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Abstract
Proper housing conditions are important aspects of animal welfare. Animals housed in enriched environments show less 
stereotypic behaviours than animals kept in barren cages. However, different types of cage enrichment may affect the results 
of experimental studies and hinder comparative analyses of animal physiology and behaviour. We investigated whether access 
to a running wheel, availability of nesting material, and pair housing affect basal metabolic rate (BMR) of Siberian hamsters 
(Phodopus sungorus) under various acclimation conditions. We used 70 adult hamsters (35 males and 35 females) divided 
into five groups housed under different cage conditions. All individuals experienced the same acclimation procedure: first a 
winter (L8:D16) then a summer (L16:D8) photoperiod, at air temperatures of first 20 °C then 7 °C under both photoperiods. 
We found that nesting material and pair housing did not affect hamster BMR, while access to a running wheel increased 
BMR and body mass regardless of photoperiod and ambient temperature. Thus, we suggest that cage enrichment should be 
applied with caution, especially in studies on energetics or thermoregulation, particularly in seasonal animals.

Keywords Wheel-running activity · Animal welfare · Siberian hamster · Seasonal changes · Basal metabolic rate · Body 
mass · Nesting material · Pair housing

Introduction

Cage enrichment like access to tunnels, running wheels, bal-
ance beams, shelters, climbing structures, or nesting mate-
rial, and in many species also group housing, improve the 
welfare of captive animals by providing external stimuli or 
social contact, reinforcing activity, and preventing monotony. 
This is especially pertinent to laboratory animals. Despite 
many advantages of cage enrichment, there is a concern that 
non-standard equipment in a cage may bias experimental 
results and hinder comparative studies (Bailoo et al. 2018). 
Indeed, energy expenditure of laboratory animals depends 

on the activity in the running wheel (Goodrick 1980) and 
availability of nesting material (Van de Weerd et al. 1997). 
It can also vary with the number of individuals housed per 
cage (Nuñez-Villegas et al. 2014).

Although access to running wheel is beneficial for animal 
wellbeing (Goodrick 1980; Lambert and Noakes 1990; van 
Praag et al. 1999), it may increase energy expenditure and 
modify seasonal changes in physiology (Borer et al. 1983; 
Scherbarth et al. 2007). In this study, we asked whether the 
effects of voluntary activity on basal metabolic rate (BMR) 
of a seasonal mammal change with photoperiod and ambient 
temperature (Ta). Wheel-running activity may affect body 
mass and body composition (Allen et al. 2001; Kemi et al. 
2002; Houle-Leroy et al. 2003; Waters et al. 2004; Swallow 
et al. 2005; Scherbarth et al. 2007; Petri et al. 2010; Soffe 
et al. 2016; Kelly et al. 2017), and it may stimulate growth 
or increase in bone density (Scherbarth et al. 2007; 2008). 
Likewise, seasonal phenomena, like winter decrease in body 
mass (mb) (Scherbarth et al. 2007, 2008; Petri et al. 2014), 
winter gonadal regression (Gibbs and Petterborg 1986; 
Scherbarth et al. 2007), daily torpor expression (Thomas 
et al. 1993; Scherbarth et al. 2007), and hibernation torpor 
(Pengelley and Fisher 1966) are also prevented or delayed 

Communicated by G. Heldmaier.

 * Małgorzata Jefimow 
 jefimow@umk.pl

1 Department of Animal Physiology and Neurobiology, 
Faculty of Biological and Veterinary Sciences, Nicolaus 
Copernicus University, ul. Lwowska 1, 87-100 Toruń, 
Poland

2 Department of Vertebrate Zoology and Ecology, Faculty 
of Biological and Veterinary Sciences, Nicolaus Copernicus 
University, ul. Lwowska 1, 87-100 Toruń, Poland

http://orcid.org/0000-0001-6403-0733
http://orcid.org/0000-0002-3646-3686
http://crossmark.crossref.org/dialog/?doi=10.1007/s00360-022-01434-9&domain=pdf


514 Journal of Comparative Physiology B (2022) 192:513–526

1 3

by voluntary exercise in running wheel. Locomotor activ-
ity itself also depends on season (Kenagy 1973; O'Farrell 
1974; Conner 1983; Ebensperger and Hurtado 2005; Paise 
and Vieira 2006), and voluntary exercise affects neuroen-
docrine function, hormone secretion and somatic growth 
(Borer et al. 1983). Finally, running wheel activity induces 
an increase in energy expenditure and generates heat that 
can be used for thermoregulation (Wunder 1970; Refinetti 
1994; Weinert and Waterhouse 1998; Chappell et al. 2004; 
Vaanholt et al. 2007; Weinert et al. 2018). It was also found 
that mice selected for high nest-building behaviour were less 
active in running wheel than controls or low-nest builders 
(Bult et al. 1993).

The second goal of our study was to estimate the effects 
of thermal microenvironment in a cage on BMR. We quan-
tified the effects of additional nesting material and hous-
ing in pairs on the seasonal changes in BMR. Shape and 
size of animal’s nest depends on the species (Yunes et al. 
1991), strain (Lynch and Hegmann 1972), body mass 
(Lynch and Roberts 1984), ambient temperature (Gaskill 
et al. 2011), and season (Puchalski et al. 1988; Przybylska 
et al. 2019b). The quality and quantity of nesting material 
can also affect the energy expenditure of laboratory animals 
(Van de Weerd et al. 1997). The presence of nest in a cage 
facilitates thermoregulation and increases thermal comfort 
of an individual, particularly as standard laboratory Ta is 
usually below the thermoneutral zone of most small labo-
ratory rodents (Gordon 1990, 1993, 2012; Jefimow et al. 
2003). For example, laboratory mice (C57BL and BALB 
strains) with access to nesting material had higher mb and 
consumed less food than mice from barren cages, suggesting 
reduced energy expenditure for thermoregulation (Van de 
Weerd et al. 1997). In Siberian hamsters, seasonally intensi-
fied nest-building behaviour likely reflects an intrinsic drive 
to build more insulated nests during winter (Puchalski et al. 
1988; Przybylska et al. 2019b). Because group housing may 
reduce energy expenditure by reducing surface-to-volume 
ratio of grouped animals (Contreras 1984), we also stud-
ied the effect of pair-housing on seasonal changes in BMR. 
Although Siberian hamster is rather solitary than social 
(Wynne-Edwards 2003), it can be housed in groups of the 
same-sex littermates (Jefimow et al. 2011).

As a model we used a highly photosensitive species, the 
Siberian hamster (Phodopus sungorus). Many studies exam-
ined different aspects of energy expenditure, including meta-
bolic rate, body temperature, nonshivering thermogenesis, 
daily torpor, seasonal changes in mb, and activity rhythms in 
this species (Figala et al. 1973; Hoffmann 1973; Heldmaier 
1975b; Steinlechner et al. 1983; Heldmaier et al. 1985, 1989; 
Heldmaier 1989; Weiner and Heldmaier 1987; Puchalski and 
Lynch 1988; Jefimow et al. 2004). The hamsters respond to 
short photoperiod by adjusting several traits that constitute 
its winter phenotype. Namely, they decrease mb, molt to a 

white fur, regress gonads and use daily torpor (Figala et al. 
1973; Hoffmann 1973; Heldmaier and Steinlechner 1981a, 
b; Lynch and Puchalski 1986; Ruf and Heldmaier 1992; 
Ruf et al. 1993; Przybylska-Piech et al. 2021). Boratyński 
et al. (2016) also found that Siberian hamsters acclimated 
to winter-like conditions had lower whole animal BMR than 
summer-acclimated ones.

To answer our questions we measured BMR, voluntary 
activity in running wheels, and changes in body mass of 
Siberian hamsters acclimated to winter-like, short, and 
summer-like, long photoperiods at ambient temperatures of 
both 20 and 7 °C. We predicted that continuous access to 
a running wheel would induce an increase in whole ani-
mal BMR independent of season. Further, we predicted that 
BMR would be lower in animals that have access to nesting 
material and that BMR will be lower in animals acclimated 
to winter-like than to summer-like conditions. Finally, we 
expected that housing in pairs would result in lower BMR 
compared to hamsters housed solitarily.

Material and methods

Ethical note

All experiments received ethical approval from the Local 
Committee for Ethics in Animal Research in Bydgoszcz, 
Poland (decision no. 5/2020).

Animals and housing

Siberian hamsters used in these experiments were from our 
breeding colony kept at the Faculty of Biological and Vet-
erinary Sciences at the Nicolaus Copernicus University in 
Toruń. All animals descended from hamsters obtained from 
the University of Halle-Wittenberg and Philipps Univer-
sity of Marburg, Germany. We used 70 adult hamsters (35 
males and 35 females) born under summer-like conditions 
(16L:8D, Ta = 20 ± 2 °C). After weaning at 18–19 day of 
age, all hamsters were initially housed in same sex pairs. At 
the age of ~ 3 months, hamsters were exposed to a winter-
like photoperiod (8L:16D, Ta = 20 ± 2 °C) for 4 months. 
During this initial acclimation, animals were housed 
either individually or in pairs in standard laboratory cages 
(220 × 165 × 140 mm high) with wood shavings and paper 
tubes for bedding and nesting material. Food (standard 
rodent diet; Labofeed B, Morawski, Kcynia, Poland) and 
water were available ad libitum. Paired animals were kept 
together throughout entire experiment and constituted the 
first experimental group that included 3 male–male and 4 
female–female pairs (Group P: Pair-housed animals). The 
other hamsters were housed singly, and divided into four 
groups maintained in experimental cages that differed in 
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size, availability of a running wheel, and nesting material 
(Table 1). Each group of solitary hamsters consisted of 14 
individuals (7 males and 7 females). Hamsters in Group S 
(Single animals) were housed singly in standard laboratory 
cages with wood shavings as bedding material (barren cage). 
Animals from Group SN (Single animals with nesting mate-
rial) were supplemented with nesting material (paper tube 
and paper towel). Hamsters from Group W (Wheel in a cage) 
were housed in larger cages with running wheel and bed-
ding material (320 × 165 × 140 mm high, wheel circumfer-
ence = 76.65 cm) and individuals from Group WN (Wheel 
and Nesting material) were kept in cages with a running 
wheel and nesting material (paper tube and paper towel).

BMR of each individual was measured before dividing 
hamsters to cages varying in captive conditions (BMR1), 
after 4 weeks of cage treatments at Ta = 20 ± 2 °C (BMR2), 
and after a further four weeks at Ta = 7 ± 2 °C (BMR3). 
After 24 weeks under winter-like conditions, photoperiod 
and Ta were changed to summer-like conditions (16L:8D, 
Ta = 20 ± 2 °C) and hamsters were transferred to standard 
laboratory cages as described above. After 12 weeks of 
initial acclimation to the summer conditions, we measured 
BMR three times, in the same order and manner as during 
the winter photoperiod (BMR 4, 5 and 6; Fig. 1).

Hamsters were weighed every week or every 2 weeks to 
an accuracy of ± 0.1 g with an electronic balance (SPU402, 
Ohaus, U.S.A.) to monitor changes in mb. Body mass was 
also measured before and after each BMR measurement. 
Two animals (one from group W and one from group WN) 

died during acclimation from unknown reasons, and thus our 
final sample size is 68 individuals.

Basal metabolic rate

Basal metabolic rate (BMR) was measured by indirect cal-
orimetry using an open flow respirometry system at Ta = 
28.5 °C, which is within the thermoneutral zone of Siberian 
hamsters (Gutowski et al. 2011). Measurements were done 
during the animals' rest phase, and lasted for approximately 
7.5 h. We used two parallel respirometry systems, allowing 
us to measure gas exchange in 14 hamsters simultaneously (7 
per system per day). Air was sequentially sampled from each 
animal chamber at 5-min intervals, with reference air being 
sampled for 4 min at least every 15 min, and this cycle was 
repeated throughout measurements. Thus the gas exchange 
of each hamster was measured every 44 min throughout the 
day. Air was pulled from outside the building using an air 
pump (DOA-P501-BN, Gast Manufacturing INC., Michi-
gan, USA), then it was dried using silica gel and was con-
tinuously pushed through 0.85 L airtight metabolic chambers 
constructed of translucent polypropylene containers (HPL 
808, Lock & Lock, Hana Cobi, South Korea) at a constant 
flow rate of ~ 430 mL  min−1. All chambers were placed in a 
temperature-controlled cabinet (ST-1200, Pol-Eko-Aparatura, 
Wodzisław Śląski, Poland). Airflow was regulated upstream of 
the respirometry chambers using precise needle valves. Gases 
leaving the respirometry chambers were selected sequentially 
by a computer-controlled multiplexer (MUX, Sable Systems 

Table 1  Housing conditions of 
five experimental groups. Only 
during the initial acclimation 
periods hamsters were housed in 
cages with the same enrichment 
(small with nesting material)

P pair-housed animals, S single animals, SN single animals with nesting material, W animals housed in 
cages with running wheel, WN animals housed in cages with running wheel and nesting material

Group N Number of indi-
viduals per cage

Cage size Wood shavings Nesting 
material

Running wheel

P 3 pairs ♂–♂
4 pairs ♀–♀

2 Small Yes Yes No

S 7♀; 7♂ 1 Small Yes No No
SN 7♀; 7♂ 1 Small Yes Yes No
W 7♀; 7♂ 1 Large Yes No Yes
WN 7♀; 7♂ 1 Large Yes Yes Yes

Fig. 1  Timeline of acclimation to different photoperiods and ambient temperatures (Ta) and measurements of basal metabolic rate (BMR) in 
Siberian hamsters
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Int., Las Vegas, NV, U.S.A.) and the flow rate of each chamber 
was measured downstream using a mass flow meter (Flow-
Bar-8, Sable Systems Int.; calibrated against a volumetric cali-
brator (Defender 530 + , Mesa Laboratories, Inc., Butler, NJ, 
USA). A multiplexer received air from all 14 chambers and 
selected two separate airstreams leading to different sets of gas 
analysers. After flow measurement, air from each gas stream 
was subsampled at a rate of ~ 100 mL  min−1 and water vapour 
pressure of the subsampled air was measured with a water 
vapour analyser (RH-300, Sable Systems Int.). Air was then 
dried in a column of magnesium perchlorate (Sigma-Aldrich, 
U.S.A.), and subsequently fractional concentrations of  CO2 
(FCO2) and  O2 (FO2) were measured using a FoxBox-C inte-
grated  CO2 and  O2 analyser, or with a FC-10a  O2 analyser 
(Sable Systems Int.) and CA10  CO2 analyser (Sable Systems 
Int.). Water vapor and  CO2 analyzers were calibrated prior to 
each series of measurements against  N2 (zero) and known con-
centrations of  H2O or  CO2 in  N2.  O2 analysers were spanned 
daily against dry atmospheric air. All electronic outputs of the 
respirometry system were sent to a PC via an analogue-to-
digital interface (UI2, Sable Systems Int.). Respirometry data 
were recorded using ExpeData software (Sable Systems Int.) 
at 0.5 Hz and V̇O2 and V̇CO2  were calculated using Eqs. 11.7 
and 11.8 in Lighton (2008). Metabolic rate (MR, W) was cal-
culated using the oxyjoule equivalent in Lighton et al. (1987):

where V̇O2 is the rate of oxygen consumption (ml  O2/min) 
and respiratory exchange ratio (RER) = V̇CO2

V̇O2

.

Locomotor activity

Running wheel activity was recorded using a LabJack U3 pro-
grammable AD interaface (LabJack, Lakewood, CO, USA) 
with a DAQFactory (AzeoTech Inc., Ashland, OR, USA) and 
routine prepared by Paweł Koteja (unpublished). The program 
records the binary state (moving or stationary) of the wheel 
motion sensor in 0.02 s increments, and saves it in an output 
file as means for successive 10-s intervals. The software did 
not allow us to count intensity of activity or distance covered, 
and therefore activity was calculated as the percent of time 
active by day and by night as well as duration of activity in 
hours.

Statistical analysis

Body mass

For the analyses of mb changes over time we used data that 
were recorded after each acclimation period, i.e. at the time 
of BMR measurements. It was done in two separate analyses 

MR (W) =
V̇O2(16 + 5.164 ⋅ RER)

60
,

using linear mixed-effect models (LMM) with type III Sums 
of Squares. To fit linear mixed models we used package 
lme4 (Bates et al. 2015) and for post-hoc comparison of 
estimated marginal means we used package emmeans (Lenth 
2020) in R v. 4.0.3 (R core 2020). In the set of analyses, 
we tested the effect of housing conditions (standard cage or 
larger cage with a running wheel), nesting material (present 
or absent), photoperiod (long or short days) or acclimation 
period (initial acclimation in standard cages, acclimation to 
experimental cages at 20 °C, and then at 7 °C) on changes 
in mb of single-housed hamsters. In the second analysis we 
tested the effect of housing in pairs on mb. We compared 
mb of pair-housed individuals (group P) with mb of soli-
tary animals housed in standard cages with nesting mate-
rial (group SN). To build initial models we used Regression 
with Empirical Variable Selection approach (Goodenough 
et al. 2012). This approach consists of creating a series of 
models that include independent variables and their inter-
actions with the most empirical support. Then, we selected 
minimum models based on the Akaike information criteria 
with a correction for small sample size (AICc) calculated 
using package MuMIn (Bartoń 2020). Animal identity (ID) 
was included as a random factor in both analyses to con-
trol for repeated measurements of individuals. Type of cage 
and nesting material were retained as fixed factors in final 
model of the first analysis, and the effect of housing in pairs 
remained in final model of the second analysis. Therefore, 
the final model analysing effect of housing conditions on mb 
dynamics in solitary hamsters included type of cage, nest-
ing material, photoperiod, acclimation period, and sex as 
fixed factors and all possible interactions between type of 
cage, acclimation period and photoperiod. The final model 
describing the effect of pair housing included housing in 
pairs, photoperiod, acclimation period, and sex as fixed fac-
tors and the interaction: photoperiod × acclimation period.

Basal metabolic rate

We analysed BMR in a similar way as mb. We did two 
separate analyses of BMR using LMM (lme4 (Bates et al. 
2015)). In the first analysis we tested the effect of housing 
conditions, photoperiod, and acclimation period on BMR of 
single-housed hamsters. The second analysis of BMR tested 
the effect of pair-housing on BMR. In both analyses hamster 
ID was included as a random factor. Body mass was included 
and kept as covariate in all tested models. Changes in meta-
bolic rate were analyzed with mb as a covariate because this 
approach allows discriminating between mass-dependent 
and mass-independent differences in metabolic rate between 
groups (Packard and Boardman 1988; Tschöp et al. 2012; 
Fernández-Verdejo et al. 2019; Müller et al. 2021). Type of 
cage and nesting material were retained as fixed factors in 
final model of the first analysis, and the effect of housing in 



517Journal of Comparative Physiology B (2022) 192:513–526 

1 3

pairs was retained in final model of the second analysis. Next 
to body mass, the final model of the first analysis included 
type of cage, nesting material, photoperiod, acclimation 
period, and sex as fixed factors and the interactions of pho-
toperiod × acclimation period, and acclimation period × type 
of cage. The final model of the second analysis included 
housing in pairs, photoperiod, acclimation period, and sex 
as fixed factors and mb as covariate. The results of the type 
III analysis of variance are given in Tables 2 and 3.

Wheel running activity

We tested the effect of nesting material, photoperiod, 
acclimation, and phase of day on percentage of time spent 
in activity (%) and absolute time (hours) spent in activ-
ity in solitary hamsters using LMM (LMM4 (Bates et al. 
2015)). We analysed data from daytime and nighttime sep-
arately as data points for activity in these periods did not 
overlap and the analysis for the entire range did not meet 
the assumptions of linear modelling. In all analyses animal 
ID was included as random factor. Since we asked about 

the effect of nesting material on activity, it was retained 
as fixed factor in all models.

The final model for the percentage of time spent in 
activity during daytime included nesting material and 
photoperiod as fixed factors, while the final model for 
absolute time of daytime activity included only nesting 
material as fixed factor. Other fixed factors were excluded 
from analyses because they did not affect wheel running 
activity and decreased model fit. The final model for rela-
tive nighttime activity as the percentage of time included 
nesting material, photoperiod, acclimation period, and sex 
as fixed factors, and the interaction of photoperiod and 
acclimation period. The final model for absolute nighttime 
activity included the same factors except for sex.

The correlation between activity and BMR was ana-
lysed using package stats (R Core 2020) in R v. 4.03. 
We used Kendall rank correlation coefficient (Kendall's 
tau) because activity data was not normally distributed. 
Because whole animal BMR increased with body mass, we 
used residuals from the relationship between mb and BMR 
and analysed their correlation with time spent in activity 
(%), and with absolute time (hours) spent in activity both 
at night and during the day. All results are presented as 
estimated marginal means ± SE and were compared pair-
wise using Tukey’s HSD test adjusted for multiple com-
parisons (Lenth 2020). All estimated marginal means from 
models describing variability of BMR were adjusted for 
the variation in mb. Statistical significance was accepted 
at α ≤ 0.050.

Table 2  Results of the type III analysis of variance calculated for 
body mass (mb) and basal metabolic rate (BMR) of single-housed 
hamsters showing the effects of housing conditions (standard cage 
or larger cage with a running wheel), nesting material (present or 
absent), photoperiod (long or short days) and acclimation period (ini-
tial acclimation in standard cages, acclimation to experimental cages 
at 20 °C, and then at 7 °C)

Statistical significance was accepted at α ≤ 0.050

Single-housed animals

Trait Factors F(df) P value

mb Type of cage 23.280 (1, 50)  < 0.001
Nesting material 0.033 (1,50) 0.856
Photoperiod 317.012 (1, 260)  < 0.001
Acclimation period 9.232 (2, 260)  < 0.001
Sex 20.580 (1, 50)  < 0.001
Photoperiod × acclimation period 56.067 (2, 260)  < 0.001
Type of cage × photoperiod 15.959 (1, 260)  < 0.001
Type of cage × acclimation 

period
14.434 (2, 260)  < 0.001

Photoperiod × acclimation 
period × type of cage

11.269 (2, 260)  < 0.001

BMR mb 528.923 (1, 183)  < 0.001
Type of cage 28.173 (1, 60)  < 0.001
Nesting material 1.120 (1, 49) 0.278
Photoperiod 76.932 (1, 311)  < 0.001
Acclimation period 164.661 (2, 266)  < 0.001
Sex 6.582 (1, 59) 0.013
Photoperiod × acclimation period 14.901 (2, 280)  < 0.001
Type of cage × acclimation 

period
18.547 (2, 268)  < 0.001

Table 3  Results of the type III analysis of variance calculated for 
body mass (mb) and basal metabolic rate (BMR) of single vs. paired-
housed hamsters showing the effects of housing in pairs (pair-housed 
individuals or solitary animals housed in standard cages with nesting 
material), photoperiod (long or short days) and acclimation period 
(initial acclimation in standard cages, acclimation to experimental 
cages at 20 °C, and then at 7 °C)

Statistical significance was accepted at α ≤ 0.050

Paired-housed animals

Trait Factors F(df) P value

mb Housing in pairs 0.042 (1, 25) 0.839
Photoperiod 225.629 (1, 135)  < 0.001
Acclimation period 1.901 (2, 135) 0.152
Sex 37.784 (1, 25)  < 0.001
Photoperiod × acclima-

tion period
18.651 (2, 135)  < 0.001

BMR mb 284.327 (1, 121)  < 0.001
Housing in pairs 0.276 (1, 24) 0.604
Photoperiod 17.415 (1, 161)  < 0.001
Acclimation period 40.467 (2, 137)  < 0.001
Sex 5.054 (1, 40) 0.030
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Results

Body mass

Changes in mb varied with type of cage, photoperiod, 
and acclimation (LMM: photoperiod × acclimation 
period × type of cage; F(1, 260) = 11.269, P < 0.001; 
Fig. 2). At the beginning of the experiment (initial accli-
mation in short days), mb of hamsters with access to a run-
ning wheel (25.6 ± 0.96 g) and without (24.4 ± 0.92 g) did 
not differ (Tukey’s HSD P = 0.386). Later, hamsters with 
access to a running wheel increased mb in short photoper-
iod to 34.5 ± 0.96 g at 20 °C (Tukey’s HSD P < 0.001) and 
then maintained it stable at 7 °C (35.4 ± 0.96 g; Tukey’s 
HSD P = 0.562). Hamsters housed in standard cages did 
not change mb significantly during acclimation to 20 °C 
(24.8 ± 0.92 g; Tukey’s HSD P = 0.926) but increased 
it at 7 °C (27.0 ± 0.92 g; Tukey’s HSD P = 0.042). As a 
result, hamsters with access to running wheels were heav-
ier than hamsters housed in standard cages at the end of 
the short-day exposure (35.4 ± 0.96 g vs. 27.03 ± 0.92 g; 
Tukey’s HSD P < 0.001). During initial acclimation to 
long days these two groups still differed (38.2 ± 0.96 g 
vs. 35.3 ± 0.92 g; Tukey’s HSD P = 0.027). Then, after 
4 weeks of acclimation to different housing conditions 
under long days and Ta = 20 °C animals did not change 
mb and individuals with access to running wheels were 
still heavier than individuals housed in standard cages 
(37.5 ± 0.96 g and 34.6 ± 0.92 g, respectively; Tukey’s 
HSD P = 0.031). During acclimation to 7 °C under long 
photoperiod, all hamsters lost mb, but hamsters with access 
to wheels lost less mb and at the end of experiment were 
heavier (35.4 ± 0.96 g) than animals without access to a 
wheel (31.0 ± 0.92 g; Tukey’s HSD P = 0.001). Also males 
were heavier than females (LMM: F(1, 50) = 20.580, 
P < 0.001). We did not record any significant effect of 
nesting material on hamster mb (LMM: F(1, 50) = 0.033, 
P = 0.856).

Single-housed and pair-housed hamsters did not differ 
in mb (LMM: F(1, 25) = 0.042, P = 0.839), either under 
short days (25.9 ± 0.94 g and 25.6 ± 0.94 g, respectively), 
or under long days (29.7 ± 0.90  g and 29.4 ± 0.90  g, 
respectively).

Basal metabolic rate

Basal metabolic rate increased with mb (LMM: F(1, 
183) = 528.923, P < 0.001). Overall, after controlling for 
mb hamsters had higher BMR under long (0.286 ± 0.002 W) 
than short photoperiod (0.261 ± 0.002  W; LMM: F(1, 
312) = 76.932, P < 0.001; Fig. 3) and females had higher 

BMR (0.277 ± 0.002 W) than males (0.270 ± 0.002 W; 
LMM: F(1, 59) = 6.582, P = 0.013). Under both photo-
periods, BMR increased throughout acclimation periods 
(LMM: F(2, 266) = 164.661, P < 0.001), but an increase 
in short days was higher (from 0.226 W to 0.294 W) than 
in long days (from 0.271 W to 0.306 ± 0.003 W; LMM: 
photoperiod × acclimation period; F(1, 280) = 14.901, 
P < 0.001).

When controlled for mb, BMR of hamsters with access 
to running wheels was higher than BMR of individu-
als maintained in standard cages (0.281 ± 0.002 W and 
0.265 ± 0.002 W, respectively; LMM: F(1, 60) = 28.173, 
P < 0.001; Fig. 3), and this difference was affected by accli-
mation period (LMM: type of cage × acclimation period; 
F(1, 268) = 18.547, P < 0.001). During the initial acclimation 

Fig. 2  Upper panel: Changes in body mass (mean ± SE, g) over time 
in Siberian hamsters housed in cages with a running wheel (W), with 
a running wheel and nesting material (WN), in small barren cages 
(S), and in small cages with nesting material (SN). Lower panel: 
Changes in body mass (mean ± SE, g) over time in Siberian hamsters 
housed in small cages in pairs (P) and in small cages with nesting 
material (SN). Top bars indicate winter, short photoperiod (SP), and 
summer, long photoperiod (LP). Ambient temperature (Ta) was set to 
20 ± 2 °C except for the periods marked with grey vertical bars, when 
Ta = 7 ± 2 °C. Arrows indicate basal metabolic rate (BMR 1–6) meas-
urements
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(both in short and in long days), when all individuals were 
housed under the same conditions, hamsters did not differ in 
BMR (Tukey’s HSD P = 0.373). Then, hamsters with access 
to running wheels had higher BMR than individuals main-
tained in standard cages, both at 20 °C (0.287 ± 0.003 W 
and 0.257 ± 0.003 W, respectively; Tukey’s HSD P < 0.001) 
and after acclimation to 7  °C (0.311 ± 0.003  W and 
0.289 ± 0.003 W, respectively; Tukey’s HSD P < 0.001). 
Irrespective of the day length animals that had access to 
running wheels increased BMR throughout consecutive 
acclimations (Tukey’s HSD P < 0.001), whereas hamsters 
maintained in standard cages increased their BMR only after 

acclimation to 7 °C (Tukey’s HSD P < 0.001), and did not 
change BMR between initial acclimation period and accli-
mation to 20 °C (Tukey’s HSD P = 0.231).

The availability of nesting material had no effect on ham-
ster BMR (LMM: F(1, 49) = 1.120, P = 0.278). Analysing 
the effect of housing in pairs, we found the same effect of 
photoperiod (LMM: F(1, 161) = 17.415, P < 0.001), accli-
mation (LMM: F(2, 137) = 40.467, P < 0.001), and body 
mass (LMM: F(1, 121) = 284.327, P < 0.001) as in the first 
analysis. Housing in pairs had no effect on BMR (LMM: 
F(1, 24) = 0.276, P = 0.604). After controlling for mb, BMR 
of single- and pair-housed individuals was 0.248 ± 0.003 W 
and 0.246 ± 0.003 W, respectively.

Wheel running activity

The percentage of time active in the running wheel during 
the day was higher in short (5.18 ± 0.43%) than in long days 
(2.98 ± 0.43%; LMM: F(1, 77) = 25.005, P < 0.001; Fig. 4). 
Availability of nesting material affected neither the percent-
age of time active during the light phase of the day (LMM: 
F(1, 24) = 0.011, P = 0.917) nor the absolute time (hours) 
spent active per day (LMM: F(1, 24) = 0.011, P = 0.917). The 
percentage of time active during the night was higher in long 
days (50.7 ± 2.13%) than in short days (33.9 ± 2.13%; LMM: 
F(1, 75) = 118.700, P < 0.001). In contrast, the absolute time 
active per night was higher in short (5.42 ± 0.24 h) than in 
long days (4.05 ± 0.24 h; F(1, 75) = 61.649, P < 0.001). Daily 
activity did not correlate with residual BMR when measured 
as the percentage of time (tau = − 0.060, P = 0.360) and as 
the absolute time spent in activity (tau = 0.027, P = 0.686).

The effect of acclimation temperature on nighttime wheel 
running activity in both percentage of time and as absolute 
time depended on photoperiod (LMM: photoperiod × accli-
mation period; F(1, 75) = 27.670, P < 0.001 and F(1, 
75) = 5.688, P = 0.020, respectively). The percentage of time 
active by night was highest after acclimation to long days 
at 20 °C (61.7 ± 2.39%), whereas it was similar after accli-
mation to long days at 7 °C, short days at 20 °C and 7 °C 
(39.7 ± 2.39%, 36.8 ± 2.39%, and 31.1 ± 2.39%, respectively). 
Therefore, the difference in nighttime running activity between 
short and long days was much larger at 20 °C than at 7 °C, 
and the difference between activity at 7 °C and 20 °C was 
higher in long than in short days. The absolute time active by 
night was highest after acclimation to short days and 20 °C 
(5.88 h ± 0.27 h), and lowest after acclimation to long days 
and 7 °C (3.17 ± 0.27 h), whereas after acclimation to short 
days and 7 °C (4.96 ± 0.27 h) it was similar to activity under 
long photoperiod and 20 °C (4.93 ± 0.27). Therefore, the dif-
ferences between short and long days were more pronounced 
at 7 °C than at 20 °C, and the difference between 7 °C and 
20 °C was higher under long than under short photoperiod 
(Fig. 4). Activity during the night was not correlated with 

Fig. 3  Upper panel: Basal metabolic rate (mean ± SE, W) was meas-
ured during initial acclimation to short photoperiod (SP-pre), after 
4 weeks under SP and Ta = 20 ± 2 °C (SP-20 °C), after 4 weeks under 
SP and Ta = 7 ± 2 °C (SP-7 °C), after initial acclimation to long pho-
toperiod (LP-pre), after 4  weeks under LP and Ta = 20 ± 2  °C (LP-
20 °C), and after 4 weeks under LP and Ta = 7 ± 2 °C (LP-7 °C). Sibe-
rian hamsters were housed in cages with a running wheel (W), with a 
running wheel and nesting material (WN), in small barren cages (S), 
and in small cages with nesting material (SN). Stars indicate signifi-
cant difference (P < 0.001) in BMR caused by an access to running 
wheel (within the same time of BMR measurements). Lower panel: 
Basal metabolic rate (mean ± SE, W) of Siberian hamsters housed in 
small cages in pairs (P) and in small cages with nesting material (SN)
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residual BMR, either when measured as the percentage of 
time (tau = 0.057, P = 0.390) nor as the absolute time spent in 
activity (tau = − 0.107, P = 0.107).

Availability of nesting material affected neither percent-
age of time spent in activity during the night (LMM: F(1, 
23) = 0.735, P = 0.400) nor the absolute time spent active per 
night (LMM: F(1, 24) = 0.754, P = 0.394).

Discussion

Cage enrichment and group housing ensure animal wel-
fare. However, there is a concern that variability of items 
provided to the cage may translate to differences in animal 

physiology, which may bias experimental results, and ham-
per comparative analyses. We predicted that housing condi-
tions would affect seasonal changes of BMR of small rodent, 
what could be a source of error in studies involving inter- 
and intraspecific comparisons. We found that Siberian ham-
sters housed in cages with running wheels had higher whole 
animal BMR and higher mb than animals housed in standard 
cages independent of photoperiod and Ta. Conversely, nest-
ing material allowing building the nests, as well as housing 
in pairs, did not affect BMR and mb. These results indicate 
that running wheels should be used with care particularly 
for studies involving comparisons of physiological traits like 
metabolic rate.

Effects of running wheel activity

Hamsters housed in cages with running wheels had higher 
whole animal BMR than hamsters housed without wheels, 
and this difference was not explained by changes in mb, pho-
toperiod or Ta. Raichlen et al. (2010) pointed out that vari-
ation in BMR is strongly correlated with variation in mus-
cle mass. This explanation seems plausible because there 
were no metabolic differences between groups during initial 
acclimation to winter and summer photoperiod (BMR1 and 
BMR4) when all hamsters were in standard cages without 
running wheels (Fig. 3). It seems that seasonal changes 
in heat loss did not contribute to differences in BMR. In 
Siberian hamsters the layer of subcutaneous fat decreases 
in winter (Wade and Bartness 1984), but fur density and its 
depth increase (Heldmaier et al. 1981a; Paul et al. 2007). It 
results in constant thermal conductance throughout a year 
(Heldmaier et al. 1981a; Boratyński et al. 2016). Hamsters 
had higher BMR at cold than at laboratory temperature and 
also higher during summer than during winter (Fig. 3), but 
these differences were independent of seasonal changes in 
mb. Our results contradict previous findings that seasonal 
changes of mass-specific (Heldmaier et al. 1990; Heldmaier 
and Steinlechner 1981a) but also whole animal BMR are 
mainly the result of mb changes (Heldmaier 1989; Love-
grove 2005; Boratyński et al. 2016). Although BMR is typi-
cally negatively related to mean Ta in the environment and 
positively correlated with mb (Lovegrove 2003; Rezende 
et al. 2004; Raichlen et al. 2010; White and Kearney 2013; 
Naya et al. 2018), there is also a considerable intraspecific 
variation in BMR (Genoud et al. 2018). In Siberian ham-
sters seasonal changes in BMR may depend on the litter 
in which hamsters were born or on the degree of seasonal 
changes in the phenotype (mb, fur properties, reproductive 
status, daily torpor; Przybylska-Piech et al. 2021; but see 
Przybylska et al. 2019a). Variability of seasonal changes 
in BMR observed in hamsters originating from the same 
breeding colony (Boratyński et al. 2016; Przybylska et al. 

Fig. 4  Day (white bars) and night (grey bars) activity of Siberian 
hamsters at 20 and 7  °C, under short (SP) and long (LP) photoper-
iods. Data are presented as the percent of time that hamsters spent 
active (upper panel) and as total hours of activity (bottom panel). 
Data for hamsters housed in running wheel cages with and without 
nesting material were pooled as there were no differences between 
them. Horizontal lines within boxes indicate medians, boxes cover the 
25th to 75th percentiles, whiskers indicate the 10th and 90th percen-
tiles, and dots indicate outliers. Statistical significant differences are 
provided in the Results section
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2019a, 2021) but housed under different conditions, high-
lights the importance of considering and controlling for the 
cage enrichment and housing conditions during comparative 
analyses.

One limiting factor to the interpretation of our results 
is ~ 45% larger floor surface areas in cages with running 
wheels in comparison to standard cages (528 vs. 363  cm2). 
Individuals in smaller cages might have experienced slightly 
higher Ta (Kuhnen 1999), and individuals with access to 
wheels might have defended slightly lower Tb than in small 
barren cages without wheels (Kuhnen 1997, 1999). There-
fore, individuals housed in small cages could have lower 
daily energy expenditure than those in large cages (Steyer-
mark and Mueller 2002). However, although the floor sur-
face area differed between cages, this difference was mark-
edly reduced due to the presence of the wheel. Moreover, in 
our previous experiments the disparity between cage sizes 
was more pronounced (~ 0.5 L vs. ~ 17.5 L) and we did not 
record any differences in BMR, evaporative heat loss, or 
thermal conductance related to housing conditions, under 
long or short photoperiod (unpublished data). It supports 
the conclusion that differences in BMR between individuals 
housed in cages with wheels and without result from volun-
tary wheel-running activity.

At moderate temperature (20 °C) hamsters were active 
for ~ 40% and ~ 60% of the night under short and long pho-
toperiods, respectively. In the cold, long-day hamsters 
decreased their activity from 60 to 40% of the night, whereas 
under short photoperiod, nighttime activity was only 8% 
lower in the cold than at moderate temperature (Fig. 4). This 
is consistent with previous studies showing that Ta modi-
fies activity patterns (Tokura and Oishii 1985; Lee et al. 
1990; Thomas et al. 1993). Siberian hamsters acclimated 
to a L12:D12 cycle and kept at 25 °C during the day and 
10 °C at night, were more active, and began nighttime activ-
ity earlier than animals kept constantly at 25 °C (Tokura 
and Oishii 1985). Similarly, in ground squirrels (Lee et al. 
1990) and mice (Vaanholt et al. 2007) wheel running activ-
ity decreased with ambient temperature, suggesting that the 
heat generated by running did not compensate heat loss in 
the cold. Conversely, spontaneous cage activity in mice, but 
not rats, increased during the resting phase of the day when 
Ta decreased, probably to generate additional heat (Swoap 
et al. 2004). Three hypotheses offer explanation for the link 
between heat derived from activity and heat necessary for 
thermoregulation. Addition hypothesis proposes that heat 
generated during exercise may be added to the thermogen-
esis during rest, substitution hypothesis suggests that heat 
from exercise may replace heat required for thermoregula-
tion, and partial substitution hypothesis merges the above 
two, suggesting that first one is valid in warm temperatures 
while second one in the cold (Wunder 1970; Chappell et al. 
2004; Vannholt et al. 2007). Wunder (1970) suggested that 

heat produced by forced high-speed running partially sub-
stituted for cold-induced thermogenesis while at low speed 
these two sources of heat were additive because of increased 
thermal conductance caused by increased peripheral blood 
flow and convection. We did not measure hamsters’ running 
speed but it seems that disrupted pelage insulation was not 
a case.

One could expect that BMR should correlate with activity 
and could be explained by either performance or allocation 
models (Careau et al. 2008). According to the performance 
model increased activity leads to increase in BMR to sup-
port higher daily energy expenditure. Conversely, accord-
ing to the allocation model, energy spent on BMR limits 
the amount of energy available for proactive behaviors (or 
activity limits energy available for BMR). Both models 
are supported by experimental results (Careau et al. 2008; 
Bouwhuis et al. 2014; Gębczyński and Konarzewski 2009). 
However, we found no correlation between BMR and vol-
untary activity in the running wheel. Similarly, our previous 
study on Siberian hamsters showed no correlation between 
different behavioural traits (including activity in open field) 
and BMR (Przybylska et al. 2019a). These findings sup-
port the independent model, which assumes that BMR is 
independent of activity (Careau and Garland 2012). Since 
skeletal muscles used during activity do not contribute to 
BMR measured in resting animals (Barceló et al. 2017), we 
should rather expect an increase in total energy expenditure 
than increase in BMR. Also Kane et al. (2008) found no 
correlation between voluntary activity and BMR in mice 
selected for high wheel-running activity. Their BMR also 
did not differ from BMR of control animals (Kane et al. 
2008). However, wheel-running activity prevented an age-
related decline in BMR in rats (Ichikawa et al. 2000) or 
increased RMR (measured at 20–22 °C) in older animals 
(Goodrick 1980).

Hamsters with access to running wheels increased their 
mb despite short days. When Ta decreased to 7  °C, mb 
increase was impeded and it was maintained constant, likely 
reflecting costs of thermoregulation in cold (Fig. 2). Previ-
ous data showed that exercising Siberian hamsters had lower 
fat content in summer than sedentary animals suggesting 
that voluntary activity prevents seasonal changes (summer 
increase) in adiposity (Scherbarth et al. 2007). However, the 
pattern of changes in mb due to exercise is not uniform and 
may be related to seasonality. Mice and rats housed with 
running wheels decrease their mb (Goodrick 1980; Lambert 
and Noakes 1990; Swallow et al. 1998). In exercising male 
golden hamsters (Mesocricetus auratus) lean and fat mass 
increased but it did not change when expressed in relation 
to mb (Gattermann et al. 2004). In contrast, fat content in 
females was reduced (Borer et al. 1983). An increase in mb 
in exercising short day Siberian hamsters was independ-
ent of photoperiodically controlled hypothalamic gene 
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expression involved in seasonal mb regulation (Petri et al. 
2014). It highlights the complexity of pathways underlying 
seasonal response. It was previously shown that access to 
running wheels advanced testicular recrudescence (Scher-
barth et al. 2007) and inhibited torpor in Siberian hamsters 
while seasonal moulting was unaffected (Thomas et al.1993; 
Scherbarth et al. 2007, 2008). Access to running wheels also 
inhibited testicular regression in response to short days in 
Syrian hamsters, Mesocricetus auratus (Gibbs and Pet-
terborg 1986). Similarly, golden mantled ground squirrels 
(Citellus = Callospermophilus lateralis) did not enter or 
delayed entry into hibernation when provided with a running 
wheel (Pengelley and Fisher 1966). Taken together, present 
results as well as results of earlier studies clearly call for 
caution while providing cage enrichment, which may lead 
to increase in locomotor activity and following aftereffects.

Effects of nesting material

Availability of nesting material did not affect BMR, which 
was unexpected as nests can significantly modify thermal 
environment, and temperatures in the center of the nest may 
be > 10 °C higher than the surrounding air (Gaskill et al. 
2013). Nest building behaviour and nest size were increased 
in short days and low Ta (Puchalski et al. 1988; Przybylska 
et al. 2019b). In brown lemmings (Lemmus trimucronatus), 
a nest provided 46% reduction in thermal conductance, 
which resulted in 43% lower resting metabolic rate at Ta = 
− 16 °C comparing to lemmings without the nests (Casey 
1981). However, study on BMR and nest building in seven 
muroid species showed no correlation between presence of 
a nest and metabolic rate (MR) and suggested that species 
with high MR depend on nests to a lesser extent than species 
with lower MR (Hartung and Dewsbury 1979). Even if the 
nest allowed for decrease in metabolic rate while in the nest, 
it did not translate to changes in BMR.

The lack of differences in BMR between hamsters housed 
with and without nesting material can be interpreted in three 
non-mutually exclusive ways: (1) a barren cage does not 
induce thermal stress in hamsters kept in cold, (2) hamsters 
with nests have lower metabolic rate only when they are in 
a cage while BMR does not differ, or (3) amount of nest-
ing material does not strongly affect physiology and thus 
should not confound experimental results. Van de Weerd 
et al. (1997) showed that nest-building material provided 
to mice (3 per cage) did not affect behavioural or physi-
ological parameters indicative of stress. Furthermore, Bailoo 
et al. (2018) found that behavioural traits were more sen-
sitive to the environmental conditions than physiological 
ones and that there was no uniform pattern of the effects 
of cage enrichment on animal physiology. Thus, since the 

environmental enrichment of extra nesting material improves 
animal welfare, we suggest it can be used for studies com-
paring physiological traits like metabolism without concern.

Effects of housing in pairs

Siberian hamster is rather solitary than social (Wynne-
Edwards 2003) but can be housed in the groups of the 
same-sex littermates (Jefimow et al. 2011). In such groups 
winter decrease in mb is shallower than in solitary ani-
mals, what suggests reduced energy expenditure (Jefimow 
et al. 2011). In social animals group housing may reduce 
energy expenditure by reduction in surface-to-volume 
ratio (Contreras 1984), with the highest energy savings 
reported for groups of up to five individuals at tempera-
tures below thermoneutrality (Contreras 1984; Canals 
et al. 1989, 1997, 1998; Gilbert et al. 2010; Canals and 
Bozinovic 2011). Although pair-housed hamsters were 
always seen sleeping in close contact, our prediction that 
the presence of littermates would alleviate cold stress and 
that pair-housed animals would have lower BMR than ani-
mals housed singly was not supported. Single and pair-
housed hamsters also did not differ in mb. Nuñez-Villegas 
and co-workers (2014) reported that housing in groups 
decreases BMR in the common degu, Octodon degus. 
Cold-acclimated (Ta = 15 °C) animals housed in group of 
three had lower BMR by 15% than animals housed alone. 
Increasing the group number from three to five resulted 
in further reduction in BMR by ~ 40%. A reduction in 
BMR, although smaller (~ 7%), was also recorded in ani-
mals acclimated to warm temperatures (30 °C), housed in 
groups of 3 or 5 individuals (Nuñez-Villegas et al. 2014). 
Moreover mice kept in groups had less brown adipose tis-
sue (BAT) than mice kept individually, suggesting that 
social thermoregulation may substitute non-shivering ther-
mogenesis (Heldmaier 1975a). Our results concur with 
results of Contreras (1984), who reported that huddling in 
the nest did not affect the metabolic rate of individual lab-
oratory mice and Mongolian gerbils (Meriones unguicula-
tus). It is possible that hamsters housed in pairs benefited 
from huddling when in cage, but larger group would be 
necessary to trigger changes in BMR. Two huddling mice 
(Mus musculus) at 12.5 °C reduce their oxygen consump-
tion by ~ 18%, while 3 to 6 individuals huddling together 
increase energy savings to ~ 30% (Contreras 1984). As 
an efficiency of huddling depends on the morphological 
characteristics of the geometric bodies (Canals 1989) and 
a reduction in metabolic rate results from a reduction in 
the surface-to-volume ratio, three dimensional huddles 
may provide larger energy benefits than linear huddles 
of several or two individuals (McKechnie and Lovegrove 
2001; Calf et al. 2002). Thus, it is possible that huddling 
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leads to energy savings when animals are in a huddle, but 
does not lead to long-term changes in the metabolism of 
individual animal. Although housing in groups or pairs 
provides social contact, introducing new animal into cage 
must be done carefully. Especially in species with clear 
social hierarchy or in solitary ones. O’Connor and Eikel-
boom (2000) reported that rats, which were housed singly 
and then were moved to paired housing showed stress-
induced decrease in feeding. Yet, after few days rats can 
benefit from group housing thanks to social contact or 
thermoregulation. Group housing, although recommended 
for animal welfare, may elicit aggressive behaviour. Preva-
lence of aggression-related injuries in male mice housed in 
groups is strain–specific and was estimated at ~ 1.5% (Lid-
ster et al. 2019). However, aggressive bahaviours may be 
reduced by cage enrichment (Ambrose and Morton 2010; 
Giles et al. 2018). Van Loo et al. (2002) found that male 
mice housed in groups of three were less aggressive when 
nesting material was provided to the cage, while the effect 
of providing wire shelf (the Utrecht Shelter) was opposite. 
These data indicate that depending on the species, strain, 
or even ambient temperature, cage enrichment may not 
fulfill its expected role.

Conclusion

It seems that there is no simple, general answer to the 
question of how cage enrichment affects animal behav-
iour and physiology. As concluded by Van de Weerd et al. 
(2002), it largely depends on the parameter measured in 
experimental studies. To avoid inconsistencies among 
experimental results that could arise from different hous-
ing conditions, Sztainberg and Chen (2010) proposed 
standard cage enrichment for mice. They combined dif-
ferent items, like tubes, wheels, and nest boxes, to cover 
all animal needs: social, sensory, cognitive, and motor. 
An enriched environment is known to reduce anxiety in 
laboratory mice (Ambrose and Morton 2010; Giles et al. 
2018), but the same standard items should be applied to 
other species with caution. Undoubtedly, cage enrichment 
enhances animal welfare. However, we found that access 
to a running wheel increased BMR independent of body 
mass, photoperiod, and ambient temperature. Thus, we 
suggest not providing running wheels in studies focused 
on energetics or thermoregulation, especially in animals 
with distinct seasonal phenotypes.
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