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With an intrinsically low ability for self-repair, articular cartilage injuries often

progress to cartilage loss and joint degeneration resulting in osteoarthritis

(OA). Osteoarthritis and the associated articular cartilage changes can be

debilitating, resulting in lameness and functional disability both in human and

equine patients. While articular cartilage damage plays a central role in the

pathogenesis of OA, the contribution of other joint tissues to the pathogenesis

of OA has increasingly been recognized thus prompting a whole organ

approach for therapeutic strategies. Gene therapy methods have generated

significant interest in OA therapy in recent years. These utilize viral or non-

viral vectors to deliver therapeutic molecules directly into the joint space with

the goal of reprogramming the cells’ machinery to secrete high levels of the

target protein at the site of injection. Several viral vector-based approaches

have demonstrated successful gene transfer with persistent therapeutic levels

of transgene expression in the equine joint. As an experimental model, horses

represent the pathology of human OA more accurately compared to other

animal models. The anatomical and biomechanical similarities between equine

and human joints also allow for the use of similar imaging and diagnostic

methods as used in humans. In addition, horses experience naturally occurring

OA and undergo similar therapies as human patients and, therefore, are a

clinically relevant patient population. Thus, further studies utilizing this equine

model would not only help advance the field of human OA therapy but also

benefit the clinical equine patients with naturally occurring joint disease. In

this review, we discuss the advancements in gene therapeutic approaches for

the treatment of OA with the horse as a relevant patient population as well as

an e�ective and commonly utilized species as a translational model.
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Introduction

Osteoarthritis (OA) is a debilitating, painful and often chronic degenerative

condition, negatively impacting a significant percentage of the human population. It is

the most common form of arthritis affecting nearly 30 million Americans and causing

an economic loss of $186 billion annually (1, 2). It is also a significant clinical problem

in horses with OA-associated lameness being the predominant factor contributing to
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diminished athletic function, inability to race, and perform sport

horse activities (3–5). A U.S Department of Agriculture survey

performed in horses attributed 60% of lameness to be related

to OA which translates to millions of horses being impacted

by this performance-limiting musculoskeletal condition (6). OA

has a considerable economic impact on the equine industry,

with the annual direct and indirect costs amounting to over

$1 billion per year in the United States (7, 8). There is no

cure for OA and treatment primarily revolves around managing

symptoms by systemic and local pharmacological therapies

including analgesics and non-steroidal anti-inflammatory agents

(NSAIDs) (9), surgical approaches such as microfracture and

chondroplasty (10–13), and regenerative medicine strategies

using blood derived (ACS, APS, and PRP) (14–17) or cell-

based approaches (ACI/MACI) (18–22). However, these are only

effective at providing short-term relief and do not alter disease

progression nor do they completely restore cartilage structure

and function (4, 23). Therefore, the restoration of articular

cartilage remains an unmet clinical need.

One of the challenges to studying osteoarthritis is the

difficulty in finding experimental subjects to accurately mimic

the pathology of human OA. Laboratory animal models,

although inexpensive and easy to use, do not truly represent

most aspects of human OA due to their differences in cartilage

thickness and small joint size (24, 25). Dogs are reasonably good

animal models for studying human OA due to their similarity

in joint anatomy (26, 27); however, their companion animal

status and associated ethical challenges have precluded their

widespread use as an animal model (26, 27). Caprine models are

more commonly used to study human OA; however, limitations

such as variability in cartilage thickness and defect volume

leads to inconsistencies in drawing experimental conclusions

(26, 28). Minipigs (a smaller version of traditional pigs) are

another suitable animal model for human OA studies (29). They

have comparable cartilage thickness allowing for the creation of

partial thickness (cartilage-only) defects; however, handling and

housing challenges have limited their active use as an animal

model (26, 30, 31).

In this regard, horses have been shown to be an ideal model

due to the similarities in structural and functional anatomy of

the synovial joints. The overall cartilage thickness (1.75–2mm),

subchondral bone characteristics and joint anatomy are similar

between horses and humans (30, 32). In particular, the carpal

and metacarpal joints of the equine forelimb have comparable

size, tissue structure and biomechanical loading to human

joints. Moreover, as these equine joints are responsible for 60–

65% of weight bearing, they are the most susceptible to post

traumatic OA induced by athletic training and secondary trauma

(4, 5). As an experimental model, the large size of the equine

system also allows for the use of similar imaging and diagnostic

modalities as used in humans unlike traditional small animal

models. Moreover, horses are amenable to controlled exercise

such as treadmilling, analysis of joint function (lameness and

joint effusion scoring), examination of internal structures using

imaging such as radiographic, CT, MRI analysis, and minimally

invasive arthroscopy (4, 33–35). Synovial fluid analysis offers

a relatively non-invasive measure of therapeutic drug levels

after intra-articular administration. However, this is challenging

in small animal models due to the small joint size and

proportionally small synovial fluid volume. In this regard, the

ease of harvesting large volumes of synovial fluid under sedation

is a significant benefit of using the equine model in OA studies

(36, 37). Furthermore, horses sustain naturally occurring OA,

frequently undergo arthroscopic procedures and commonly

have their joints aspirated and treated and, therefore, are a

clinically relevant patient population, further justifying the use

of horses for preclinical analyses since the results from those

studies would benefit clinical equine patients with naturally

occurring disease in parallel. Limitations of the equine model

including cost, handling/housing, long time to maturity and

ethical concerns must be taken into consideration with the use

of this large animal model.

Principles of gene therapy

OA is a degenerative joint disorder and as joints are discrete

enclosed spaces, the effects tend to be largely localized to the

joints. While an imbalance between cartilage degradation and

new matrix synthesis leading to cartilage damage is considered

central to the pathogenesis of OA, the involvement of an

inflammatory component has now been well-recognized. Recent

literature suggests that an innate immune response mediated

by the joint components such as synovial membrane, joint

capsule, subchondral bone and ligaments is responsible for

initiating and sustaining an immune-mediated inflammation in

the diseased joint (38–41). It is important to recognize that

early inflammation, in response to joint injury is beneficial

for the repair process. However, progressive damage to the

joint and failed tissue repair results in activation of stress

signaling pathways which initiate and perpetuate a low-

grade chronic inflammation leading to clinical OA (42–45).

Anti-inflammatory agents can help in inhibiting a chronic

inflammatory response to protect the cartilage from further

damage. In recent years, targeted approaches to retain the

beneficial effects of acute inflammation and prevent the

progression to low-grade, chronic inflammation have been

adopted using inducible transcription factors which regulate

several genes of the inflammatory cascade. An example for this

approach is the use of specific inhibitors of Nuclear factor-κB

(NF-κB), a central inflammatory mediator which responds to a

large variety of inflammatory and immune receptors (46, 47).

However, as NF-κB is also involved in normal immune responses

and cell survival (48, 49), a global inhibition strategy is not ideal

andmethods to selectively manipulate NF-κB to achieve safe and

effective anti-inflammatory effects need to be explored (47).

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2022.962898
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Thampi et al. 10.3389/fvets.2022.962898

With OA having a targetable inflammatory component,

the intra-articular route is particularly well-suited for the

delivery of anti-inflammatory therapeutics into the joint. As

this involves direct delivery of the drug into the joint space, it

has the potential advantage of reducing off-target and systemic

adverse effects (50, 51). Although this seems straightforward

theoretically, achieving adequate and long-lasting concentration

of the therapeutic agent using this method poses certain

challenges. The synovial fluid which fills the joint space and

acts as a lubricant and a nutrient source for chondrocytes,

is a dialysate of blood plasma. The increased pressure from

the intra articular injections prompts rapid turnover and

clearing of the drug molecules from the joint space, often

within a half-life of 4–5 h (50, 52, 53). Thus, it is difficult to

maintain adequate levels of the delivered drug long-term in

the synovial fluid using intra-articular delivery. Gene therapy

approaches were developed in an effort to address these

drawbacks (54).

Gene therapy methods were designed with the goal of

delivering therapeutic molecules directly into the joint space

using vectors such that the cells’ own machinery is programmed

to endogenously and continuously produce high levels of the

target protein at the site of injection (36, 55). This can be

achieved either by using a plasmid/vector encoding a target

protein (in vivo gene therapy) or modifying cells outside the

body to produce the target protein (transgene) which can

be reintroduced into the body (ex vivo gene therapy). The

therapeutic targets for gene therapy approaches are either anti-

catabolic (anti-inflammatory), anabolic, or both. Anti-catabolic

factors primarily act by halting the inflammation-mediated

degradation of cartilage while anabolic factors are geared

towards chondrocyte proliferation and new matrix synthesis.

While this approach has clear advantages compared to the

delivery of recombinant proteins, the practical application has

certain challenges. Firstly, for efficient transduction, the host

cell needs to be metabolically active. A significant percentage

of the cells need to be successfully transduced to produce

detectable levels of protein (53, 56). Although this is a potential

caveat, it is important to point out the possibility that the

therapeutic levels of the target protein necessary to alter a

disease state might be much lower than those needed for

detection by routine assays. Further, the vectors and the

modified cells must have low immunogenicity to evade detection

by the host immune system to allow for prolonged transgene

expression in the joint or to allow for periodic redosing

without adverse immune responses (57–59). The cytotoxicity

and immunogenicity associated with viral vectors also raises

important safety concerns with using direct viral delivery

systems. Achieving lasting clinically relevant levels of the

therapeutic agent is vital for the successful treatment of a chronic

condition such as osteoarthritis (60).

Ex vivo gene therapy

A common method of delivering target drugs to the joint is

using ex vivo gene therapy approaches where the cells harvested

from the joint are transduced in culture and then transplanted

back into the joint. Under ideal conditions, the transduced

cells become an intrinsic site of protein production. Ex vivo

approaches are relatively safe as it allows for rigorous quality

control of the modified cells before reintroduction into the

body. There is extensive literature to demonstrate the use

of ex vivo delivery approaches using various vectors derived

from retrovirus (61, 62), foamy virus (63), and adenovirus

(64, 65) to transduce a variety of cell types. A study where

autologous synovial fibroblasts modified with a recombinant

retroviral vector to overexpress IL-1Ra was the first to use

an ex vivo approach in the field of cartilage repair (66).

Since then, there have been several studies investigating the

feasibility of usingmodified cells to overexpress therapeutic gene

products in joint tissues (67, 68). Ex vivo approaches are well-

suited for use in the equine model. Autologous cell therapy,

where cells are isolated from joint tissues, expanded in culture

and administered back into the joints, is commonly used in

horses (18, 19) and therefore, they are a particularly amenable

system to model ex vivo gene therapy methods. The first such

studies in horses utilized allogenic chondrocytes which were

adenovirally transduced to overexpress IGF-1(69) and BMP7

(70), both of which resulted in improved cartilage healing when

transplanted into cartilage defects. A more recent study has

reported improved healing and defect filling when autologous

chondrocytes transduced with AAVIGF-1 were evaluated in

chondral defects (71). However, ex vivo gene delivery methods

are time and labor intensive and therefore not ideal for clinical

application. Another major disadvantage is the rapidity with

which intra-articularly injected cells are cleared from the joint,

often within 1–2 weeks, thus affecting the long-term efficacy of

the approach (72, 73).

In vivo gene therapy

Owing to the limitations of ex vivo gene delivery, direct in

vivo delivery approaches have been extensively explored in the

field of gene therapy (36, 74–83). Viral vector-based systems

utilize the natural tendency of viruses to efficiently penetrate and

translocate their genetic material into the host cell as part of the

disease process. To create a viral vector system, the viral genome

responsible for virulence is replaced by the gene of interest

along with their regulatory sequences. This ensures that the

virus retains their infectivity while limiting their pathogenicity

and the possibility of integrating with the host genome which

could lead to insertional mutagenesis and cancer (84). Although
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there are different viral vectors that are appropriate, there are

several safety and efficacy criteria that must be met before a

viral vector can be successfully used in gene therapy. Important

safety issues centered around the use of viral vectors include the

probability of integration of the vector genome with the host cell

and the degree of immunogenicity of the vector. An important

reminder of the safety risks of viral gene therapy was the death

of a participant in a gene therapy clinical trial due to an immune

reaction to a systemically administered adenoviral vector (85).

Another instance of serious adverse effects to viral vectors was

the development of leukemia in several subjects successfully

treated for X-linked severe combined immunodeficiency using

retroviral vectors (86, 87).

Direct in vivo approaches have been utilized extensively

in the equine OA model. The relative ease of intra-articular

injections and synovial fluid analysis make it a beneficial

animal model for direct viral mediated gene therapy. Several

viral vectors have been investigated in the equine system for

their safety, transduction efficiency and long-term transgene

expression including adenovirus (36, 79, 80), lentivirus (77, 88,

89), and adeno-associated virus (56, 81, 82, 90, 91). Adenoviral

mediated delivery of IGF-1 into normal equine joints was shown

to result in elevated and persistent synovial fluid levels without

any adverse effects (80). Further, AAV mediated delivery of IL-

1Ra in an equine model demonstrated sustained therapeutic

transgene levels for at least 8 months post-injection. In addition,

efficienct transduction of in situ equine chondrocytes and

synoviocytes was observed up to 4 months following AAV

mediated intra-articular delivery of GFP (82). Consistent with

these findings, studies conducted by others have demonstrated

consistent and stable transduction of equine joint tissues using

viral vectors up to 12 weeks (91) and 24 weeks post injection

(56), which speaks to the suitability of the equine model for

direct gene therapy methods.

Viral vectors

Several viral vectors have been explored for the intra-

articular delivery of therapeutics for cartilage repair. Adenoviral

vectors were tested extensively in early studies in the equine

model (36, 55, 92). Adenoviral vectors generate significantly

elevated transgene expression; however, they are unable to

achieve sustained expression longer than 4 weeks. In addition,

adenoviral vectors have high immunogenicity and can lead

to adverse tissue reactions (4, 36, 55). Retroviral vectors

are also able to achieve high levels of target protein in

the tissues, but these vectors need actively dividing cells

to achieve efficient transduction and are therefore, are not

feasible for use with chondrocytes, a cell with low turnover

rate (66). Other vectors include herpes viruses which are

highly cytotoxic in joints (93, 94), and lentiviruses which have

been utilized in equine in vitro models (88, 95) and small

animal models (89, 96, 97). However, lentiviruses show a

high tendency for host integration and potential mutational

adverse effects.

A significant improvement in adenoviral gene therapy

was the development of replication defective E1-deleted first-

generation adenoviral vectors (FGAds) (98–102). However,

deletion of the E1 replication gene left the majority of the

viral genome intact resulting in leaky expression of viral

genes consequently leading to destruction of the transduced

cells, chronic cytotoxicity and transient transgene expression.

Subsequent deletion of replication genes E2 (second generation)

and E3 (third generation) has progressed to the generation of

helper-dependent adenoviral vectors (HDAds, gutted, gutless, or

high capacity) with all of the viral coding sequences removed.

Due to the complete absence of a viral genome, HDAds are

capable of long-term high-level transgene expression without

acute cytotoxicity. In addition, the lack of a viral genome offers

additional advantages such as large cloning capacity (∼37 kb)

and a limited risk of insertional mutagenesis (103–105).

HDAds have been investigated extensively for liver-directed

gene therapy in small animal models [reviewed in Brunetti-

Pierri and Ng (104)]. These studies have demonstrated HDAds

to provide long-term transgene expression with minimal

cytotoxicity (106). The safety and efficacy of HDAd mediated

therapy has also been explored in large animal models of liver

disease including dogs (107–109) and non-human primates

(110–112). In the non-human primate model, preferential

delivery of HDAd vector into the liver resulted in transgene

expression up to 7 years although with a gradual decline

toward the end of the study (113). Further, HDAd vectors

have been employed to deliver genes intra-articularly in

mouse (114–116) and equine models of OA (114). In the

horse OA model, treatment with HDAd-IL-1Ra resulted in a

significant improvement in lameness scores, and cartilage and

synovial membrane parameters suggesting an effective symptom

and disease-modifying capacity as demonstrated in Figure 1.

However, studies in large animal models have also revealed

that HDAds show a dose-dependent acute cytotoxicity with

the systemic route to administration (117). This cytopathic

effect is not caused by viral gene expression, instead is an

innate immune response triggered by the viral capsid. At high

viral doses which is required for efficient transduction, acute

cytotoxicity is observed, the level of which increases with dose.

Therefore, strategies to block this host response or achieve

efficient transduction at a sub-toxic dose need to be explored

to overcome these challenges to clinical translation. In addition,

the host inflammatory response against the viral capsid proteins

is limited to high-dose systemic injections (104). This is not

a limitation when using non-systemic routes of administration

where HDAds can be directly delivered to isolated closed

spaces thus minimizing the systemic cytotoxic effects. This

is relevant in the context of OA therapy where HDAds can

be administered intra-articularly (115) to reduce systemic

cytopathic effects.
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FIGURE 1

(A) Synovial membrane of OA joints injected with helper-dependent adenoviral vector encoding equine IL-1Ra (HDAd-eqIL-1Ra) at a low dose

(2 × 1011 vp) or high dose (2 × 1012 vp) were comparable to sham-operated joints, whereas PBS-treated control joints appeared more

hemorrhagic. Arrowheads indicate the site of osteochondral fragmentation. (B) Equine IL-1Ra levels in the synovial fluid peaked at 4 days after

injection and declined to 1 ng/ml and 0.1 ng/ml in the low- and high-dose HDAd-eqIL-1Ra groups towards the end of the study. Values are

represented as mean ± SEM. Reproduced with permission from Nixon et al., 2018 (114).

FIGURE 2

Primary articular fibroblasts from rabbits transduced with the

same dose of conventional AAV encoding GFP (AAVGFP) (a) or

double-stranded, self-complementary AAV encoding GFP

(scAAVGFP) (b). scAAV vectors produced a ∼25-fold greater

transduction compared to the conventional AAV vector.

Reproduced with permission from Kay et al. (136).

Adeno-associated virus (AAV) offers significant advantages

over other viral vectors. It is a DNA parvovirus with a 4.68-kb

genome composed of a linear single strand of DNA (118). AAV is

unique in that it is naturally defective for replication and requires

co-infection with a helper virus, most commonly adenovirus,

to induce and support replication (119). This dependency on

the helper virus for co-infection makes AAV non-pathogenic to

humans (120, 121). Its recombinant form does not encode any

viral proteins and thus has low chances of being recognized by

the host immune system. Further, AAV vectors do not integrate

into the genome of the host like lentiviruses. Various preclinical

studies have demonstrated extended and successful transgene

expression with AAV serotypes 2, 2.5, 5, and 8 (83, 122, 123).

Unlike other viral vectors, AAV can transduce chondrocytes

in addition to synoviocytes with a high level of transduction

(83). Although the proportion of transduced cells are lower in

cartilage than synovium, this is a major advantage considering

that most viral vectors are unable to penetrate the extracellular

matrix and efficiently transduce chondrocytes (53, 124–126).

As chondrocytes are at the center of the OA pathogenesis, this

is a major advantage of using AAV vectors for OA therapy.

Importantly, AAV serotypes 2 and 2.5 use heparan sulfate,

a vital ECM component of cartilage, as the primary binding

receptor. This was found to be an important determinant

of serotype dependent AAV transduction efficiency between

cartilage explants and monolayer cultures which differ in their

heparan sulfate content (127). The small particle size of the AAV

vector allows it to enter and diffuse through the cartilage matrix

to achieve effective transduction. However, this small capsid

size also limits the transgene payload of AAV vectors to 4,100–

4,900 bp, and this poses a problem for genes with large coding

sequences, such as cystic fibrosis transmembrane conductance

regulator gene (128, 129).

AAV vector is composed of a single stranded DNA (ssDNA)

genome, and the synthesis of the complementary strand occurs

using the host’s cellular replication factors by virtue of a

palindromic terminal repeat (TR) structure which serves as a

primer for synthesis of the complementary DNA strand (130–

132). Therefore, transduction efficiency and onset of transgene

expression is dependent on the conversion from the single

to double strand DNA by the host cell and this is a major

limiting factor of AAV vectors. This disadvantage has been

overcome by the development of self-complimentary AAV

vectors (scAAV) which are designed to self-generate both

the + and –strand viral genomes without depending on the
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host cell (133, 134). scAAV vectors are composed of two

halves of the ssDNA packaged separately such that they fold

and base pair to form the dsDNA of half the length. While

this reduces the average packaging capacity of scAAV vectors

(∼2.2 kb) to half of that of AAVs, this eliminates the need

for host cell-dependent DNA synthesis which translates into

higher efficiency and faster onset of transgene expression (135).

scAAV vectors have demonstrated∼25-fold higher transduction

efficiencies compared to the conventional AAV vectors as

demonstrated in Figure 2 (136) and faster onset of protein

production (81, 82, 133, 134, 136, 137). As packaging size is even

more restricted in scAAVs compared to AAVs, optimization

of transcriptional and post-transcriptional regulatory elements,

as well as codon optimization, is vital to achieving high

levels of transduction (82). The field of gene therapy has the

potential to advance significantly with the recent development of

CRISPR/Cas9 technology. In fact, a recent study demonstrated

the feasibility of this approach using an adeno-associated

virus, which expressed CRISPR/Cas9 components to target

multiple genes simultaneously in an induced OA mouse

model (138).

Non-viral vectors

Viral vector-based gene therapy offers the advantage of

high transduction efficiency, however, it has not garnered

unanimous acceptance due to the drawbacks of immunogenicity

and cytotoxicity. In this context, non-viral vectors have been

actively explored as an alternative. Non-viral vectors include

naked-DNA and liposomes both of which comprise a plasmid,

a circular closed DNA strand. The transgene is inserted into

the plasmid directly followed by delivery into the cells. Non-

viral gene delivery systems can be categorized into physical

methods such as electroporation, sonoporation, photoporation,

hydroporation, and magnetofection or chemical carriers such

as inorganic particles and synthetic/biodegradables (139, 140).

Compared to viral vectors, plasmids are relatively safe as there

is no risk of integrating with the host genome which also

allows for potential re-dosing with low immunogenicity. In

addition, they are easier and cheaper to manufacture and have

a longer shelf life. Owing to these advantages, plasmids have

been used extensively in non-viral gene therapy approaches

(141–143). A landmark study in the field of OA therapy

involved the use of a plasmid to deliver a long-acting human

interleukin-10 variant into the joints of companion dogs with

naturally occurring osteoarthritis (144). This resulted in an

improvement in pain measurements without any adverse effects

in the double blinded placebo-controlled study. However, a

major challenge with the existing non-viral methodologies

is their inability to match the efficiency of viral vector-

based systems.

Challenges in gene therapy

The field of viral vector-based gene therapy has expanded

significantly in recent years which translates to over 2000 clinical

trials initiated since the 1990s and a drastic rise in commercial

initiatives (145). However, this acceleration in the field has

been accompanied by challenges associated with viral vector

manufacturing capacity, vector characterization and increased

regulatory scrutiny (146). Designing and manufacturing viral

vectors successfully and consistently is expensive, and requires

experienced scientists and high quality control (QC). These

challenges have limited the widespread clinical application of

gene therapy approaches (147). Viral vector manufacturing

involves a variety of approaches, typically using mammalian

cells in adherent or suspension systems. However, these

systems are challenging to scale up due to the increased

supply costs, processing time and batch to batch variation

(148, 149). An alternative to overcome these limitations is

the use of larger single-use culture systems and bioreactors

which is increasingly being adopted in the field (150–154).

Another source of variation in vector manufacturing arises

from the use of transfection-based methods to generate vectors.

Efficient transfection is highly dependent on the appropriate

combination of transfection reagents, pH and plasmidDNA, and

is highly susceptible to batch-to-batch variation. When scaling

up for clinical manufacturing, this poses a significant barrier

to producing consistent results with low lot-to-lot variability

(155–158). Moreover, the transition of gene therapy approaches

from pre-clinical animal studies to human clinical studies

has prompted extensive characterization and QC testing of

recombinant viral vectors to ensure batch-to-batch consistency.

However, one of the limitations to characterizing and QC

testing of viral vectors is their inherent degree of complexity.

AAV, one of the smallest and simplest of recombinant viral

vectors is significantly more complex than the most complex

recombinant protein. Retroviral vectors are more complex with

a double-stranded genome and a lipid bilayer encapsulating

the capsid (146, 159). Thus, methods for characterizing viral

vectors need to be customized for each different viral vector and

each serotype.

Cell-based (ex vivo) gene therapy offers a different set of

problems such as high sensitivity to environmental factors and

intrinsic biological variability. Unlike conventional therapeutics,

ex vivo gene therapy products are composed of live cells from

the starting material to the final product. As the cells cannot

be filtered or sterilized at the end of culture before use in

the patient, the entire manufacturing process must be carefully

designed and enforced with excellent QC strategies in place to

ensure the safety and efficacy of the final product (160–162).

The existing manufacturing systems for gene therapy are largely

manual involving planar culture systems, which are difficult to

scale-up and are riddled with batch-to-batch variability due to

human error (163, 164). Cell based gene therapies typically use
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the patient’s own cells as starting material which is also a source

of variation owing to the inherent biological differences between

donors. This variability can be considerably reduced when

using allogenic or “off-the-shelf ” therapies where cells from

one individual can be used for multiple treatments. In contrast,

autologous cell-based therapies, where cells taken from a patient

are reintroduced into the same patient, present additional

manufacturing challenges to control for the biological variation

in the input material and inconsistent storage and preservation

methods across samples (164–167). To add to these challenges,

commercial gene therapy products are tightly regulated and are

required to be produced in accordance with goodmanufacturing

practice (GMP). However, this becomes challenging in the field

of patient-specific (autologous) therapies where the cells are

often sourced from a diseased joint and therefore, may not

meet the required GMP standard (163, 168). In this context,

gene therapy manufacturing processes would benefit from a

more adaptive strategy that accounts for the inherent biological

variation in the inputmaterial, differences in product quality and

the complexity of viral systems. Technological improvements

in viral manufacturing in future years is also likely to help in

overcoming obstacles in large scale vector manufacturing and

facilitating easier clinical translation.

Horse as a translational OA model

Pre-clinical studies using viral vectors

As illustrated in previous sections, horses offer an ideal

model system for human OA. Numerous studies have

demonstrated the advantages of viral gene delivery for the

treatment of osteoarthritis in animal models. The purpose

of this review article is not to provide a comprehensive

review of all of these studies. Instead, examples of particular

significance or interest are highlighted. Preclinical gene

therapy studies in horses were performed by our group

in 2002 with a first-generation adenoviral mediated delivery

of Interleukin-1 receptor antagonist (IL-1Ra) into healthy

equine joints. The study was successful in demonstrating a

dose-dependent increase in IL-1Ra levels in synovial fluid,

however, an acute leukocytosis was observed in the synovial

fluid at the highest concentration tested (5 × 1011 viral

particles) (36). Further, the efficacy of IL-1Ra to ameliorate

the symptoms of OA was investigated in an induced equine

OA model using an osteochondral chip fragment created

in the intercarpal joint. Viral delivery of IL-1Ra resulted

in increased intra-articular expression of IL-1Ra for ∼28

days with a peak at 7 days. Moreover, the elevated IL-1Ra

expression reduced joint pain and had a protective effect

on the joint tissues over the course of the 90 day study

as summarized in Figure 3 (169). While these were hallmark

studies illustrating the success of viral mediated gene delivery

into large animal joints, these studies used first-generation

adenovirus vectors. An improvement in the field was the

discovery of single-stranded adeno-associated viruses (AAVs)

and subsequently of scAAV vectors generated using half-

genome sized vector plasmids, or those containing a mutation

in one of the terminal resolution sequences of the AAV

ITRs which demonstrated greater transduction efficiencies and

prolonged transgene expression compared to AAVs (81, 82, 133–

135).

scAAV vector-based gene therapy approaches were

successfully tried in laboratory animals (136, 170) before being

tested in normal equine joints (56, 81, 82, 171, 172) and in

an induced OA model (91). Goodrich et al. were the first to

demonstrate via a novel fluorescent arthroscopic imaging

system that in situ chondrocytes (in addition to synoviocytes)

can be efficiently transduced with intra articular injection of

scAAV GFP in equine joints (82). Watson et al. used scAAV

containing the cDNAs for human IL-1Ra (scAAVhIL-1Ra)

and green fluorescent protein (scAAVGFP) to transduce both

equine and human synovial fibroblasts in culture. Of the AAV

serotypes tested, AAV1, 2 and 5 were able to transduce both cell

types at high efficiency with the equine cells showing a 10-fold

higher viral uptake compared to the human cells. Further,

delivery of these scAAV containing human IL-1Ra into the

joints of equine forelimbs revealed biologically relevant levels

of transgene expression mainly in the synovial cells and weakly

in the articular chondrocytes. However, transgene expression

steadily declined over a period of 5 weeks potentially due to

detection and clearing of cells expressing the xenogenic human

IL-1Ra protein by the host immune system (172). The human

cDNA was later replaced with the homologous equine IL-1Ra,

subsequent codon optimization, and optimizing the promoter

for joint tissues resulting in a scAAV equine IL-1Ra vector

which induced significant and therapeutic protein production

in equine joints (82). This was followed by several dosing

studies to identify dosing regimens to achieve prolonged and

therapeutic levels of transgene expression (56, 81). In our study

(81), scAAVIL-1ra, scAAV2GFP or saline at a dose ranging

from 5 × 1010 to 5 × 1012 viral particles were delivered into

the middle carpal space of six healthy horses. The dose of

5 × 1012 achieved therapeutic levels of IL-1Ra for at least

8 months following injection without any adverse effects

(Figure 4). Moreover, re-dosing of the low dose groups with an

alternate serotype demonstrated a rescue of IL-1Ra expression.

Interestingly, one horse that was redosed with a scAAV6 IL-1Ra

demonstrated a rescue of IL-1Ra levels at 2 weeks post injection

but a rapid drop at 4 weeks suggestive of an immune response

(Figure 5) while the other horse also redosed with the same

serotype showed high levels of IL-1Ra which was sustained for

over 100 days followed by a gradual decline. The results of this

study suggest the ability to re-dose a patient with an alternate

serotype and rescue IL-1Ra expression. Chondrocytes could be

efficiently transduced using the dosing protocol tested in this
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FIGURE 3

E�ect of osteoarthritis and gene transfer on cartilage erosion. Photographs of the intercarpal joint illustrating extensive full-thickness articular

cartilage erosions in OA joints of both untreated (a) and adenoviral vector encoding equine IL-1Ra (Ad-EqIL-1Ra) (b) treated horses. Erosions are

evident in the untreated joint especially in areas of the third carpal bone (2) not adjacent to the osteochondral fragment (1). (3) shows the area of

aseptic harvest of cartilage from the intermediate carpal bone. (c) presents cartilage erosion scores by treatment group. Sections of articular

cartilage stained with SOFG demonstrating little or no stain uptake in the OA joint of an untreated horse (d) vs. moderate stain uptake from an

OA joint with Ad-EqIL-1ra treatment (e). Plot of SOFG scores by treatment group (f). Di�erent letters associated with bars indicate a statistical

di�erence (P < 0.05) between bars. Lines with an asterisk (*) linking treatment groups indicate a statistical di�erence between treatment groups.

Reproduced with permission from Frisbie et al. (36).

study although the response to repeated dosing needs to be

investigated further.

Similar patterns were observed in a 6-month study done

by Watson Levings et al. (56). The viral dose of 5 × 1012

viral particles was found to result in stable therapeutic levels

of IL-1Ra (over 35 ng/ml) with no adverse effects up to 24

weeks after intra-articular administration in healthy equine

joints. In a related study, the same group of investigators

tracked the expression of IL-1Ra in healthy vs. diseased joints.

Interestingly, the vector activity appeared to be significantly

higher in the joints with OA pathologies compared to healthy

joints as demonstrated by a concentration of GFP fluorescence

in the areas of articular cartilage with distinct damage. The

investigators postulate that the increase in transgene expression

could be a result of proliferation and increased metabolism of

the diseased chondrocytes as well as stress induced activation

of the cytomegalovirus (CMV) promoter which is normally

activated by stress-activated protein kinases (173–175). These

observations present a unique opportunity to target transgene

expression to specific diseased regions of the joint and direct

site-specific repair. Further, in a 12-week study, the same dose

of 5 × 1012 of scAAV.eqIL-1Ra administered to joints of an

induced equine OA model resulted in significantly elevated

IL-1Ra expression levels in synovial fluid with a significant

functional outcome of reduction in lameness, inflammatory

responses and a chondroprotective effect at the site of injury

(Figure 6) (91). While no adverse effects were observed in

response to the viral dose tested in healthy horses (56, 81) and

in a 12-week study in an induced OA model (91) summarized

above, it is unclear how a diseased joint will behave long-term to

this dose.

Gene therapy strategies in the realm of OA therapy can be

broadly grouped into two–one aimed at delivering anti-catabolic

gene products which halt the activity of inflammatory cytokines

responsible for inflammation and breakdown of the cartilage

ECM and the other directed toward delivering anabolic products

that stimulate chondrocytes to proliferate and increase new

matrix synthesis thus promoting cartilage regeneration.

Of the several anti-inflammatory factors tested for their

efficacy in OA therapy, IL-1Ra is by far the most extensively

investigated (36, 81, 93, 114, 176–179). IL-1Ra is the natural

inhibitor of IL-1β and competitively inhibits IL-1β by binding

to the surface receptors thereby preventing the cellular effects

of IL-1β. As a potent mediator of the inflammation, IL-1β is

responsible for the production of the major effectors of the

inflammatory cascade including cyclooxygenases I and II, nitric
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FIGURE 4

(a,b) IL-1Ra levels (blue bars), total protein levels (red line) and white blood cell (WBC) levels (green line) in the joints of horses in a scAAVIL-1Ra

dosing trial. IL-1Ra levels remain elevated in joints injected with the highest dose of scAAVIL-1Ra (a) compared to the control joints (saline or

scAAVGFP) (b). Transduced joints produced very high levels of IL-1Ra (over 100ng/ml) for over 168 days after which, levels of IL-1Ra continued

to be produced between 50–100ng/ml out to 273 days. WBC counts did not rise above normal (1,000 cells/ml) for joints injected with

scAAVIL-1Ra and saline or scAAVGFP. (c–e) Arthroscopic image of in situ vector encoded-GFP transduced chondrocytes (arrows in left and

middle images) from joints injected with 5 × 1012 vg of scAAVGFP (left) or saline (right image). The arthroscopic images were taken 4 months

following intra-articular injection of scAAVGFP suggesting chondrocytes have been stably transduced to produce protein. The arrows point to

fluorescent chondrocytes on the edge (c) or edge and surface of cartilage (d). Some green autofluorescence (of the cartilage) surrounds the

cells and can be seen in the saline injected joint (e). scAAV, self-complementary AAV. Reproduced with permission from Goodrich et al. (81).

oxide, phospholipase A2, prostaglandin E2, reactive oxygen

species as well as inflammatory cytokines and chemokines

which trigger degenerative changes in the cartilage matrix (180,

181). IL-1Ra, being a small protein [with a cDNA 1.6 kb in

length], is ideal for gene therapy approaches using scAAV

vectors which have packaging size limitations of ∼2.5 kb (136,

182). IL-1Ra is being used clinically as a recombinant protein,

Anakinra/Kineret
R©

in human and animal patients (183). This

is administered as a daily subcutaneous injection, therefore the

risk of toxic levels intra-articularly is low however, it does pose

systemic side effects such as local reaction at the injection site

and upper respiratory tract infections (184–186).

Insulin-like growth factor-1 (IGF-1) is a critical anabolic

growth factor for maintaining cartilage health and integrity and

for this reason, IGF-1 offers another useful target in OA therapy

as a chondroprotective factor. In vitro studies provide strong

support for the use of IGF-1 in promoting cartilage repair. IGF-

1 has been shown to increase the metabolism and proliferation

of chondrocytes in culture in several studies (187–189). The

effect of IGF-1 was tested in an antigen-induced arthritis rabbit

model using adenoviral-mediated delivery. Although IGF-1

levels were elevated in the joints which resulted in enhanced

proteoglycan synthesis, this did not translate into a significant

chondroprotective effect against OA pathology (190). IL-1Ra

and IGF-1 have also been used in combination with the goal

of simultaneously blocking cartilage breakdown and effecting

cartilage regeneration, respectively (187). Synovial fibroblasts

transduced with both IL-1Ra and IGF-1 were cocultured with

normal equine articular cartilage and cartilage damaged by

exposure to IL-1. The transgene expression from the synovial

fibroblasts was able to increase matrix synthesis in normal

cartilage as well as partially reverse the IL-1 induced cartilage

matrix depletion in the damaged cartilage. Among large animal

models, Goodrich et. al demonstrated that direct adenoviral

mediated delivery of IGF-1 to the synovium of healthy equine

joints was able to provide sustained high levels of IGF-I in the

synovial fluid with minimal detrimental effects (80). Further, the

chondroprotective effect of IGF-I was illustrated in an equine
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FIGURE 5

(A–D) IL-1Ra (ng/ml), total protein (g/dl) and WBC (cells/ml) levels in low dosed and control limb synovial fluid samples after redosing at Day

154. One horse (A) whose joint was re-injected had IL-1Ra level sharply increase to 675ng/ml and decline rapidly while the other horse (C) that

was redosed showed elevated IL-1Ra levels which remained elevated until Day 273 compared to the control joints (B,D). Reproduced with

permission from Goodrich et al., 2015 (81).

cartilage repair model (67). Chondrocytes genetically modified

by an adenovirus vector encoding equine IGF-1 (AdIGF-1)

administered into surgically induced cartilage defects resulted

in improved repair of the cartilage defect with increased defect

filling and elevated type II collagen expression compared to

control defects.

Although IL-1Ra and IGF-1 have been the focus of OA

gene therapy systems, significant advances in the field of

viral vector design and generation opens the door for other

potential gene targets known to play a role in cartilage

development and regeneration. In fact, several of these have

been investigated in in vitro studies and laboratory animal

studies. SRY-Box Transcription Factor 9 (SOX9), a chondrocyte-

specific transcription factor was tested in human and rabbit

cell lines as well as in a rabbit in vivo model for degenerative

disc disease using recombinant adenoviruses (191) and AAVs

(192). Both studies demonstrated successful upregulation

in SOX9 and Type 2 collagen levels and an associated

protective effect on the architecture of the nucleus pulposus

in vivo. Similar observations were made in another study

investigating the effect of a recombinant adeno-associated viral

(rAAV) vector mediated delivery of SOX9 in modulating the

osteoarthritic phenotype of chondrocytes in a three-dimensional

in vitro model (193). SOX9 has also been investigated in

combinatorial gene delivery approaches in the field of cartilage

regeneration (194).

Interleukin 10 (IL-10), an anti-inflammatory cytokine,

which downregulates proinflammatory cytokines and its

receptors, is another molecule that the gene therapy field has

targeted. Over expression of this protein has been investigated

in arthritis (195–200) and neural disorders (201–203). Human

IL-10 gene carrying plasmids were designed by Watkins

et. al. to test the safety and efficacy of IL-10 in a 6-month

study in dogs. The therapy was well-tolerated without any

adverse effects in the toxicology study. Subsequent testing in

a translational model of OA in companion (pet) dogs with

naturally occurring OA showed a significant improvement

in pain measurements based on clinical assessments without

any side-effects (144). Direct viral mediated delivery of

IL-10 has also been examined in both in vitro and in vivo

studies. Transduction of equine chondrocytes with AAV5

overexpressing IL-10 was able to mitigate the IL-1β mediated

pro-inflammatory cascade in pellet cultures with a reduction

in IL-1β and Prostaglandin E2 levels (204). In a related study,
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FIGURE 6

Changes in tissue pathology associated with scAAV.eqIL-1Ra

treatment in an equine model of OA (A) showing a significant

decrease in total arthroscopy scores for treated joints compared

to the control joints (B) Representative arthroscopic images of

the osteochondral lesions in treated and control horses at the

time of OA induction (week -2) and at the endpoint (week 12)

(C) showing a significant decrease in total histologic scores for

treated joints compared to controls consistent with the

microscopic appearance of bone repair tissue (H&E) and

cartilage (toluidine blue) in treated and control joints (D)

Reproduced with permission from R. S. Watson Levings et. al,

2018 (91). An asterisk (*) linking treatment groups indicate a

statistical di�erence (p < 0.05) between treatment groups.

equine bone marrow-derived MSCs overexpressing IL-10

were able to provide anti-inflammatory effects in a stimulated,

co-culture OA model. However, this did not translate to

a protective effect on the extracellular matrix (ECM) or a

rescue of ECM loss in the transduced co-cultures (90). Further

study in an equine model demonstrated that an AAV5 vector

overexpressing IL-10 provided rapid and sustained IL-10

expression following direct intra-articular delivery. Importantly,

IL-10 levels could be detected in plasma, synovial fluid, and

synovial membrane of treated joints until day 84 compared to

PBS injected controls without any adverse synovial response

(205). These studies demonstrate the feasibility of delivering

IL-10 into diseased joints and provide support for further in

vivo investigations into the chondroprotective effects of IL-10

for OA therapy.

Proteoglycan 4 (PRG4), a secreted protein has also been

explored as a potent chondroprotective factor in blocking

the pathogenesis of osteoarthritis (116, 206). PRG4 or

lubricin, produced by superficial zone chondrocytes and

the synovial lining cells, is an important component of

synovial fluid. It provides synovial fluid with the ability

to disperse strain energy under biomechanical loading thus

contributing to the lubrication and protection of articular

ccartilage surfaces. Recombinant PRG4 has been reported to

protect against progression of OA in rodent models (207–

209). Intra-articular expression of PRG4 using a helper-

dependant adenoviral vector has been reported to provide

protection against the development of both age-related and post

traumatic OA in a mouse model (210). Further, transcriptional

profiling studies revealed that PRG4 overexpression inhibits the

transcriptional networks associated with cartilage catabolism

and hypertrophy through the up-regulation of hypoxia inducible

factor 3α (HIF3α), thus protecting against cartilage degradation

and development of OA. Bone morphogenetic proteins

(BMPs) are a class of proteins that have generated interest

in recent years for their role in musculoskeletal repair.

Recombinant protein injections of BMP2 and BMP7 has

shown improved cartilage healing in previous studies (211,

212). BMP7 has been shown to enhance cartilage matrix

synthesis and chondrogenic ability of chondrocytes modified

by an adenovirus vector encoding BMP-7 in a bovine ex

vivo model (213) and an equine model (70). However,

more extensive studies are needed to identify and establish

these additional therapeutic targets for their potential role in

OA therapy.

Future directions and conclusions

This review summarizes the current state of the field

of gene therapy with emphasis on preclinical studies using

the horse as an experimental model for human OA. We

outline the recent advancements in viral vector-based delivery

systems and potential therapeutic targets for OA therapy. The

field of gene therapy has weathered many setbacks, however,

technological advancements resulting in the development of

safe and effective vectors and delivery methods have paved

the way for increased acceptance and renewed interest in the

field. There have been several successful clinical trials in human

medicine (Luxterna
R©

for congenital retinal degeneration and

Zolgensma
R©

for spinal muscular atrophy) which resulted

in positive effects on the quality of life of the patients.

The preclinical studies outlined in this review demonstrate

the feasibility and relevance of using the equine joint as a

translational model to explore treatment strategies for OA using

gene therapy. However, high manufacturing costs associated

with vector production and the inherent expensive nature

of equine research pose significant challenges to undertaking

large preclinical studies using this model. Improvements in

vector development technology would likely lead to decreased

production costs in the future, however, a growth in resources

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2022.962898
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Thampi et al. 10.3389/fvets.2022.962898

available for equine research would be vital in moving the

field forward.
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