic and transcriptomic analyses have been demonstrated [19,68,69],
and thus in principle solely nuclei may be used as input for multiomics approaches.

There are various approaches for isolating single cells from a suspension. Manual isolation – either using specialised
pipettes or micromanipulation equipment – notably allows a single cell to be directly visualised during isolation.When all of
a small number of cells are to be analysed – for example, daughter cells from a single cell division – this is often the most
suitable option [70]. Nevertheless, it is by necessity low throughput.

FACS allows phenotypically distinct cells, and even nuclei, to be sorted into user-defined vessels and lysis buffers, thus
enabling diverse single-cell and single-nuclei protocols to be applied at significantly higher throughput [68]. Index sorting
[71] additionally allows direct linking of a single cell's phenotype (e.g., surface marker expression, DNA content) with
multiomics analysis. However, large numbers of cells are required as input, and because the platform currently offers no
opportunity to visualise sorted cells, care must be taken to identify and exclude cell doublets.

Microfluidics technologies that isolate single cells in individual capture sites and initiate nucleic acid amplification in
nanolitre volumes have been widely applied in single-cell omics studies (e.g., Fluidigm C1 [72]). Once captured, cells can
be visualised on the chip, confirming the presence of a single cell.

Advances in microfluidics approaches in which single cells are encapsulated within individual droplets prior to barcoded
sequence library preparation (e.g., Drop-seq [73], inDrop [74,75]) allow tens of thousands of single cells to be
investigated in parallel. However, these approaches rely on limiting dilution Poisson statistics for cell isolation, which
result in a doublet rate dependent on the concentration of cells in the input material. Visual validation is not currently a
component of these protocols.

Single cells can also be isolated using laser capture microdissection [76], which offers a unique opportunity to study cells
in their topological context, although this has not yet been applied widely to multiomics analysis.
turn, its functional state. Genomic variation in a population of cells could be associated with
transcriptional variation, and molecular mechanisms that are causal of cellular phenotypic
variation could be deduced without the potentially confounding effects of cell type heteroge-
neity. Second, single-cell genome sequences could be used to reconstruct a cell lineage tree
that captures the genealogical record of acquired DNA mutations in the cells’ genomes over
time; in parallel, the RNA sequences of these same cells would reflect the types and states of
the cells. These phenotypically annotated lineage trees should enhance our understanding of
the cellular properties and population architectures of heterogeneous tissues in health and
disease.

Direct measurement of multiple molecular types in the same cell offers substantial advantage
over the separate measurement of each molecular type in different cells. This is because relating
molecules, for example, RNA in one cell versus DNA in another (or in a population of cells), is
confounded by the cells’ potential differences in genotype (e.g., somatic variation in cancer),
phenotype (e.g., cell cycle) or environment (e.g., cell–cell interactions). Consequently, although a
single cell's genomic copy number can be inferred indirectly from single-cell RNA-sequencing
(scRNA-seq) data [8,9], only by applying multiomics approaches to one cell can its genotype–
phenotype relationships be determined unambiguously.

Two complementary strategies have been developed that permit both genome and transcrip-
tome sequencing from single cells (Figure 1, see Box 1 for information about single-cell isolation).
In the first approach, gDNA–mRNA sequencing (DR-seq) [10] (Figure 1A), genomic DNA (gDNA)
and mRNA present in a single cell's lysate are preamplified simultaneously before splitting the
reaction in two for parallel gDNA [using a modified multiple annealing and looping-based
amplification cycles (MALBAC) [11] approach] and mRNA library preparation (using a modified
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Figure 1. Experimental Approaches for DNA- and RNA-Sequencing of the Same Single Cell. (A) Following complete cell lysis, one has the option to follow
principles of genomic DNA (gDNA)–mRNA sequencing (DR-seq) or genome and transcriptome sequencing (G&T-seq). (i) In DR-seq, lysis of the cell is directly followed by
reverse transcription of RNA to synthesise single-stranded cDNA incorporating the 50 T7 promoter. The gDNA and single-stranded cDNA are then amplified together in
the same reaction by a quasi-linear approach, using principles of the multiple annealing and looping-based amplification cycles (MALBAC) protocol for single-cell WGA,
after which the reaction is split. gDNA in one half of the reaction is further amplified by PCR, leading to co-amplification of contaminating cDNA, while in the other reaction
cDNA-specific second-strand synthesis is followed by in vitro transcription (IVT) for further amplification of the mRNA. (ii) In G&T-seq, lysis of the cell is followed by physical
separation of polyadenylated mRNA from DNA using oligo-dT-coated magnetic beads either manually or on a robotic liquid handling platform. Following separation, the
mRNA is converted on the bead to cDNA and further amplified using amodified Smart-seq2 approach. The DNA of the same cell is precipitated and prepared for genome
sequencing following a WGA method of choice or for methylome sequencing following bisulphite conversion and amplification. Alternatively, (B) following lysis of the cell
membrane but not the nuclear membrane, the nucleus can be physically isolated from the cytoplasmic lysate of the cell. The latter contains the cytoplasmic mRNA
molecules and can be used for the preparation of a RNA-seq library. In parallel, the nucleus containing the genomic DNA can be lysed and used for the preparation of
genome sequencing or (reduced representation) DNA methylation sequencing libraries, as in single-cell methylome and transcriptome sequencing ([4_TD$DIFF]scMT-seq) and
single-cell genome, DNA methylome and transcriptome sequencing (scTrio-seq). [5_TD$DIFF](C) Comparison of pros and cons of current single-cell multiomics methods. scBS,
[6_TD$DIFF]single-cell [7_TD$DIFF]bisulphite [8_TD$DIFF]sequencing; WGA, whole-genome amplification.
CEL-seq [12] approach) and subsequent sequencing. In the other approach, exemplified by
genome and transcriptome sequencing (G&T-seq) [13,14] (Figure 1A), mRNA is physically
separated from gDNA using oligo-dT-coated beads to capture and isolate the polyadenylated
mRNA molecules from a fully lysed single cell. The mRNA is then amplified using a modified
Smart-seq2 protocol [15,16], while the gDNA can be amplified and sequenced by a variety of
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methods [13,14]. The transcriptogenomics method [17] is based upon a similar principle of
separation and parallel amplification. Separation of genome and transcriptome can also be
accomplished using more gentle cell lysis procedures that dismantle the cellular but not the
nuclear membrane (Figure 1B), allowing the intact nucleus to be separated from the cytoplasmic
lysate; the nucleus can be used as a substrate for genomic [18] and epigenomic analysis [19,20],
while the cytoplasmic lysate can be used to perform mRNA profiling of the single cell. In addition
to these methods, which apply microliter volume reactions, a microfluidic platform method using
nanolitre reaction chambers that physically separates cytoplasmic mRNA from nuclear gDNA of
the same single cell was described [14], which can be used for targeted amplicon sequencing of
both molecular types.

To achieve success, single-cell protocols need to maximise accuracy, uniformity and coverage
when sampling a cell's available molecules. Minimising the loss, while maintaining the diversity
and fidelity of information from a single cell, is a critical challenge in the development of
multiomics approaches. The major advantage of avoiding a priori separation, as in DR-seq,
is that it minimises the risk of losing minute quantities of the cell's genomic/transcriptomic
material during any transfer steps, whereas the advantage of physical separation is that the cell's
gDNA and mRNA are amenable to independent protocols of choice for further amplification and
sequencing (Figure 1C). However, protocols that rely on physical separation of nucleus and
cytoplasm [19,20] are often dependent on manual isolation of the nucleus from each single cell
and thus such methods, unless transferred to a microfluidics platform [18], may only be
applicable in low-throughput settings.

Linking Genomic and Transcriptomic Variation in Single Cells
The first-generation methods for multiomics single-cell sequencing – DR-seq and G&T-seq in
particular – demonstrated how genomic variation among a population of single cells can explain
transcriptomic variation. Both methods were applied to reveal, for the first time, the direct
association between (sub)chromosomal copy number and gene expression in the same single
cell (Figure 2A). DR-seq demonstrated a positive correlation between large-scale DNA copy
number variation in the genome and gene expression levels in individual cells. Furthermore,
these data indicated that genes with low DNA copy number tend to generate transcripts with
noisier expression levels [10]. G&T-seq was applied to human breast cancer and matched
normal lymphoblastoid cell lines, as well as to primary cells from eight-cell stage mouse embryos
and human inducible pluripotent stem cell-derived neurons derived from individuals with either a
disomy or trisomy for chromosome 21. Data from these G&T-seq experiments further confirmed
the relationship between (sub)chromosomal copy number and expression level of genes located
within DNA copy number variable regions in single cells [13].

These approaches also allow the functional consequences of de novo structural variants to be
investigated in single cells. In cancer, structural DNA rearrangements can translocate gene
regulatory elements to the vicinity of other genes thereby perturbing their expression, or may
result in novel fusion genes, which contribute to the overall progression of the disease. With G&T-
seq, the full length of the mRNA molecule is preserved during amplification (Figure 1C), which
enables the detection of expressed fusion transcripts either by assembling Illumina short reads or
as long reads using the Pacific Biosciences RSII sequencer [13]. The concurrent availability of a
matched genome sequence from the same single cell allows the causal genomic fusion to be
validated and mapped to single base resolution, in parallel with the ability to detect genome-wide
dysregulation of gene expression associated with a structural rearrangement (Figure 2B).

DR-seq [10], G&T-seq [13] and the method described by Li et al. [17] all have potential to detect
single nucleotide variants (SNVs) in matched single-cell genomes and transcriptomes. This
enables, if the transcript carrying the variant allele is expressed, confirmation of the detection of
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Figure 2. Integrative Genome and Transcriptome Sequence Analyses of Single Cells. Single-cell genotype–phenotype correlations are enabled by sequencing
its DNA and RNA, including (A) investigating gene expression dosage effects resulting from DNA copy number alterations; (B) detecting the expression of fusion
transcripts from DNA structural variation, permitting base-level reconstruction of both fusion transcript and the causative genomic lesion; (C) studying the expression of
coding genomic variants – including allele-specific expression or the expression of an acquired single nucleotide variant – or observing RNA editing; and (D) examining the
expression level of transcripts from genes mutated in their coding or noncoding genomic parts (e.g., a gene regulatory region), and thus determining the functional
consequences of acquired genetic variation on the cell. We note that limitations of transcriptional profiling for inferring genomic variation include that (i) only genomic
variants within or encompassing expressed genes in the cell can be represented in the single cell's RNA-seq data – that is, nontranscribed genomic variation may not be
inferred from the cell's RNA-seq data alone; (ii) artefacts resulting from whole-transcriptome amplification (and whole-genome amplification) should be taken into account
when inferring genomic variation; and (iii) transcriptional profiles can be less predictive of genomic variation when read coverage is limited.
SNVs in two readouts from the same cell. Where genome coverage is sufficient to detect both
alleles of an expressed gene, it would also be possible to extend this analysis to consider allele-
specific expression, with the cell's own genome as a reference. Furthermore, the comparative
analysis of genome and transcriptome sequencing data from the same single cell should enable
the detection of RNA editing events, again using the cell's own genome as a reference
(Figure 2C). The availability of both DNA and RNA sequencing data from the same cell also
has clear potential to enable the detection of expressed, coding mutations in populations of
single cells (Figure 2D, upper and middle panels) as well as the study of acquired expression
quantitative trait loci, whereby de novo genetic variants in, for instance, gene regulatory elements
of single cells may affect the expression of the gene(s) under the control of this element, altering
the cell's transcriptomic cell state (Figure 2D, lower panel), or how newly acquired genomic
variants may alter the splicing or reading frame of a transcript in a cell.

However, limitations in whole-genome amplification mean that detection of all classes of variants
currently cannot be achieved comprehensively and with complete accuracy in every single cell
Trends in Genetics, February 2017, Vol. 33, No. 2 159



[4,21]. All whole-genome amplification approaches result in frequent allelic and locus dropouts –
in which, respectively, either one or both alleles of a sequence are not detected leading to false-
negative calls and it is likely that physical separation or manipulation of gDNA in multiomic assays
can exacerbate the levels of dropout observed. Furthermore, all polymerases have a baseline
error rate, and thus base misincorporation errors occur during amplification of both DNA and
RNA leading to false-positive SNV calls.

Additional limitations exist in whole-transcriptome amplification approaches. Reverse transcrip-
tase and subsequent polymerase-based amplification steps also have potential to introduce
biases in representation in the data. In single-cell whole-transcriptome amplification, it is
estimated that only 10–40% of the original mRNA molecules from a cell are represented in
the final sequencing library [22,23], and again, it is feasible that either parallel amplification or
physical separation of DNA and RNA could potentially reduce this level even further (Figure 1C).

Improvements in single-cell amplification and library preparation, in addition to the optimisation
and development of technologies for separation of different analytes from the same cell, are an
ongoing area of research in multiomics protocol development, and key technical challenges
must be met to enable the full potential of the approach (see Outstanding Questions).

Multiomics Analysis of Single Cells in Cancer
Multiple types of mutation can be introduced over the trillions of cell divisions that occur during the
lifespan of a multicellular organism – from SNVs and interchromosomal or intrachromosomal
rearrangements to gains or losses of whole chromosomes or even entire genomes [2,21]. Current
multiomics approaches stand ready to disclose the functional consequences of those acquired
mutations and how they contribute to the spectrum of normal phenotypic variation, develop-
mental and neurological disorders as well as other diseases. The single-cell genotype–phenotype
correlations that thesemethods provide enable unique insights into diverse biological and disease
processes, particularly for cancer, in which somatically acquired genomic diversity and its
transcriptional consequences are key components of the origin and evolution of the disease.

Single-cell multiomics approaches can uniquely relate acquired genomic variation with changes
in cellular function and transcriptional phenotype in cancer (Figure 3). Furthermore, these
approaches may contribute to the understanding of cellular mechanisms of resistance to cancer
therapies – it is conceivable that genetically similar cells belonging to a particular subclone may
develop distinct transcriptional cell states resulting in functional dissimilarities and differential
drug responses. By determining the genomic and transcriptional states of such cells in parallel, it
may be possible to reveal the transcriptional signature – and potentially molecular targets –

which regulate the diversity in responsiveness to therapy.

One of the principal applications of single-cell genome sequencing is the establishment of lineage
trees – or phylogenies – of cancer evolution. Theoretically, the cell lineage of a cancer can be
reconstructed by considering the degree by which cells share somatic variants, each inherited
from a common ancestral cell in which it first arose [24]. Following reconstruction of the subclonal
genomic lineage of a cancer to single-cell resolution, single-cell multiomics approaches can be
used to annotate the lineages within the tumour with transcriptomic cell states (Figure 3).

DNA-based cell lineage trees annotated with transcriptomic cell state information will not only be
of use in understanding the extent, nature and biology of genomic–transcriptomic cellular
heterogeneity in cancer over the course of treatment, but also in revealing the cellular architecture
and developmental history of organs in healthy organisms. Single-cell genomics has revealed a
spectacular degree of genetic variation in the human brain – ranging from low-frequency
aneuploidies to high-frequency copy number variants and SNVs, even in young individuals
160 Trends in Genetics, February 2017, Vol. 33, No. 2
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Figure 3. Cell Lineage Trees Depict the Genealogical Record of Acquired DNA Mutations Overlaid with the Transcriptomic Phenotypes of the Same
Cells. Cancers arise due to the acquisition of driver mutations (red stars) in a single cell, resulting in a clonal expansion of that cell (blue droplet). During this expansion,
more driver mutations can accumulate giving rise to tumour subclones (green, light blue and purple droplets) with common and unique DNA mutations. Single-cell
multiomics on a heterogeneous population exposes both the acquired DNAmutations per cell by DNA-seq analyses and the transcriptomic cell type and state of each cell
by dimensionality reduction techniques on RNA-sequences of the same cells. The single-cell DNAmutation matrix can reconstruct the cell lineage tree, which can then be
overlaid with transcriptomic states of the same cells, disclosing the gene expression of profiles of, for example, tumour subclones.
[25,26]. It is likely that any multicellular organism comprises a mosaic of genomes, with mutations
acquired throughout its development disclosing the cellular lineage [24]. By extending these
phylogenetic studies to incorporate a multiomics approach, it becomes possible not just to infer
the cellular phylogeny of an organism or diseased tissue, but to annotate that phylogeny with an
atlas of transcriptional phenotypes for the individual cells. Integrating lineaging approaches within
current efforts to generate cell atlases for whole organismswill allow the phylogenetic relationships
of the cells to be inferred, which in turn may contribute to the understanding of tissue and
organismal development.

Linking Epigenetic and Transcriptomic Variation in Single Cells
DNA methylation at the carbon-5 position of cytosine bases, primarily in a CpG dinucleotide
context, is a common correlate of gene expression variation in mammals [27]. Nevertheless, to
explore the causal or consequential basis for this correlation, it is necessary to measure both
DNAmethylation and transcript abundance for the same single cells sampled from dynamic and
Trends in Genetics, February 2017, Vol. 33, No. 2 161



heterogeneous cell populations. Approaches that integrate single-cell DNAmethylation analysis,
including single-cell bisulphite sequencing (scBS-seq) [28] and reduced representation bisul-
phite sequencing (scRRBS-seq) [29], with single-cell RNA-seq have recently been developed. In
contrast to scBS-seq, scRRBS-seq first digests the cell's gDNA with a methylation-insensitive
restriction enzyme (e.g., MspI) prior to bisulphite treatment, which allows enrichment for CpG-
rich DNA sequences, giving a reduced but representative overview of DNA methylation in the
cell's genome. All currently described DNAmethylation and RNA transcript abundancemethods
require a physical separation and then amplification of gDNA and mRNA as described earlier
(Figure 1), and exploit the conversions of unmethylated cytosines to uracils by bisulphite
treatment: these converted bases are detected as thymine bases following amplification and
sequencing, while methylated cytosines are not altered.

The first such method, single-cell methylome and transcriptome sequencing (scM&T-seq) [30],
is an extension to the G&T-seq protocol in which mRNA is captured, amplified and sequenced
as before. However, the isolated gDNA of the single cell undergoes bisulphite sequencing [28],
rather than whole-genome amplification, allowing parallel analysis of genome-wide DNA meth-
ylation and transcriptome-wide gene expression from the same single cell.

Subsequently reported methods involved the physical separation of the cytoplasmic RNA and
the nuclear DNA before parallel amplification of cDNA and bisulphite-treated DNA (Figure 1B). In
[4_TD$DIFF]scMT-seq [20], the cell is gently lysed, and the nucleus collected by microcapillary picking. The
mRNA in the lysate is then amplified by a modified Smart-seq2 protocol [15,16], while the
genome is subjected to a modified scRRBS protocol. In single-cell genome, DNA methylome
and transcriptome sequencing (scTrio-seq) [19], the nucleus and cytoplasm are separated by
centrifugation, the transcriptome is then amplified as described in [31,32] and the scRRBS
approach is applied to the gDNA.

All three methods allow for the consideration of whether the degree of DNA methylation of
different functional elements in the genome – e.g., gene bodies, promoters, enhancers – reflects
the expression levels of genes in single cells (Figure 4A–C). The scRRBS approaches detected
approximately 480 000–1 500 000 CpG sites, while scM&T-seq, which utilises genome-wide
bisulphite conversion, had a greater coverage of approximately 4 500 000 sites (approximately
25% coverage) from a similar depth of sequencing per cell [19,20,30].

Uniquely, the scTrio-seq approach [19] computationally mines both the DNA methylation and
copy number states from scRRBS sequencing libraries, and in parallel measures cytoplasmic
transcript levels from the same single cell (Figure 4D). In principle, DNA copy number landscapes
could also be mined from the methylome sequences of scM&T-seq and [4_TD$DIFF]scMT-seq data but this
has yet to be demonstrated.

In addition to bisulphite treatment, one other approach has been developed for targeted DNA
methylation profiling of multiple loci in single cells. This involves the restriction digestion of single-
cell DNA with methylation-sensitive enzymes followed by multiplexed quantitative real-time PCR
with primers flanking the restriction sites in a microfluidics device [33,34]. The technology was
recently combined with RT-quantitative PCR (qPCR)-based targeted gene expression and
sequencing-based targeted genotyping of genomic loci [35], enabling single-cell analysis of
genotype, expression and methylation (scGEM). In contrast to bisulphite-based DNA methyl-
ation assays that are prone to stochastic dropouts, scGEM enables a more reproducible
assessment of methylation status at specific sites across cells.

Beyond methylation, the repertoire of approaches available to study single-cell epigenomics
continues to expand [36]. The recent demonstration that genome-wide hydroxymethylation can
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Figure 4. Integrative Epigenome and Transcriptome Sequence Analyses of Single Cells. (A) Gene regulatory elements, in particular, can show homogeneous
(Regulatory Feature 1) or heterogeneous (Regulatory Feature 2) methylation states in populations of cells. (B and C) The variance in DNA methylation across cells at a
particular genomic locus may be coupled or uncoupled to variance in expression of nearby gene(s) across the cells. Parallel single-cell analysis of DNA methylation and
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it is also possible to compute DNA copy number profiles (e.g., scTrio-seq), allowing investigation of correlations between DNA numerical alterations, DNA methylation
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be measured in a single cell [37], along with the emergence of approaches that survey open
chromatin (assay for transposase-accessible chromatin using sequencing [38] and single-cell
DNase sequencing [39]), chromatin conformation (Hi-C [40]), or DNA- or chromatin-binding
proteins (ChIP-seq [41], DNA adenine methyltransferase identification (DAM-ID) [42]), opens up
new opportunities to couple a diverse array of single-cell epigenomic methods with parallel
transcriptomic analysis. Epigenomic mechanisms are central to the regulation of gene expres-
sion and the emergence of functional diversity across cells with identical genomes; and as a
consequence, parallel study of the epigenomes and transcriptomes of single cells is fundamental
to understanding cellular identity, cellular function and phenotypes that are not predictable by
genotype alone.

Relating Expression of RNA and Protein in Single Cells
Single-cell proteomics methodologies, while still limited in survey breadth when compared to
genomics approaches, are developing rapidly. Currently, the most widely applied single-cell
proteomics approaches rely on targeting specific proteins using tagged antibodies.
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Fluorescence-based detection of protein by fluorescence-activated cell sorting (FACS) or
fluorescence microscopy, as well as single-cell Western blotting [43], allow protein detection
in single cells with a low level of multiplexing (approximately 10–15 proteins in total), whilst more
highly multiplexed targeted approaches, including the use of oligonucleotide-labelled antibodies
followed by qPCR [44,45], metal-tagged antibodies followed by mass cytometry [46,47] and
single-cell mass spectrometry [48] are emerging. However, these initial methods are still limited
to the detection of tens to hundreds of proteins per cell.

Nevertheless, the incorporation of proteomic and transcriptomic analysis into a singlemultiomics
approach offers the exciting possibility to explore the dynamics of RNA and protein abundance
in the same single cell. The most straightforward approaches employ indexed FACS of single
cells to relate immunofluorescent signals of a single protein, or a small number of proteins, with
their corresponding transcripts’ levels in the same cells [49]. More advancedmethods have used
FACS- and imaging-based approaches to simultaneously measure mRNA and protein [50,51].

One approach to simultaneously read out protein and transcript abundance from the same
single cell is to employ a proximity extension assay (PEA) [45] in parallel with RNA detection.
In a PEA, two antibodies that recognise different epitopes of the same protein are tagged
with complementary oligonucleotides. These oligonucleotides hybridise when in sufficient
proximity (i.e., bound to the same molecule), allowing mutual priming and extension and
hence generating a unique sequence that can be further amplified and detected by qPCR.
Thus, the protein signal detected in a single cell is transformed into a nucleotide signal that
can be interpreted by qPCR and, as has been demonstrated in bulk samples, high-
throughput sequencing [52]. By incorporating unique sequences with every PEA antibody
pair, a substantial number of proteins (>70) can be investigated in parallel with the level of the
corresponding transcripts.

One suchmethod (Figure 5A) involves splitting single-cell lysates and performing qPCR to detect
the transcript of interest in one half, while the other half is incubated with a PEA [53]. Using this
method, the [1_TD$DIFF] correlation of abundance [9_TD$DIFF]of transcripts and proteins from [10_TD$DIFF]22 [11_TD$DIFF]genes in single [12_TD$DIFF]cells
[13_TD$DIFF]could [14_TD$DIFF]be investigated. This approach is, in principle, compatible with existing single-cell RNA-
seq methods, and thus could be employed to generate data from a small number of proteins of
interest together with transcriptome-wide sequencing data. More recently, parallel PEA-based
detection of protein and targeted RNA analysis has been demonstrated in a single series of
reactions on the Fluidigm C1 platform [54]. Rather than splitting cell lysates, PEA extension and
reverse transcription are performed in parallel and the products are measured by qPCR, which in
this study enabled parallel measurement of 38 proteins and 96 transcripts.

Proximity ligation assays utilise a similar method [44], but rely on the ligation, rather than
hybridisation, of two antibody-conjugated oligonucleotides brought into proximity on the same
protein target. This approach has successfully been integrated into a protocol for targeted
parallel analysis of DNA, RNA and protein from the same single cell [55] and translated to a
droplet digital PCR platform to enable parallel measurement of a single protein and its corre-
sponding transcript [56]. Recently, a proximity ligation assay for RNA (PLAYR; Figure 5B) was
developed that allows the quantification of multiple specific transcripts by mass cytometry in
thousands of single cells per second [57]. As the method allows metal-tagged antibody staining
in parallel, simultaneous proteomic and transcriptomic measurements for ten(s) of genes can be
made for the same single cell using mass cytometry.

Multiomics techniques, which utilise antibodies for protein detection will always, however, be
limited by the availability of high-affinity reagents. Consequently, studies investigating the relative
dynamics of transcript and protein expression will largely remain biased towards the selection of
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reactions: one for measuring abundance of specific proteins by quantitative PCR (qPCR)-based proximity extension assay (PEA) and one for quantifying transcripts of
specific genes by qPCR on cDNA. (B) Cells are fixed and permeabilised, and specific transcripts and proteins are marked for mass cytometry quantification. To this end,
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transcript abundance from the same single cells. Here, a positive correlation is shown, although it is expected that this correlation would vary depending on the dynamics
of transcript and protein expression.
systems for which suitable antibody panels are available; those dependent on mass cytometry
will also be limited by the quality and availability of suitable metal ions for detection. Enabling
single-cell genomic and transcriptomic approaches, which are also compatible with increasingly
sensitive mass spectrometry-based approaches [48,58], could remove this restriction, which
would allow a broader investigation of proteomic dynamics as part of a multiomic single-cell
readout. However, without significant increases in sensitivity, it seems that whole proteome
characterisation of single cells by any approach remains elusive.
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Towards ‘Omniscience’ – How Much Can We Know about a Single Cell?
While there is much we can learn from surveying each of the genome, epigenome, transcriptome
or proteome of single cells in turn, predictive modelling of cellular dynamics will require the
integration of these – and more – data sets from the same single cell (Figure 6, Key Figure).

Nevertheless, the limitations in sensitivity of single-cell genomics approaches remain a key
challenge. For multiomics approaches including genomic and epigenomic analyses, allelic and
locus dropout is common and, as such, base-level events are often impossible to detect
consistently and comprehensively. The transcriptome obtained from most single-cell RNA-
seq methods is generally restricted to a portion of the polyA+ mRNA present in the cell and will
not, for example, detect mature microRNA molecules and consequently an entire regulatory
layer within the cell will not be observed. Methods for total RNA [59] and small RNA [60]
sequencing from single cells are emerging, and integrating these approaches into existing
multiomics frameworks will enable a more comprehensive overview of the transcriptional
phenotype of a single cell.

Single-cell proteomics approaches remain limited tomultiplexedmeasurements of a low number
of proteins per cell, thus their integration into multiomics approaches in the near future will be
targeted very specifically at systems for which panels of reliable antibodies are available. In
addition, other molecular classes such as lipids andmetabolites may reflect important aspects of
cellular state, and although methods for single-cell metabolomics are emerging [61], integrating
these approaches with other omics technologies will bring unique challenges.

It does, however, appear that progress will be made to increase the number of parallel
observations that can be made from a single cell towards ‘omni-seq’: a complete molecular
Key Figure
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Outstanding Questions
How can single-cell information be
exploited by computational models to
more accurately predict cellular pheno-
types and their dynamics?

To what degree are molecules altered
by methods that isolate single cells
from their physiological context?

Can single-cell multiomics methods be
combined with spatial measurements,
perhaps even in real time?

Can highly accurate single-cell genome
sequences be attained given the diver-
sity of artefacts – that are often indis-
tinguishable from genuine genetic
variants – introduced by current ampli-
fication methods?

Can the conversion rate of single-cell
mRNA molecules to amplifiable and
sequenceable cDNA molecules be
improved and extended to simulta-
neous measurement of small noncod-
ing RNAs?

What is the optimal computational
approach to calling DNA variants
jointly, using sequence data from mul-
tiple molecular modalities?

What is the upper limit to the fraction of
all molecules in a cell whose presence
can be detected experimentally?

In particular, given that single-cell pro-
readout of the state of the cell. Despite the enormous technical challenges and technological
development required to address the current limitations of single-cell sequencing approaches,
this goal represents a worthwhile aspiration because of the lessons to be learnt in its pursuit, as
well as the complex and unique observations that can be made from data that remain far from
complete. Indeed, a key challenge for the technology will be the computational processing and
integration of these data.

Concluding Remarks
In some form, however, the integration of genomic, epigenomic, transcriptomic and proteomic
data appears to us a realistic prospect. In part, this is because such an approach will benefit from
rapidly developing sequencing technology, which can interpret more than one analyte in parallel
– for example, Pacific Biosciences and nanopore sequencers (e.g., Oxford Nanopore) can
detect DNA modifications (e.g., methylation [62,63]) in addition to sequencing native DNA
molecules. Both technologies are also capable of direct RNA sequencing [64,65], and nano-
pores have additionally been demonstrated to detect protein modifications [66] and other
analytes (e.g., peptides, microRNAs and small molecules [67]). Thus, we anticipate that future
developments in molecular sequencing and detection approaches may provide the critical
advances that expand and refine single-cell multiomics approaches to the point where com-
prehensive atlases of cell state and lineage can be generated for cellular systems, ranging from
tissue microenvironments to whole organisms (see Outstanding Questions).
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