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A gene expression signature of TREM2hi

macrophages and γδ T cells predicts
immunotherapy response
Donghai Xiong1, Yian Wang1 & Ming You1✉

Identifying factors underlying resistance to immune checkpoint therapy (ICT) is still chal-

lenging. Most cancer patients do not respond to ICT and the availability of the predictive

biomarkers is limited. Here, we re-analyze a publicly available single-cell RNA sequencing

(scRNA-seq) dataset of melanoma samples of patients subjected to ICT and identify a subset

of macrophages overexpressing TREM2 and a subset of gammadelta T cells that are both

overrepresented in the non-responding tumors. In addition, the percentage of a B cell subset

is significantly lower in the non-responders. The presence of these immune cell subtypes is

corroborated in other publicly available scRNA-seq datasets. The analyses of bulk RNA-seq

datasets of the melanoma samples identify and validate a signature - ImmuneCells.Sig -

enriched with the genes characteristic of the above immune cell subsets to predict response

to immunotherapy. ImmuneCells.Sig could represent a valuable tool for clinical decision

making in patients receiving immunotherapy.

https://doi.org/10.1038/s41467-020-18546-x OPEN

1 Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
✉email: myou@mcw.edu

NATURE COMMUNICATIONS |         (2020) 11:5084 | https://doi.org/10.1038/s41467-020-18546-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18546-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18546-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18546-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18546-x&domain=pdf
mailto:myou@mcw.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


While immune checkpoint therapies (ICT) have
improved outcomes for some cancer patients, most
patients do not respond to ICT. Previous whole-

exome sequencing (WES) and transcriptome sequencing of
tumors identified multiple factors that are associated with
favorable ICT outcome, including expression of PD-L11, high
tumor mutational burden2, and the presence of tumor-infiltrating
CD8+ T cells3. Markers indicative of unfavorable response
include defects in IFNγ pathways or antigen presentation4,5.
While these studies represented a first step in identifying bio-
markers, studies using single-cell RNA sequencing (scRNA-seq)
have the potential to greatly improve the identification of factors
underlying ICT outcomes. For example, one scRNA-seq study of
48 tumor biopsies of responding and non-responding tumors
after ICT treatment has the potential to be insightful given the
number of patients and high quality data6.

To determine if some types of immune cells and their sub-
clusters are associated with ICT outcomes, we analyze the
scRNA-seq datasets from multiple outstanding studies6–8 and
identify the immune cell subpopulations that could play an
important role in determining ICT responsiveness. The analysis
of several additional bulk RNA-seq datasets of melanoma9–12

identifies and validates an ICT outcome signature -ImmuneCells.
Sig - enriched with the genes characteristic of the immune cell
subsets detected in the scRNA-seq studies. It predicts the ICT
outcomes of melanoma patients more accurately than the pre-
viously reported ICT response signatures.

Specifically, we find that a subset of macrophages (cluster 12)
and a subset of gammadelta (γδ) T cells (cluster 21) are highly
enriched in the ICT non-responding tumors. On the other hand,
the percentage of a subset of B cells (cluster 22) is significantly
smaller in the ICT non-responders compared to the responders.
The validated ImmuneCells.Sig ICT outcome signature is enri-
ched with the genes characteristic of the above three immune cell
subsets. It can predict the ICT outcomes of melanoma patients
more accurately than the previous outstanding signatures, thereby
supporting the role of these specific types of immune cells in
affecting the ICT outcomes. These findings substantially extend
our understanding of the factors associated with ICT respon-
siveness. Our results may warrant further investigation in the
cancer immunotherapy setting.

Results
Association of immune cell populations with ICT outcome. We
utilized the Seurat package13,14 to perform fine clustering of the
original 16,291 single cells based on raw data from a previous
melanoma study6. The melanoma patient response categories
were defined by RECIST (Response evaluation criteria in solid
tumors) as: complete response (CR) and partial response (PR) for
responders, or stable disease (SD) and progressive disease (PD)
for non-responders15. Progression-free survival was also con-
sidered in distinguishing the responders from non-responders. To
relate molecular and cellular variables with responses of indivi-
dual lesions to therapy, the previous study classified each of the
48 tumor samples based on radiologic assessments into pro-
gression/non-responder (NR; n= 31, including SD/PD samples)
or regression/responder (R; n= 17, including CR/PR samples)6.
The gene expression data of single cells from tumors with dif-
ferent ICT outcomes, i.e., regression/responder (Responder - ‘R’;
n.patients= 17; n.cells= 5564) and progression/non-responder
(Non-Responder - ‘NR’; n.patients= 31; n.cells= 10,727), were
aligned and projected in two-dimensional space through uniform
manifold approximation and projection (UMAP)16 to allow the
identification of ICT-outcome-associated immune cell popula-
tions. This analysis generated 23 cell clusters across all samples

(Fig. 1a). The percentages of immune cells from each cluster from
responding and non-responding melanoma groups were calcu-
lated (Supplementary Table 1).

We utilized gene expression patterns of canonical markers to
classify the 23 clusters into 10 major immune cell populations
(Fig. 1b and Supplementary Fig. 1a): CD8+ T cells (CD3+CD8A+

CD4−, clusters 1,4,5,7,10,11,20); CD4+ T cells (CD3+CD8A−

CD4+, cluster 3); Regulatory T cells (Tregs) (FOXP3+, cluster 2);
MKI67hi Lymph. (MKI67+, clusters 9,16); B cells (CD19+,
clusters 13,14,17,22); Plasma cells (MZB1+, cluster 18); NK cells
(NCR1+NCAM1+, cluster 15); γδ T cells (i.e., Tgd cells,
CD3+CD8A−CD4−, clusters 8,21); Macrophages (MARCO+

MERTK+, clusters 6,12,23); and Dendritic cells (FCER1A+,
cluster 19). The identification of γδ T cells is further justified as
follows. The NK cells in cluster 15 expressed the NK cell markers
NCR1 and NCAM1, which were not expressed in γδ T cells in
clusters 8 and 21 (Supplementary Fig. 1a). Also, the NK cells
(cluster 15) do not express CD3 markers, whereas CD3 markers
were expressed in the adjacent clusters (8 and 21) that were
characterized as γδ T cells based on the combination CD3+

CD4−CD8−. In addition, we validated our defined γδ T
lymphocytes by the expression of the published gene expression
signatures of γδ T cells17, which requires scoring the following
two gene sets: the positive gene set (CD3D, CD3E, TRDC, TRGC1,
and TRGC2), and the negative gene set (CD8A and CD8B) for
each single cell. Specifically, following this published approach, to
identify γδ T lymphocytes exhaustively and without NK and
T-cell CD8 false-positives, we utilized the established γδ signature
that combines the above two gene sets that were scored for each
single cell and visualized in the UMAP by Single-Cell Signature
Explorer18. As shown in Supplementary Fig. 1b, the γδ signature
scores were highest for clusters 8 and 21 but much lower in the
other clusters. These data further support our assignment of γδ T
lymphocytes to clusters 8 and 21.

We tested the 23 immune cell clusters for their percentage
differences between the non-responders and responders at the
patient level (Fig. 1c and Supplementary Fig. 2). The results were
compared to the results of the integrative analysis to calculate the
overall fold changes between the non-responder and responder
groups. Some of these immune cell clusters differed quantitatively
between ICT responders (R) and non-responders (NR), including
the Clusters 6, 9, 12, 13, 14, 17, 19, 21, 22 (Fig. 1c), which was
supported by the integrative analysis combining cells from all
patients (Fig. 1d). Furthermore, using more than 6-fold
differences as a biologically significant threshold19, we identified
three clusters (12, 21, and 22) that exceeded this criterion. Cluster
12 (a macrophage cluster) and cluster 21 (a γδ T-cell cluster) cells
were 15.1-fold and 12.1-fold higher, respectively, in ICT non-
responders versus responders (Fig. 1d and Supplementary
Table 1). In contrast, the percentage of cluster 22 cells (a B-cell
cluster) was 9.3-fold lower in the non-responders. Two other B-
cell clusters (cluster 13 and 17) were 5.8- and 4.1-fold lower,
respectively, in the non-responders. The remaining 18 clusters
exhibited only minor (1.1- to 2.9-fold) differences between
responders non-responders (Fig. 1d and Supplementary Table 1).
Our approach is similar to the approach used in the previous
scRNA-seq study of the effects of the immunotherapy on
changing the percentages of different immune cell subpopula-
tions20. They compared the percentage of cells in individual
clusters for different conditions of control, anti-PD-1, anti-
CTLA-4, and anti-PD-1/anti-CTLA-4. In this way, they identified
a number of immune cell subclusters that could be associated
with the variation of the efficacy of the cancer immunotherapy.

To account for clinical differences, we divided the melanoma
samples into subgroups according to three factors: (1) ICT
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outcomes, (2) sample collection time (before or after ICT), and
(3) treatment schemes (Supplementary Table 2). There were only
six groups with sufficient numbers of samples and cells to
compare between non-responders and responders, i.e., G1 vs G7
(‘NR-before-anti-PD-1’ vs ‘R-before-anti-PD-1’), G4 vs G10
(‘NR-after-anti-PD-1’ vs ‘R-after-anti-PD-1’), and G6 vs G12
(‘NR-after-anti-CTLA4+ PD-1’ vs ‘R-after-anti-CTLA4+ PD-
1’). Stratified analyses showed similar results of cell cluster
percentage changes as those in the integrative analysis (Fig. 1d
and Supplementary Fig. 3).

TREM2hi macrophages may contribute to ICT resistance. Of
the macrophage populations in clusters 6, 12, and 23 (Fig. 1a, b),
differences between the R and NR groups were not significant for
cluster 6 (2.4-fold higher in NR) and cluster 23 (2.1-fold lower in
NR). However, cluster 12 macrophages were 15.1-fold higher in
NR (4.88%) versus R (0.32%). This enrichment of cluster 12 in
non-responders suggests that it may be associated with ICT
resistance. Single-cell differential expression analyses were per-
formed to assess the most characteristic gene expression differ-
ences in clusters 6, 12, and 23 (Fig. 2 and Supplementary Data 1,
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Fig. 1 Identification of intratumoral immune cell populations by scRNA-seq. The scRNA-seq dataset - GSE120575 was analyzed. a Uniform manifold
approximation and projection (UMAP) plot of intratumoral immune cells that were classified into 23 clusters from the two groups of melanoma samples of
distinct immune checkpoint therapy outcomes (NR [non-responder] group versus R [responder] group). b UMAP plot of the 10 major immune cell
populations. c Comparison of the cell cluster percentage changes between the NR and R groups. Boxplots showed the results for the nine immune cell
clusters with significant changes. Center line, median. Box limits, upper and lower quartiles. Whiskers, 1.5 interquartile range. Points beyond whiskers,
outliers. The two-sided Wilcoxon tests were performed with no adjustment for multiple comparisons. d The fold changes of the percentages of each of the
23 single-cell clusters comparing the NR group to the R group.
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2, and 3). Cluster 12 (35.9% of all macrophages, Supplementary
Fig. 4) overexpressed TREM2 (Fig. 2) so was named as TREM2hi

Mφ (Mφ=macrophages). The TREM2hi Mφ that were enriched
in non-responders displayed a unique signature with over-
expression of SPP1, RNASE1, MT1G, SEPP1, FOLR2, NUPR1,
KLHDC8B, CCL18, MMP12, and APOC2 along with key com-
plement system genes (C3, C1QA, C1QB, and C1QC) (Fig. 2).
Cluster 6 cells (61.6% of all Mφ, Supplementary Fig. 4), over-
expressed the immunosuppressive protein indoleamine 2,3-
dioxygenase 1 (IDO1) (Fig. 2), as well as several inflammatory
markers (FCER1A, S100A12, APOBEC3A, SELL, and CXCL10).
Ingenuity Pathway Analysis (IPA) confirmed that inflammatory
markers were significantly overexpressed in cluster 6 versus other
macrophages (adjusted P= 3.93E-10, activation Z score= 2.01,
Supplementary Fig. 5; P values throughout this paper are adjusted
by using Bonferroni correction unless otherwise declared).
Therefore, we named cluster 6 as Inflammatory Mφ. Cluster 23
cells (2.5% of all Mφ, Supplementary Fig. 4) were 2.1-fold higher
in responders and expressed several genes involved in immune
regulation, i.e., LCK, TIGIT, PTPRCAP, KLRK1, LAT, IL32,
IFITM1, and CCL5 (Fig. 2a)21. Cluster 23 was thus named as
Immunoregulatory related Mφ.

Significantly enriched pathways in TREM2hi macrophages. To
identify if functional heterogeneity of these macrophage subsets
could be associated with ICT outcomes, we performed ‘Reactome
pathways’ analysis for macrophages based on cluster-specific
genes detected by Seurat (Supplementary Data 4, 5, and 6). Each
macrophage subset was significantly enriched for specific mole-
cular pathways. Inflammatory Mφ (cluster 6) were enriched for
FCERI signaling and several FCERI-mediated pathways
(NF-kappaB activation, Ca2+ mobilization and MAPK activation;
Supplementary Fig. 6). The Immunoregulatory related Mφ

(cluster 23) were most significantly enriched for pathways
involving Regulation of expression of SLITs and ROBOs and
Signaling by ROBO receptors (Supplementary Fig. 6). TREM2hi

Mφ (cluster 12), which showed the greatest percentage elevation
in ICT non-responders, was enriched for multiple pathways
underlying complement activation (complement cascade and its
regulation, initial triggering of complement, creation of C4 and
C2 activators, and classical antibody-mediated complement acti-
vation; Supplementary Fig. 6). These findings were consistent
with overexpression of complement system genes in TREM2hi

Mφ, including complement C1q chains (C1QA, C1QB, and
C1QC), complement C2 and C3 (Supplementary Fig. 7a). These
genes were either not expressed, or at very low levels in macro-
phage clusters 6 and 23. TREM2hi macrophages also over-
expressed M2 polarization genes (MMP14, CD276, FN1, MRC1,
CCL13, CCL18, LYVE1, PDCD1LG2 (PD-L2), MMP9, TGFB2,
and ARG2; Supplementary Fig. 7a). TREM2hi macrophages may
therefore be functionally proximal to M2 polarization macro-
phages and could block the anti-tumor activities of ICT and
contribute to ICT resistance.

Validation of the TREM2hi macrophage signature. Since
TREM2hi macrophages correlated with ICT resistance, we
determined if tumors enriched in TREM2hi macrophages were
associated with poor ICT outcomes. Based on the overexpressed
genes of this macrophage subset, we developed a 40-gene set to
characterize TREM2hi macrophages, which included the genes
highly correlated with TREM2 expression (those for the com-
plement system or M2 polarization), and other overexpressed
genes (Supplementary Fig. 7a). In order to test if this TREM2hi

macrophage signature was correlated with ICT resistance,
we analyzed two publicly available gene expression datasets
of tumor samples from melanoma patients treated with
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Fig. 2 Subsets of macrophages in the melanoma tumors. The scRNA-seq dataset - GSE120575 was used in this analysis. a Heatmap of z-scored
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immunotherapy9,10. The GSVA scores of the TREM2hi macro-
phage geneset were significantly higher in the ICT non-
responders than the responders (Supplementary Fig. 7b, c), sug-
gesting that melanomas in non-responders were enriched for
TREM2hi macrophages. The analyses of the GSVA scores of this
40-gene set verified the specificity of this gene set to characterize
the TREM2hi macrophages among all groups of macrophages
(Supplementary Fig. 7d).

Association of γδ T- and B-cell subsets with ICT outcome. We
also identified two clusters of γδ T cells (927 cells total; clusters 8
and 21, Fig. 1, and Supplementary Table 1). The more common
type of γδ T cells (cluster 8, n= 781) was not significantly dif-
ferent between non-responders and responders. However, a rare
type of γδ T cells (cluster 21, n= 146) was 12.1-fold higher in the
NR group (1.31% versus 0.11% in R; Fig. 1 and Supplementary
Table 1). This fold-difference is the second largest of all 23
clusters. These findings suggest that the cluster 21 γδ T cells
(named as Tgd_c21) may contribute to ICT resistance. Single-cell
differential expression analyses compared Tgd_c21 to Tgd_c8
cells (Supplementary Data 7), with the top 20 marker genes
shown in Fig. 3a. The top Tgd_c21 marker genes included RRM2,
BIRC5, SPC24, UBE2C, and CDCA5. GSEA pathway analyses22

revealed multiple pathway changes that could be correlated with
the contribution of Tgd_c21 cells to ICT resistance, including
significant reductions in ligand-receptor binding capacity, IFNα
and IFNβ signaling, IFN-γ response, and immunoregulatory
interactions (Fig. 3c). Oncogenic (HALLMARK_E2F_TARGETS)
and cell cycle pathways were also activated in Tgd_c21 (Fig. 3c).
Thus, Tgd_c21 cells may represent a previously unidentified class
of γδ T cells that may impair anti-tumor immune functions.

We also identified a correlation between the presence of B cells
and ICT response. All four B-cell clusters (13, 14, 17, and 22)
were less abundant in the ICT non-responders, which suggests
that tumor-associated B cells, in general, are associated with
favorable ICT response. Most notably, the percentage of cluster
22 B cells (named as B_c22) was 9.3-fold lower in NR versus R
(Fig. 1 and Supplementary Table 1); this is the largest deficit in
NR tumors across all 23 clusters. We performed differential
expression and pathway enrichment analyses comparing B_c22 to
other B-cell clusters (Supplementary Data 8). The top 20 marker
genes for each B-cell cluster were determined (Fig. 3b). GSEA
pathway analysis showed that B_c22 cells had significantly
reduced oncogenic signaling, including Toll receptor signaling/
cascades, NOTCH1, MAPK, and MYC signaling pathways
(Fig. 3c). The significant enrichment of B_c22 cells in ICT
responders may therefore contribute to the attenuation of
oncogenic signaling in the tumor microenvironment (TME) to
enhance the anti-tumor effect in response to ICT.

Validation in the other scRNA-seq datasets of ICT patients. To
validate the results we found based on the initial scRNA-seq data,
we downloaded and re-analyzed another scRNA-seq dataset of
melanoma with corresponding immunotherapy efficacy data7.
This dataset did not have γδ T-cell data available. Interestingly,
the deeper clustering of the macrophages and B cells sequenced
by this study showed the existence of similar macrophage and B-
cell subpopulations that resemble our identified TREM2hi mac-
rophages and B_c22 B cells (Supplementary Fig. 8a, b). Specifi-
cally, the ‘Mac_c1’ macrophage subcluster overexpressed the
TREM2hi macrophage marker genes such (TREM2, SPP1,
RNASE1, MT1G, SEPP1, FOLR2, KLHDC8B, CCL18, MMP12,
APOC2, C3, C1QA, C1QB, and C1QC; Supplementary Fig. 8c);
the ‘B_s1’ B-cell subcluster overexpressed the B_c22 B cell
marker genes (ABCA6, LEF1, FGR, IL2RA, ITGAX, and IL7)

(Supplementary Fig. 8d). More importantly, we validated the
behavior of these two immune cell subpopulations in the context
of the response to immunotherapy. We scored each cell based on
its overall expression (OE) of the corresponding signature fol-
lowing the previous approach7, i.e., scoring each Mac_c1 mac-
rophage for its TREM2hi macrophage signature and each B_s1 B
cell for its B_c22 B-cell signature, and compared these between
the non-responder and control groups. In this dataset, the
Mac_c1 macrophage subset had significantly higher overall
expression of the TREM2hi macrophage signature in the immu-
notherapy non-responders than in the control samples (Supple-
mentary Fig. 8e). The B_s1 B-cell subset had significantly lower
overall expression of the B_c22 B-cell signature in the immu-
notherapy non-responders than in the control samples (Supple-
mentary Fig. 8f). These results supported the findings in our
initial scRNA-seq dataset of the changes in TREM2hi macro-
phages and B_c22 B cells in response to immunotherapy.

We also analyzed a single-cell RNA-seq dataset of basal cell
carcinoma (BCC) patients before and after anti-PD-1 therapy8.
We found that the results of our study can be generalized to BCC
treated with ICT. Although this BCC scRNA-seq dataset did not
sequence the γδ T cells, the results for macrophages and B cells in
this BCC dataset are similar to our findings for the melanoma
dataset. First, we did general clustering analyses and identified the
overall macrophages and B cells populations (Supplementary
Fig. 9a). Then we performed finer clustering and identified the
macrophages and B-cell subpopulations from the BCC tumors
that are similar to the TREM2hi macrophages and B_c22 B cells
in the initial melanoma samples (Supplementary Fig. 9b–e). In
the BCC dataset, the Mac_s2 macrophage subcluster over-
expressed the TREM2hi macrophage marker genes (TREM2,
FOLR2, MMP12, C1QA, C1QB, and C1Qc; Supplementary
Fig. 9d); the B_sc2 B-cell subcluster overexpressed the B_c22 B
cells marker genes (TRAC, IL2RA, ITGB1, ZBTB32, TRAF1, and
CCND2; Supplementary Fig. 9e). As before, we validated the
overall expression changes of the TREM2hi macrophage signature
of the Mac_s2 macrophages and the B_c22 signature of the B_sc2
B cells in response to the anti-PD-1 immunotherapy in this BCC
dataset8. Specifically, the Mac_s2 macrophage subset had
significantly decreased overall expression of the TREM2hi

macrophage signature in the responsive BCC tumors after anti-
PD-1 therapy when compared to the pretreatment BCC samples
(Supplementary Fig. 9f). The B_sc2 B-cell subset had significantly
higher overall expression of the B_c22 signature in the post anti-
PD-1 therapy in the responsive BCC tumors than in the
pretreatment BCC samples (Supplementary Fig. 9g). These
findings suggest that the immune cell subpopulations that we
had identified as associated with outcomes of cancer immu-
notherapy for melanoma also exist in BCC, and that the
characteristic gene expression signatures may be altered similarly
in melanoma and in BCC in the context of response to
immunotherapy.

The development of an ICT outcome signature. Because the
TREM2hi Mφ, Tgd_c21 and B_c22 populations exhibited the
greatest quantitative differences between ICT non-responders and
responders, we hypothesized that the expression of the feature
genes of these populations may predict ICT outcome. To explore
this hypothesis, we developed an ICT responsiveness signature
based on the scRNA-seq dataset and a bulk gene expression
dataset - GSE782209 using the cancerclass R package23. This
signature had significantly high prognostic values for ICT out-
comes in the discovery dataset. Specifically, for the GSE78220
dataset (N= 28, NR vs R: 13 vs 15), the signature had an AUC
(Area Under The Curve) of 0.98 (95% confidence interval [CI],
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0.96–1), sensitivity of 93% (95% CI, 72–100%), and specificity of
85% (95% CI, 59–97%; Fig. 4a). In the GSE78220 dataset, only
one sample was early-on-treatment tumor and all the rest 27
melanoma samples are from pretreatment tumors. Because this
ICT outcome signature was enriched for the characteristic genes
of TREM2hi Mφ, Tgd_c21, B_c22 immune cell subpopulations
(Supplementary Fig. 10), it was named as ImmuneCells.Sig.
Detailed information of the genes of this signature can be found
in Supplementary Data 9. Then the performance of ImmuneCells.
Sig to predict ICT outcome was further validated using multiple
independent bulk gene expression datasets of the pretreatment
samples as follows.

To validate the above ICT response signature - ImmuneCells.
Sig, we analyzed three independent gene expression datasets of
melanoma patients to test the predictive performance of
ImmuneCells.Sig10–12. For the first two datasets (GSE91061 and

PRJEB23709)10,11, the pretreatment melanoma samples were
selected for validation. Neither of these datasets were used to
develop the ImmuneCells.Sig. For the GSE91061 dataset (N= 51,
NR vs R: 25 vs 26), ImmuneCells.Sig performed well in
differentiating NR from R tumors with an AUC of 0.96 (95%
CI, 0.94–0.99), sensitivity of 88% (95% CI, 72–97%), and
specificity of 92% (95% CI, 78–99%; Fig. 4b). For the PRJEB23709
dataset (N= 73, NR vs R: 27 vs 46), ImmuneCells.Sig also
accurately predicted ICT outcomes: AUC of 0.86 (95% confidence
interval [CI], 0.82–0.91), sensitivity of 78% (95% CI, 61–90%),
and specificity of 78% (95% CI, 66–88%; Fig. 4c). The binomial
confidence intervals for sensitivity and specificity were calculated
by the Wilson procedure implemented in the cancerclass R
package23.

For further validation, we downloaded and analyzed the third
dataset that includes the gene expression profile of a big cohort of
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melanoma patients who were treated by the anti-PD-1 immu-
notherapy, from which a large number of pretreatment
melanoma samples from 103 patients with distinct response to
ICT (46 responders vs 57 non-responders) had been subjected to
RNA-seq12. Applied to this large dataset that was named as
MGSP (melanoma genome sequencing project), the predictive
value of ImmuneCells.Sig was still high. Specifically, it differ-
entiated progressors from responders with an AUC of 0.88 (95%
CI, 0.84–0.91), sensitivity of 79% (95% CI, 68–87%), and
specificity of 79% (95% CI, 67–88%; Fig. 4d).

Among the four bulk RNA-seq datasets, only the PRJEB23709
dataset had pre-ICT biopsies for melanoma patients treated with
either anti-PD-1 (41 patients: 19 non-responders vs 22 respon-
ders) or the combination of anti-PD-1 and anti-CTLA-4 drugs
(32 patients: 8 non-responders vs 24 responders). We split the
PRJEB23709 dataset into PRJEB23709_Pre_anti-PD-1 and
PRJEB23709_Pre_Combo according to the treatment scheme
(anti-PD-1 or combination of anti PD-1 and anti-CTLA-4). In
each dataset, we tested the performance of ImmuneCells.Sig. It
was found that ImmuneCells.Sig can accurately distinguish
responders from non-responders in both Pre_anti-PD-1 and
Pre_Combo subgroups. For PRJEB23709_Pre_anti-PD-1 subset,
the performance of ImmuneCells.Sig is as follows: AUC= 0.88
(95% CI, 0.83–0.94), sensitivity= 86% (95% CI, 68–96%), and
specificity= 79% (95% CI, 58–92%; Supplementary Fig. 11a). For

PRJEB23709_Pre_Combo subset, the performance of Immune-
Cells.Sig is as follows: AUC= 0.93 (95% CI, 0.86–0.99),
sensitivity= 88% (95% CI, 71–97%), and specificity= 88%
(95% CI, 53–99%; Supplementary Fig. 11b).

Using the R package cancerclass, we can calculate the z-score in
each pre-therapy biopsy based on the expression values of the
ImmuneCells.Sig genes to predict who are more likely to respond
to anti-PD-1 or anti-PD-1 plus anti-CTLA-4 combo therapy. For
example, in the model built from Pre-anti-PD-1 dataset of
PRJEB23709_Pre_anti-PD-1, the threshold z-score of 0.19 yielded
sensitivity of 91% for responders. In the model built from Pre-
Combo dataset of PRJEB23709_Pre_Combo, the threshold z-
score of 0.1 yielded sensitivity of 91% for responders. Therefore, if
we test a pre-therapy melanoma sample, the corresponding
patient may not respond to either anti-PD-1 treatment or anti-
PD-1 plus anti-CTLA-4 combo treatment if the z-score is <0.1,
but may respond to the more toxic combo treatment if z-score is
within the range of [0.1, 0.19], and may respond to the less toxic
anti-PD-1 treatment alone if the z-score is >0.19. Therefore,
prediction of the outcomes of different therapy regimen is
possible based on the application of ImmuneCells.Sig.

To further evaluate the predictive performance of the
ImmuneCells.Sig signature, we compared the ImmuneCells.Sig
with the other 12 ICT response signatures reported previously
(Table 1)9,24–32, including the previously recognized IMPRES
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signature27; they were all compared across the above four
transcriptome-wide gene expression datasets of melanoma
patients (i.e., the GSE78220, GSE91061, PRJEB23709, and MGSP
datasets). The results show that the ImmuneCells.Sig was
consistently the best signature for predicting response to
immunotherapy across all four datasets (Fig. 5 and Supplemen-
tary Fig. 12). As a reference, the well-established IMPRES
signature was ranked third in prediction accuracy in the
GSE78220 dataset (Fig. 5a and Supplementary Fig. 12a), fifth in
the GSE91061 dataset (Fig. 5b and Supplementary Fig. 12b), and
second in both the PRJEB23709 and the MGSP datasets (Fig. 5c, d
and Supplementary Fig. 12c, d). The fact that the ImmuneCells.
Sig signature is the best predictor for the outcome of immune
checkpoint therapy across the four independent melanoma
datasets suggests that the ImmuneCells.Sig is an effective
biomarker that can accurately predict ICT clinical outcome based
on the pretreatment tumor samples from melanoma patients.

Discussion
A large-scale single-cell RNA-seq study of tumor samples of
melanoma patients treated by ICT6 was re-analyzed to dissect
individual cell populations that may correlate with response.
Three immune cell clusters had drastically different percentages
in ICT responders vs non-responders. The TREM2hi macro-
phages and Tgd_c21 T cells were markedly higher in the non-
responders and could contribute to ICT resistance; in contrast,
the B_c22 B cells were higher in the responders and could con-
tribute to ICT anti-tumor response. TREM2hi macrophages, the
most enriched immune cell subcluster in the non-responders,
displayed a distinct gene expression pattern, with overexpression
of key genes of the complement system. Expression of comple-
ment effectors and receptors has been associated with cancer
progression and poor prognosis33,34. Among all the complement
elements that may have the pro-cancer activities, C1q chains, C3-
derived fragments, and C5a are likely the most important mod-
ulators of tumor progression35,36. In a clear-cell renal cell carci-
noma (ccRCC) model, mice deficient in C1q, C4, or C3 displayed
decreased tumor growth, whereas tumors infiltrated with high
densities of C1q-producing macrophages exhibited an immuno-
suppressed microenvironment37. The classical complement
pathway is a key inflammatory mechanism that is activated by

cooperation between tumor cells and tumor-associated macro-
phages, favoring cancer progression37. Our findings extend this
premise; TREM2hi macrophages, which overexpress major ele-
ments of the complement system and activation of the comple-
ment cascade, are enriched in ICT non-responders and could be
the major macrophage subset that contributes to ICT resistance.

Although the role of complement system is not completely
understood, other studies described different mechanisms by
which complement activation in the tumor microenvironment
can enhance tumor growth, such as altering the immune profile
of tumor-infiltrating leukocytes, increasing cancer cell prolifera-
tion, and suppressing CD8+ TIL function38. More recently,
complement effectors such as C1q, C3a, C5a, and others have
been associated with inhibition of anti-tumor T-cell responses
through the recruitment and/or activation of immunosuppressive
cell subpopulations such as MDSCs (myeloid-derived suppressor
cells), Tregs, or M2 tumor-associated macrophages (TAMs)39.
The rationale of inhibiting the complement system for ther-
apeutic combinations to enhance the anti-tumor efficacy of anti-
PD-1/PD-L1 checkpoint inhibitors has been proposed based on
the supporting evidence that complement blocks many of the
effector routes associated with the cancer-immunity cycle39. Our
study results were in line with these findings and suggest that the
TREM2hi macrophage population which has an activated com-
plement system could be another source or consequence of
complement activation contributing to the blockade of cancer-
immunity cycle.

Many M2 polarization genes, some of which are known to be
tumor-promoting, were also overexpressed in TREM2hi macro-
phages. For example, CD276 (B7-H3) plays a role in down-
regulating T-cells involved in tumor immunity40,41. High CD276
expression is associated with increased tumor size, lymphovas-
cular invasion, poorly differentiated tumors, and shorter overall
patient survival42,43. CD276 expression is also associated with
tumor-infiltrating FOXP3+ regulatory T cells which inhibit
effector T cells44,45 and is important for immune evasion and
tumorigenesis in prostate cancer46. CD276 also inhibits NK
cell lysis of tumor cells47. The overexpression of CD276 in
TREM2hi macrophages likely has implications for promoting ICT
resistance. PD-L2, an important immune co-inhibitory mole-
cule48, was also overexpressed in the TREM2hi macrophages.
Increased expression of PD-L2 in tumor-associated macrophages

Table 1 The list of biomarkers for response to immune checkpoint therapy that were compared in this study.

Signature ID Description

ImmuneCells.Sig The immune cell signature identified in this study
IFNG.Sig Interferon gamma (IFNγ) response biomarkers of 6 genes including IFNG, STAT1, IDO1, CXCL10, CXCL9, and HLA-DRA24

CD8.Sig Gene expression level of CD8A+CD8B+ CD3D+ CD3E+ CD3G25

PD-L1.Sig Gene expression level of PD-L1+ PD-L2+ PD-125

CRMA.Sig Anti-CTLA4 resistance MAGE genes, including MAGEA2, MAGEA2B, MAGEA3, MAGEA6, and MAGEA1226

IMPRES.Sig Immuno-predictive score (IMPRES), a predictor of Immune checkpoint blockade (ICB) response in melanoma based on 28 immune
checkpoint genes27

IRG.Sig A prognostic signature based on 11 immune-related genes (IRGs) for predicting CC (cervical cancer) patients’ response to immune
checkpoint inhibitors (ICIs)28

LRRC15.CAF.Sig A signature of 14 marker genes of a specific type of carcinoma-associated fibroblasts (CAF) – “LRRC15+ CAFs” that correlated with
poor response to anti-PD-L1 therapy29

T.cell.inflamed.Sig An 18 gene “T-cell–inflamed gene expression signature” that can predict clinical benefit of anti-PD-1 in various cancer types
(melanoma, head and neck squamous cell carcinomas, digestive cancers, ovarian and triple negative breast cancers)24,30

IPRES.Sig IPRES (innate anti-PD-1 resistance) that included 16 genes involved in cell adhesion, extracellular matrix remodeling, angiogenesis,
wound healing, and mesenchymal transition that predicted response to anti-PD-1 antibody therapy in melanoma9,31

Inflammatory.Sig A gene expression signature of 27 inflammation related genes that predicted response to immune checkpoint blockade in lung
cancer31

EMT.Sig A gene expression signature of 12 epithelial-to-mesenchymal transition (EMT) related genes that predicted response to immune
checkpoint blockade in lung cancer31

Blood.Sig A blood sample based 15-gene expression signature that can predict response to anti-CTLA4 immunotherapy32
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contributes to suppressing anti-tumor immunity in mice treated
with anti-PD-L1 monoclonal antibody49. Thus, the high PD-L2
expression in TREM2hi macrophages could facilitate ICT resis-
tance and tumor progression. Some single-cell studies reported
that M1 and M2 signatures are positively correlated in myeloid
populations50,51. We checked the expression of M1 markers from
these studies in the TREM2hi macrophages (Supplementary
Fig. 13). It was found that the expression of M1 signature genes
was neither strong nor consistent. The gene - iNOS (NOS2), the
most characteristic and canonical M1 macrophage marker20,50–52

was not expressed in the TREM2hi cell population (Supplemen-
tary Fig. 13). These results suggest that TREM2hi macrophages
are functionally more proximal to M2 polarization macrophages.
TREM2hi macrophages had been reported in a breast cancer
single-cell study to be a branch of recruited or resident M2 type
macrophages expressing several genes in common with our study
such as SSP1, C1Q, CCL18, and MACRO50. However, TREM2hi

macrophages had not been linked to cancer immunotherapy
response before. So that aspect of our data is valuable to clinical
practice in cancer immunotherapy.

A γδ T cells subset, Tgd_c21, was present at much higher levels
in the non-responders. Despite their role in anti-tumor cyto-
toxicity, γδ T cells could also promote cancer progression by
inhibiting anti-tumor responses and enhancing cancer angio-
genesis. Consequently, γδ T cells have a dual effect and are
considered as being both friends and foes of cancer53. The
enrichment of the Tgd_c21 cells in the ICT non-responders
suggests an association with ICT resistance. The top Tgd_c21
marker genes are oncogenic by nature including RRM254, BIRC5
(Survivin)55, SPC2456,57, UBE2C58,59, and CDCA560. Pathway
analysis revealed a significant reduction in ligand-receptor
binding capacity, IFNα and IFNβ signaling, IFN-γ response,
and immunoregulatory interactions of Tgd_c21 cells, suggesting
that Tgd_c21 cells may be a type of ‘exhausted’ γδ T cell with
impaired anti-tumor immune functions. A previous study showed
that the positive outcome of PD-1 blockade on treating leukemia
may be because that it induces significant upregulation of the
potent pro-inflammatory and anti-tumor cytokine IFN-γ in cer-
tain types of γδ T cells61. Complementing their study, we showed
that the failure of immunotherapy in treating melanoma may be
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associated with some types of γδ T cells (e.g., Tgd_c21). The
pathway analysis showed that this subset of γδ T cells - Tgd_c21
had decreased activity of the anti-tumor IFN-γ pathway in the
non-responders than the responders subjected to the immu-
notherapy (Fig. 3c). Therefore, a key element may be the IFN-γ
pathway activity, whose reduction in some γδ T-cell subsets such
as Tgd_c21 in ICT non-responders may contribute to ICT
resistance.

All B-cell clusters were depressed in the ICT non-responders.
Apart from their role in antibody production, B cells also are an
important source of cytokines and chemokines that contribute to
anti-tumor immune responses62. Therefore, the decreased B-cell
percentages in non-responders could contribute to ICT resistance
and/or progression of ICT-resistant tumors. We compared the
present B-cell subpopulation signature (B_c22, derived from
Supplementary Data 8 based on cutoff P value 0.05) with the
other B-cell signature recently published in the context of ICT by
Helmink et al.63 and found several genes shared by both sig-
natures including TCL1A, ITIH5, LAX1, KCNA3, CD79A, AREG,
GBP1, ATP8A, and IGLL5. Both our signature and their signature
characterized the B-cell populations that were significantly enri-
ched in the ICT responders versus non-responders. However, the
B cells associated with these two signatures were different. This is
because our B_c22 (single cell cluster 22) signature was developed
based on the scRNA-seq data of melanoma samples and its
corresponding B cells were a subset of B cells that were highly
enriched in the ICT responders than the non-responders. We also
identified three other B-cell subpopulations corresponding to
clusters 13, 14, and 17 (Fig. 1 and Supplementary Table 1). In
contrast, the B-cell signature used by Helmink et al.63 was derived
from bulk RNA-seq data of renal cell carcinoma (RCC); thus,
their signature may represent a mix of B-cell subpopulations
enriched in RCC patients that responded to ICT. Therefore, it is
logical for the two signatures to share some, but not all genes.

For comparison with ImmuneCells.Sig, we used the gene sig-
nature representing the three component cell clusters (TREM2hi

macrophages, Tgd_c21 γδ T cells, and B_c22 B cells) identified
from the scRNA-seq data (Figs. 2 and 3 and Supplementary
Fig. 7). This 150-gene signature is composed of three sets of top
50 genes most significantly over-expressed in one of the three cell
clusters (the top ranked 50 genes from the Supplementary Data 1,
2, and 3). This gene signature was called scR.Immune and used
for ICT outcome prediction. The scR.Immune signature had a
somewhat lower predictive capability compared with the Immu-
neCells.Sig signature derived from both scRNA-seq and bulk gene
expression datasets. As seen in Supplementary Fig. 14, the AUC
values from scR.Immune were 0.92, 0.90, 0.84, and 0.78 for the
datasets of GSE78220, GSE91061, PRJEB23709, and MGSP,
respectively, which are lower than the AUC values given by the
ImmuneCells.Sig signature (0.98, 0.96, 0.86, and 0.88 for the four
datasets, respectively). The difference in predictability between
these two sets of signatures is likely due to the complex cellular
composition of tumors. Because the four datasets used for AUC
calculations are all bulk gene expression data, the corresponding
expression levels of genes represented a mix of expression from
all kinds of cells embedded in the tumor samples. Therefore,
using scRNA-seq data derived signature alone such as the scR.
Immune signature may not predict ICT outcome better than
using the ImmuneCells.Sig signature derived from both scRNA-
seq and bulk gene expression datasets. However, the Immune-
Cells.Sig signature is enriched for the signature genes from
the TREM2hi macrophages, Tgd_c21 γδ T cells and B_c22 B
cells, suggesting the involvement of these immune cell sub-
populations in determining the ICT responsiveness. This sig-
nature may also be useful to predict progressive versus responsive
melanoma tumors extracted from the same patients treated

with ICT64. A limitation of this study is that deciphering the
biological meanings of the above relevant cell types that impact
the efficacy of ICT treatment remains unsolved. Well-designed
experimental strategies should be used to explore the hidden
mechanisms to strengthen the biological findings of this study.

The decreased percentage of B cells and increased percentage of
macrophages/monocytes in ICT non-responding patients had been
reported previously6. However, the important subsets of these
immune cell populations were not revealed as in this study.
Moreover, we identified an ICT outcome gene expression signature,
ImmuneCells.Sig, that is enriched for the characteristic genes of
TREM2hi macrophages, Tgd_c21, and B_c22 subpopulations. The
ImmuneCells.Sig signature outperformed the other outstanding
signatures in predicting the outcome of immune checkpoint
therapies across all four independent datasets9–12. Our character-
ization of these immune cell populations provides the opportunities
to improve the efficacy of cancer immunotherapy and to better
understand the mechanisms of ICT resistance.

Methods
Study design. Single-cell RNA-sequencing data (accession number GEO:
GSE120575) of melanoma samples from the initial publication6 were down-loaded
and re-analyzed for this manuscript. For the validation purposes, two other
scRNA-seq datasets7,8 of melanoma and BCC were also downloaded, which are
accessible through GEO accession number: GSE115978 and GSE123813. For the
development of the ICT outcome signature, we analyzed the transcriptome-level
gene expression data set (GSE78220) of an immune checkpoint therapy (ICT)
study9. For the validation of the identified ICT outcome signature - ImmuneCells.
Sig, we analyzed three large public gene expression datasets of immunotherapy10–12

(respectively accession number: GSE91061, ENA project PRJEB23709, dbGaP
phs000452.v3.p1). The first dataset10 (GSE91061) consisted of pretreatment mel-
anoma samples from 51 patients (25 non-responders and 26 responders). For the
second dataset11 (PRJEB23709), the scRNA-seq data of the 73 pretreatment tumors
were analyzed. Among these 73 samples, 41 are from the melanoma patients
subjected to anti-PD-1 therapy and consist of 19 non-responders and 22 respon-
ders; 32 are from the melanoma patients subjected to combined anti-PD-1 and
anti-CTLA-4 therapy and consist of 8 non-responders and 24 responders. The
third dataset (phs000452.v3.p1) is from a large melanoma genome sequencing
project (MGSP)12 from which the whole-transcriptome sequencing (RNA-seq)
data from 103 pretreatment tumor tissue samples from 103 patients with distinct
ICT outcomes (47 responders and 56 non-responders) were available and used for
validation in this study.

Single-cell RNA sequencing data analysis. The data from a previous scRNA-seq
study of melanoma checkpoint immunotherapy6 were analyzed. Specifically, we
utilized the Seurat v3.0 R package13,14 to perform the fine clustering of the
16,291 single cells. The gene expression data from single cells of both conditions,
i.e., regression/responder (R group: n.patients= 17; n.cells= 5564) and progres-
sion/non-responders (NR group: n.patients= 31; n.cells= 10,727), were aligned
and projected in a 2-dimensional space through uniform manifold approximation
and projection (UMAP)16 to allow identification of ICT-outcome-associated
immune cell populations. Highly variable genes – genes with relatively high average
expression and variability – were detected with Seurat13,14. These genes were used
for downstream clustering analysis. Principal component analysis (PCA) was used
for dimensionality reduction and the number of significant principal components
was calculated using built in the JackStraw function. t-distributed stochastic
neighbor embedding (t-SNE) and UMAP were used for data visualization in two
dimensions.

The built-in FindMarkers function in the Seurat package was used to identify
differentially expressed genes. From the results of the Seurat package, genes with
adjusted P values < 0.05 were considered as differentially expressed genes. Adjusted
P values were calculated based on Bonferroni correction using all features in the
dataset following Seurat manual [https://satijalab.org/seurat/v3.0/de_vignette.
html]. Genes retrieved from Seurat analysis were displayed in heatmap using scaled
gene expression calculated with the Seurat-package built-in function. Fold change
plots were created in R with ggplot2 package. For the two scRNA-seq data7,8 of
melanoma and BCC that were used for validation, i.e., GSE115978 and GSE123813
datasets, the pre-processed gene expression data were downloaded, processed, and
analyzed in the same way as done for the discovery scRNA-seq dataset -
GSE120575.

RNA-seq data and ICT responsiveness signature analysis. For the bulk RNA-
seq datasets9–11, we processed them in the following steps. The downloaded
FASTQ files containing the RNA-seq reads were aligned to the hg19 human
genome using Bowtie-TopHat (version 2.0.4)65,66. Gene-level read counts were
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obtained using the htseq-count Python script from HTSeq v0.11.1 [https://htseq.
readthedocs.io/en/release_0.11.1/] in the union mode. We further utilized the iDEP
v0.9267 [http://bioinformatics.sdstate.edu/idep/] to transform the read counts data
using the regularized log (rlog) transformation method originally implemented in
the DESeq2 v1.28.1 package68 [https://bioconductor.org/packages/release/bioc/
html/DESeq2.html], as it effectively reduces mean-dependent variance. The
transformed data are used for the downstream analysis and available as detailed in
the Data availability statement.

Because three single-cell clusters – TREM2hi macrophages, Tgd_c21, and B_c22
exhibited large quantitative changes between the ICT responders and non-
responders, we hypothesized that the tumor expression of the feature genes of these
specific immune cell populations may be useful to predict the ICT outcome. In
order to test this hypothesis, we developed an ICT responsiveness signature based
on the scRNA-seq dataset and a bulk gene expression dataset – GSE782209 using
the cancerclass R package23. To validate this ICT response signature –
ImmuneCells.Sig, we analyzed three independent gene expression datasets of
melanoma patients10–12 (GSE91061, PRJEB23709, and MGSP datasets) and
corroborated the high prediction values of ImmuneCells.Sig. We also compared the
ImmuneCells.Sig with the other 12 ICT response signatures reported previously
(Table 1)9,24–32 across the above four gene expression datasets of melanoma
patients. The corresponding R codes are available as detailed in the Code
availability statement.

Pathway analyses. Pathway analyses were conducted using several excellent
software tools, including IPA software (IPA release June 2020, QIAGEN Inc.,
[https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis]),
Gene Set Variation Analysis69 (GSVA v1.36.2, [https://bioconductor.org/packages/
release/bioc/html/GSVA.html]), and Gene Set Enrichment Analysis22 (GSEA
v4.0.0, [https://www.gsea-msigdb.org/gsea/index.jsp]). GSEA analysis was per-
formed for pre-ranked differentially expressed genes using the option - Gsea-
Preranked. One thousand permutations were used to calculate significance. A gene
set was considered to be significantly enriched in one of the two groups when the
raw P value < 0.05 and the FDR (false discovery rate) was <0.25 for the corre-
sponding gene set. In addition, we utilized an R-package called Fast Gene Set
Enrichment Analysis (fgsea v1.15.1, [https://github.com/ctlab/fgsea]). The package
implements a special algorithm to calculate the empirical enrichment score null
distributions simultaneously for all the gene set sizes, which allows up to several
hundred times faster execution time compared to original Broad implementation of
GSEA. Reactome pathways analyses were performed using Protein ANalysis
THrough Evolutionary Relationships (PANTHER v15.0, [http://pantherdb.org/]).
The associated settings are - Analyze type: PANTHER Overrepresentation Test,
release 20190711; Annotation Version and Release Date: Gene Ontology database
Released 2019-07-03 [http://geneontology.org/]) with lists of significantly enriched
genes in the corresponding clusters as detected by Seurat.

Statistical analysis. The performance of the ImmuneCells.Sig as a classifier for
ICT outcome was evaluated with the use of receiver-operating-characteristic curves
(ROC), calculation of AUC (Area under the ROC Curve), and estimates of sen-
sitivity and specificity implemented in the cancerclass v1.32.0 R package23. This
classification protocol starts with a feature selection step and continues with
nearest-centroid classification. The binomial confidence intervals for sensitivity and
specificity were calculated by the Wilson procedure implemented in the cancerclass
R package23. Fisher’s exact test was used for categorical variables. All confidence
intervals are reported as two-sided binomial 95% confidence intervals. Statistical
analysis was performed with R software, version 3.5.3 (R Project for Statistical
Computing).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the datasets used in this study have been obtained from publicly available sources.
Gene Ontology database Released 2019-07-03 [http://geneontology.org/] was used in
pathway analyses. The scRNA-seq datasets6–8 were retrieved from Gene Expression
Omnibus (GEO) under accession number GSE120575, GSE115978, and GSE123813.
Transcriptome-level gene expression data sets of immune checkpoint therapy studies9–11

were retrieved under accession number GSE78220, GSE91061, and from ENA project
PRJEB23709. A dataset named as MGSP (melanoma genome sequencing project),
containing data from a large melanoma genome sequencing project12 is available in
dbGaP under accession number phs000452.v3.p1. All other relevant data are available in
the article, supplementary information, or from the corresponding author upon
reasonable request.

Code availability
The computer R codes for the scRNA-seq and gene signature analysis are available at
https://github.com/donghaixiong/Immune_cells_analysis.
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