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Abstract: Nuclear receptor REV-ERBβ is an overexpressed oncoprotein that has been used as a target
for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables
the REV-ERBβ to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer,
or a fluorescence imaging agent. The replacement of iron with cobalt as the metal center of proto-
porphyrin IX changes the ligand from an agonist to an antagonist of REV-ERBβ. The mechanism
behind that phenomenon is still unclear, despite the availability of crystal structures of REV-ERBβ
in complex with Heme and cobalt protoporphyrin IX (CoPP). This study used molecular dynamic
simulations to compare the effects of REV-ERBβ binding to Heme and CoPP, respectively. The initial
poses of Heme and CoPP in complex with agonist and antagonist forms of REV-ERBβ were predicted
using molecular docking. The binding energies of each ligand were calculated using the MM/PBSA
method. The computed binding affinity of Heme to REV-ERBβ was stronger than that of CoPP,
in agreement with experimental results. CoPP altered the conformation of the ligand-binding site
of REV-ERBβ, disrupting the binding site for nuclear receptor corepressor, which is required for
REV-ERBβ to regulate the transcription of downstream target genes. Those results suggest that a
subtle change in the metal center of porphyrin can change the behavior of porphyrin in cancer cell
signaling. Therefore, modification of porphyrin-based agents for cancer therapy should be conducted
carefully to avoid triggering unfavorable effects.

Keywords: breast cancer; REV-ERBβ; porphyrin; nuclear receptor corepressor (NCoR); molecular
dynamics (MD) simulation; porphyrin

1. Introduction

Porphyrin-based agents can be an alternative choice for cancer therapy because they
have selective cytotoxicity against tumor cells [1]. Porphyrins are a family of organic ring
molecules including Heme (Iron protoporphyrin IX), the pigment in red blood cells, an
essential molecule for living aerobic organisms, plays a major role in gas exchange, mito-
chondrial energy production, antioxidant defense, signal transduction, and they represent
one of the oldest and most widely studied chemical structures in nature and in biomedi-
cal applications [2–4]. Moreover, Heme is also contained in the superfamily of enzymes
Cytochromes P450 (CYPs) which plays a role in supporting oxidative, peroxidative, and re-
ductive metabolism of endogenous and xenobiotic substrates [5,6]. P450s are endoplasmic
reticulum (ER)-anchored hemoproteins which responsible for the metabolism of numer-
ous endogenous and foreign compounds. As the prosthetic moiety of all P450s, Heme is
responsible for the remarkable and often exquisite, catalytic prowess of these enzymes [7].
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The optimal dose of a porphyrin-based agent is lethal to tumor cells while minimizing
damage to adjacent normal tissue [8]. Therefore, multi-modal porphyrin-based agents have
great potential for use in cancer imaging and therapy [9]. Porphyrins have been particularly
useful in photodynamic therapy and fluorescence imaging of cancer because of their
tumor avidity and favorable photophysical properties, such as long wavelength absorption
and emission, easy derivatization, high singlet oxygen quantum yield, and low in vivo
toxicity [10,11]. In addition, porphyrins are excellent metal chelators that form highly
stable metallocomplexes, making them efficient delivery vehicles for radioisotopes [12].
Several studies have investigated the characteristics of various porphyrin-based probes
and their clinical applications in cancer imaging and therapy [10]. Porphyrin-based agents
can increase the signal-to-background ratio in tumor imaging, allowing better detection of
tumor tissues and better preservation of healthy tissues during therapy [13].

The binding of the porphyrin Heme to the nuclear receptor REV-ERBβ leads to
decreased proliferation in various cancer cells [14]. REV-ERBβ, along with REV-ERBα, is a
member of the REV-ERB family of nuclear receptors. Although REV-ERBβ is structurally
and functionally similar to REV-ERBα, it has a unique role in the regulation of circadian
rhythms, which in turn affect a variety of diseases including cancer [15]. Moreover, REV-
ERBβ is overexpressed in breast cancer cells, accounting for more than 95% of the total
REV-ERB mRNA [15]. In addition, REV-ERBβ is dominantly expressed in several cancer
cell lines, whereas REV-ERBα is the dominant form in corresponding normal tissues [16].

The binding of Heme to REV-ERBβ (Figure 1a) induces recruitment of nuclear receptor
corepressors such as NCoR, which in turn regulate diverse pathways ranging from Heme
biosynthesis to circadian rhythms [17]. NCoR forms stable complexes with transcription
factors that are deregulated in various cancers [18]. Synthetic agonists have been developed
that mimic the ability of Heme to induce NCoR recruitment and corepressor-peptide
binding to REV-ERBβ [19]. However, previous research could not predict the ability of
porphyrin-based REV-ERBβ antagonists to repress NCoR recruitment [20].

Besides Heme, there are other ligands that bind REV-ERBβ, including cobalt proto-
porphyrin IX (CoPP) and zinc protoporphyrin IX (ZnPP). The only difference between
Heme and CoPP and ZnPP is in the coordinated metal ions. CoPP and ZnPP are functional
antagonists of REV-ERBβ, whereas Heme is the natural agonist of REV-ERBβ. CoPP and
ZnPP block the transcriptional repressive functions of REV-ERBβ by preventing its binding
to protoporphyrin IX [21]. The iron metal center of Heme has a good affinity for Histidine
(His) and Cysteine (Cys) residues on REV-ERBβ. Cobalt has a lower affinity than iron, but
it can still interact with and regulate the properties of REV-ERBβ [22]. Therefore, Heme and
CoPP can be used as reference structures for the development of selective porphyrin-based
agents for cancer therapy and imaging.

Figure 1a shows that the addition of small molecules to the REV-ERBβ induces enlarge-
ment of the ligand-binding domain (purple box) which may affect the recruitment of NCoR
(red color). However, the REV-ERBβ-Heme and REV-ERBβ-CoPP have similar crystal
structure (Figure 1b) but show different biological activity. To develop new porphyrin-
based agents for early cancer detection, a preliminary study is needed to compare the
molecular dynamics of Heme and CoPP binding to REV-ERBβ. In particular, it is important
to determine how iron or cobalt in the center of protoporphyrin IX affects the porphyrin
ring conformation, which might determine whether protoporphyrin IX acts as an agonist
or an antagonist of REV-ERBβ.
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Figure 1. (a) Overlay visualization of apo-structure REV-ERBβ (yellow) with bound NCoR (red) 
and REV-ERBβ in complex form with Heme (green). (b) Visualization of REV-ERBβ in complex 
form with Heme (green) and with CoPP (purple). 

2. Results 
2.1. Initial Pose of the Ligand–Protein Complex 

Heme and CoPP were docked into two different of REV-ERBβ crystal structures: An-
tagonist-REV-ERBβ and Agonist-REV-ERBβ. Antagonist-REV-ERBβ (PDB ID: 4N73) is a 
crystalline structure of REV-ERBβ that forms a complex with CoPP, whereas Agonist-
REV-ERBβ (PDB ID: 3CQV) forms a complex with Heme. Molecular docking was per-
formed to investigate the binding modes and affinities of protoporphyrin IX within the 
binding pocket of REV-ERBβ. Both crystal structures of REV-ERBβ are shown in Figure 2.  
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Figure 2. (a) The crystal structure of the REV-ERBβ that forms a complex with iron protoporphy-
rin IX (Agonist-REV-ERBβ). (b) The crystal structure of REV-ERBβ that forms a complex with co-
balt protoporphyrin IX (Antagonist-REV-ERBβ). 

The overlay poses of the ligand structure during re-docking process and docking 
simulation are provided in Figure 3. Heme had the greatest negative binding energy in 

Figure 1. (a) Overlay visualization of apo-structure REV-ERBβ (yellow) with bound NCoR (red) and
REV-ERBβ in complex form with Heme (green). (b) Visualization of REV-ERBβ in complex form
with Heme (green) and with CoPP (purple).

2. Results
2.1. Initial Pose of the Ligand–Protein Complex

Heme and CoPP were docked into two different of REV-ERBβ crystal structures:
Antagonist-REV-ERBβ and Agonist-REV-ERBβ. Antagonist-REV-ERBβ (PDB ID: 4N73) is a
crystalline structure of REV-ERBβ that forms a complex with CoPP, whereas Agonist-REV-
ERBβ (PDB ID: 3CQV) forms a complex with Heme. Molecular docking was performed
to investigate the binding modes and affinities of protoporphyrin IX within the binding
pocket of REV-ERBβ. Both crystal structures of REV-ERBβ are shown in Figure 2.
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Figure 2. (a) The crystal structure of the REV-ERBβ that forms a complex with iron protoporphyrin
IX (Agonist-REV-ERBβ). (b) The crystal structure of REV-ERBβ that forms a complex with cobalt
protoporphyrin IX (Antagonist-REV-ERBβ).

The overlay poses of the ligand structure during re-docking process and docking
simulation are provided in Figure 3. Heme had the greatest negative binding energy in
both crystal structures of REV-ERBβ, with the binding energy values of −65.91 kJ/mol
(Antagonist-REV-ERBβ) and −71.10 kJ/mol (Agonist-REV-ERBβ; Table 1). Those results
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are in agreement with the results of previous isothermal titration calorimetry (ITC) stud-
ies that found that the binding of CoPP (KD = 2.56 µM) was weaker than that of Heme
(KD = 353 nM) [22]. The results reflect the atomic radius of each metal bound to the center
of protoporphyrin. Iron has an atomic radius of 0.126 nM, whereas cobalt has atomic
radius of 0.200 nM, indicating that the radius of the atom at the metal center plays a role in
determining the affinity of the porphyrin complex for REV-ERBβ.
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Figure 3. Overlay structures of Heme (a) and CoPP (b) in re-docking and docking simulation.

Table 1. The binding energy and RMSD value of CoPP and Heme in molecular docking.

Protoporphyrin Ligand Re-Docking Docking

Heme RMSD = 0.3078 Å
∆G (agonist) = −71.10 kJ/mol

RMSD = 0.3703 Å
∆G (antagonist) = −65.91 kJ/mol

CoPP RMSD = 0.3540 Å
∆G (antagonist) = −56.87 kJ/mol

RMSD = 0.7110 Å
∆G (agonist) = −56.95 kJ/mol

To investigate the interactions between both forms of protoporphyrin IX and the two
forms of REV-ERBβ, the binding modes of CoPP and Heme within the REV-ERBβ binding
pocket were observed further. In general, CoPP and Heme had the same interactions with
the amino acid residues of REV-ERBβ (i.e., Val383, Gly480, and Leu483); however, Heme
had additional interactions with Cys384 and His568 [21]. Visualization of the docking pose
with REV-ERBβ revealed an interaction differences in the bonding of the central metal
atom (Figure 4). Those differences correspond with the crystal structures in that they were
different in terms of the interactions with Cys384 and His568, which were coordinated by
the metal center of the protoporphyrin IX ring. That phenomenon is likely to be the main
source of the stronger binding affinity of Heme compared with that of CoPP. The effects of
interactions involving the central metal atom might determine the agonist and antagonist
functions of REV-ERBβ.
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Figure 4. Visualization of interactions occurring in the binding pocket of REV-ERBβ when docked
against Heme (green) and CoPP (red).

2.2. The Binding Free Energy of Agonist and Antagonist Ligands against REV-ERBβ
Ligand-Binding Domain (LBD)

The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method was
used to predict the binding free energy of the four protein-ligand complexes more accurately.
The binding free energies of the complexes were more accurate than those observed in
the docking study (Table 2). Furthermore, the energies that mostly contributed were
electrostatic and van der Waals interaction. Overall, all four complexes had good stability
in the molecular dynamic simulations.

Table 2. The free binding energies and their corresponding components for protoporphyrin IX
binding to REV-ERBβ.

Complex REV-ERBβ ∆Evdw
(kJ/mol)

∆Eele
(kJ/mol)

∆GPB
(kJ/mol)

∆GNP
(kJ/mol)

∆GBind
(kJ/mol)

Heme-Agonist-REV-ERBβ −309.61 −208.23 284.17 −28.72 −262.38
CoPP–Agonist-REV-ERBβ −283.36 −203.37 255.76 −27.33 −258.30

Heme–Antagonist-REV-ERBβ −300.41 −170.95 261.51 −27.24 −237.10
CoPP–Antagonist-REV-ERBβ −307.76 −162.81 257.03 −27.26 −240.79

Note: ∆Evdw = van der Waals contribution, ∆Eele = electrostatic contribution, ∆GPB = polar contribution of
desolvation, ∆GNP = non-polar contribution of desolvation.

The graph of the total energy of the system shows the beginning of changes in the
protein conformation (Figure 5a). The total energy increased from 25 ns to 30 ns during
formation of the Antagonist-REV-ERBβ complex, whereas it increased from 0 ns to 5 ns
during formation of the Agonist-REV-ERBβ complex (Figure 5b). These results show that
the antagonist ligand greatly influenced the conformational changes of the target protein.
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2.3. Structural Analysis from Molecular Dynamics Simulation

Molecular dynamics (MD) simulation was performed with the four complexes to gain
more structural, dynamical, and energetic information about the stability of Heme and
CoPP in the ligand-binding domain (LBD) of REV-ERBβ. Snapshots of the MD trajectories
of the four complexes were visualized to observe the time-dependent position of the ligand
and also to analyze the effect of the interaction on the structure of REV-ERBβ. Visualization
of the complexes during the MD simulations is shown in Figure 6. The poses of Heme
and CoPP in the binding site were generally not different from one another. The central
metal atom of protoporphyrin IX was stable and remained in the center of the ring until the
end of the simulation. Moreover, the protoporphyrin IX remained planar throughout the
simulation, indicating its function to deliver the metal atom to the protein target. That is in
agreement with the absorption spectral bands of Heme and CoPP, because a nonplanar
conformation resulting from repulsive interactions among the peripheral substituents
would induce dramatic redshifts of the electronic absorption spectral bands [23].
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Figure 6. Snapshot of the molecular dynamic simulation trajectories of CoPP and Heme against
Agonist-REV-ERBβ.

2.4. Dynamic Behavior of REV-ERBβ in the Antagonist Form

The root-mean-square deviation (RMSD) represents the stability of the molecular
structure throughout the simulation. MD simulations of the Heme and CoPP ligands
in complex with Antagonist-REV-ERBβ were conducted to observe the behavior of both
ligands. Figure 7a shows the RMSD of Antagonist-REV-ERBβ in the presence of Heme and
CoPP. The average RMSD values for Heme and CoPP were 3.49 Å and 2.95 Å, respectively.
The small difference between RMSD values of Heme and CoPP in the antagonist form of
the receptor was unable to explain the specific behavior of each ligand.
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2.5. Dynamic Behavior of REV-ERBβ in the Agonist Form

In the agonist form of the receptor, the stability of the Heme-complex was better than
that of the CoPP-complex, with average RMSD values of 4.89 Å and 6.09 Å, respectively.
The low RMSD value of the Heme-complex represents the natural dynamics of the crys-
tal structure, indicating the action of the Heme agonist on the receptor (Figure 7b). By
contrast, the antagonistic action of CoPP resulted in increases in the RMSD from 40 ns to
200 ns. Furthermore, CoPP, but not Heme, appeared to change the overall conformation of
Agonist-REV-ERBβ (Figure 8a,b). Thus, the results suggest that the antagonist ligand might
influence the function of the protein target in the agonist form by altering the conformation
of the target.
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Figure 8. (a) The changes in conformation of Agonist-REV-ERBβ (red) when forming a complex with
CoPP compared with the initial simulation pose (white). (b) The other conformation of Agonist-REV-
ERBβ (green) when forming a complex with Heme compared with the initial simulation pose (white).
(c) Graph of RMSD values of CoPP (red) and Heme (green) in the binding pocket of Agonist-REV-
ERBβduring molecular dynamics simulations. (d) CoPP and Heme conformations at the end of the
simulations.

The ligand-binding pocket of REV-ERBβ is composed of His381, Leu382, Val383,
Cys384, Phe443, Leu446, Phe450, Phe454, Gly478, Asp481, Leu482, Leu483, and Ser576.
The MD trajectory indicated that CoPP moved away from the binding pocket (Figure 8c),
whereas Heme did not (Figure 8d). The results also revealed that CoPP rotated about 90◦

by the end of the simulation.
The movement of CoPP enlarged the cavity of the REV-ERBβ ligand-binding pocket

(Figure 9a,b). POVME 3.0 was used to calculate the binding-pocket volume during the MD
simulation. Figure 9c shows that the binding-pocket volume of Heme was smaller than
that of CoPP, with average values of 566.29 A3 and 777.39 A3, respectively.
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dynamics simulations.

In the ligand-binding pocket, Cys384 and His568 play important roles in stabilizing
Heme through axial coordination with the iron atom. Therefore, a change of the metal atom
to cobalt might disrupt that interaction and lead to the expansion of the ligand-binding
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pocket. The average distance between cobalt and Cys384 (4.72 Å) was shorter than that
between iron and Cys384 (5.40 Å). By contrast, the distance between cobalt and His568
was 2.36 Å longer than that between iron and His568 (8.96 Å and 6.60 Å, respectively). The
interactions of CoPP and Heme with the two residues are visualized in Figure 10. In the
reported crystal structures, the distance was the same from Cys384 to the metal centers
of Heme and CoPP (2.34 Å), but the distances from His568 to the respective metal centers
differed by 0.14 Å [21]. Nevertheless, the disruption of the ligand-binding pocket still could
not explain the antagonistic effect of CoPP on REV-ERBβ.
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metal central atom of Heme (green) and CoPP (red) during molecular dynamic simulations.

The antagonistic effect of the CoPP ligand on REV-ERBβ is based on disruption of the
recruitment of transcriptional corepressors. Therefore, the effects of Heme and CoPP on
corepressor binding were examined further.

2.6. Recruitment of NCoR by Protoporphyrin IX

Protein-peptide docking was conducted to differentiate the NCoR binding to REV-
ERBβ in the presence of Heme and CoPP, respectively. The binding affinity of NCoR
was evaluated based on atomic contact energy (ACE) and MM/PBSA binding energy.
The NCoR structure was taken from a crystal structure with REV-ERBα (PDB ID: 3N00).
First, the method validation using the PATCH Dock was performed to determine several
parameters that will be used in the protein-peptide docking simulation. The validation
stage of this method is carried out using a re-docking approach. In this re-docking process,
the values of RMSD and the active site were observed as well as the possible binding
residues of the NCoR.

The RMSD value obtained from the re-docking results showed 1.3757 Å (Table 3).
Therefore, the parameters of the method validation results can be used at the protein-
peptide docking simulation. Table 4 shows that the Heme-complex interacting with
NCoR obtained a high PatchDock score with ACE score and binding energy value of
−74.60 kJ/mol and −13.33 kJ/mol, respectively. The CoPP-complex interacting with
NCoR produced lower binding energy than the Heme-complex, with ACE score and
binding energy value of 453.13 kJ/mol and 43.01 kJ/mol, respectively.
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Table 3. Results of the validation of the protein-peptide docking method.

Amino Acid Residue RMSD

Trp402, Val413, Lys439, Gly441, Leu482,
Leu483, Ser499, Ser513, Gln529, Thr552,

Arg562, His568, His578
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Table 4. Results of protein-peptide docking against nuclear receptor corepressor (NCoR).

Complex REV-ERBβ
Result

Score ACE (kJ/mol) ∆GBind (kJ/mol)

Crystal Structure Agonist-REV-ERBβ 11332 −1903.89 −400.43
Heme−Agonist-REV-ERBβ 9882 −74.60 −13.33
CoPP−Agonist-REV-ERBβ 10424 453.13 43.01

The ACE score is an atomic desolvation energy, which is defined as the energy of
replacing a protein-atom–water contact with a protein-atom–protein-atom contact [24].
MM/PBSA calculations were performed to evaluate the relative stability of each com-
plex resulting from protein-peptide docking. The results of protein-peptide docking and
MM/PBSA showed that the Heme-complex had a better ability to recruit NCoR than
the CoPP-complex. That phenomenon appears to be a unique feature of Heme, as syn-
thetic agonists that induce NCoR recruitment in a cellular context cause an increase in
corepressor-peptide binding [21].

The interaction between the Heme-complex and NCoR consisted of three hydrogen
bonds (with Gly441, Ser499, and Gln529, respectively), one electrostatic interaction (with
Thr552), and seven hydrophobic interactions (with Trp402, Val413, Leu482, Leu483, His568,
and His578, respectively). The interaction between the CoPP-complex and NCoR consisted
of six hydrogen bonds (with Gly441, Ser513, Ser499, Gln529, and His578, respectively) and
four hydrophobic interactions (with Val413, Lys439, Leu483, and Arg562, respectively). For
that reason, it can be predicted that the positive ACE score and MM/PBSA value for the
CoPP-complex were the result of an absence of electrostatic interactions.

The end of Helix-11 is a structural area that is part of the NCoR binding site [25,26].
Compared with the crystal structure, the CoPP-complex undergoes many changes in the
conformation of Helix-11 [21]. There were 13 amino acid residues that turned into loops
at the end of the simulation, including Ser563, Leu564, Asn565, Asn566, His568, Ser569,
Glu570, Glu571, Leu572, Leu573, Ala574, Phe575, and Lys576 (Figure 11b). In contrast
to CoPP, that part of Helix-11 in the Heme-complex retained similarities to the crystal
structure, with changes at only a few amino acid residues located in the middle of Helix-11
(Pro599, Asp560, Leu561, Arg562, Ser563, Leu564, Asn565, Asn566, and His 568; Figure 11c).
Therefore, the Heme-complex was better able to recruit nuclear receptor corepressors and
repress the transcription of downstream genes.
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Figure 11. The visualization of Helix-11 (yellow) in Agonist-REV-ERBβ on the crystal structure (a),
after molecular dynamic simulation in complex with CoPP (b) and in complex with Heme (c).

Based on the visualization, it could be observed that non-polar peptides derived from
NCoR bound to a hydrophobic patch on the LBD of REV-ERBβ. Compared with the crystal
structure, there was a difference in the binding area of the corepressor (Figure 12). The
changes in conformation at the end of Helix-11 caused by the enlarged CoPP–Agonist-
REV-ERBβ-LBD (Figure 13) might weaken and negatively affect corepressor recruitment.
Thus, the ligands might control the switch between open and closed conformations of the
hydrophobic surface on the LBD for corepressor recruitment [27,28].
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3. Discussion

It is difficult to describe changes in protein structure that accompany ligand–protein
interactions in order to distinguish structural changes that occur when agonists and antag-
onists interact with the same protein [29]. Even experimental data in the form of crystal
structures are unable to distinguish the actions of ligand agonists and antagonists on target
proteins [30]. Nuclear receptor REV-ERBβ has two forms of crystal structure, an agonist
form (complexed with Heme) and an antagonist form (complexed with CoPP). Heme and
CoPP are protoporphyrin IX ligands that have affinity for REV-ERBβ. The only difference
between them is in the metal atoms in the middle of the protoporphyrin IX ligand. Heme
is a prosthetic group that consists of a heterocyclic protoporphyrin IX ring with an iron ion
as the metal center. Heme is an essential component of many proteins, including oxygen
transport proteins such as hemoglobin and myoglobin as well as the cytochrome p450
enzymes, in which the Heme moiety carries out electron transport [31,32]. Beyond Heme,
an array of other protoporphyrin IX compounds have been synthesized and/or are found
naturally in cells, depending on the physiological availability of different metal atoms in
tissues. Instead of mimicking the agonist action of Heme, CoPP functions as an antagonist
of REV-ERBβ function [21]. That phenomenon was unexpected, because the only distinc-
tion between the two ligands is the coordinated metal ion. Therefore, subtle changes in
the porphyrin metal center and ring conformation appear to influence the agonist versus
antagonist actions of protoporphyrin IX.

In general, protoporphyrin IX ligands have bonds with Val, Gly, and Leu residues
in REV-ERBβ. Heme has several additional bonds with Cys and His residues in REV-
ERBβ. In the Fe(III) state, a six-coordinate Heme-receptor complex is formed, involving
Cys and His residues. Upon reduction to Fe(II), the Cys ligand is replaced by another
neutral-donor ligand to form a six-coordinate species, or else the Heme can exist as a
five-coordinate species with only the His ligand [21]. That phenomenon allows Heme to be
a suitable ligand for REV-ERBβ. In contrast to Heme, CoPP has no interaction with Cys
and His residues and therefore has a lower binding energy than Heme. CoPP displays a
complex pharmacology, which includes an ability to induce Heme oxygenase 1 (HMOX-1)
expression. The induction of HMOX-1 has been suggested as the mechanism by which
CoPP displays its anti-obesity activity [33].

There are no changes known to be typical of Antagonist-REV-ERBβ, so the differential
characteristics of ligand agonists and antagonists cannot be observed for that species. Heme
ligands can stabilize target receptors. Such stabilization is observed in Helix-3 and Helix-11
of REV-ERBβ, which play a role in binding to nuclear receptor corepressors [20,21,34].
REV-ERBs function as transcriptional repressors by recruiting NCoR–HDAC3 complexes
to REV-ERB response elements in enhancers and promoters of target genes. REV-ERBβ
agonists, such as endogenous Heme or synthetic agonists, function by increasing the
transcriptional repression of REV-ERBβ target genes [15,19,21,35]. As with Heme, CoPP
does not cause damage to the active site of Antagonist-REV-ERBβ, allowing NCoR binding
to REV-ERBβ-LBD. The presence of both ligands is expected to not change the ability
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of Antagonist-REV-ERBβ to recruit nuclear receptor corepressors and thus repress the
transcription of downstream genes [21].

The presence of CoPP in Agonist-REV-ERBβ changes the end part of Helix-11, causing
a decrease in the ability of REV-ERBβ to recruit NCoR. In addition, the regions around Helix-
11 display the highest B-factors in Agonist-REV-ERBβ. In the CoPP-complex, Helix-11
moves slightly out of the ligand-binding pocket (open conformation), therefore modulating
the degree to which the corepressor-binding surface is expanded. Thus, by opening the
LBD of REV-ERBβ, CoPP can reduce the ability of NCoR to interact with the active site
of REV-ERBβ. NCoR docking simulations revealed that the CoPP-complex has lower
energy than the crystal structure of REV-ERBβ. Corepressors require areas with high
hydrophobicity. That is reflected in the non-polar nature of the NCoR, which binds the
binding pocket of Agonist-REV-ERBβ [21,34,36]. Compared with the CoPP-complex, the
Heme-complex has a more compact corepressor-binding surface, which enhances the
recruitment of corepressors. The difference in corepressor-binding surface occurs because
Helix-3 and Helix-11 in the Heme-complex remain intact as in the crystal structure, with
only a slight change in some amino acid residues located in the middle of Helix-11. Thus,
the end of the Helix remains intact, and the ability of Heme to recruit nuclear receptor
corepressors is not affected. The apparent constitutive repressor effect previously noted
for REV-ERBβ is most likely due to the fact that all cells have some level of intracellular
Heme [21].

The results of this study can explain the behaviors of agonist and antagonist ligands
that bind to REV-ERBβ to recruit nuclear receptor (NR) corepressors. MD simulations
showed that Heme and CoPP caused identical changes to Helix-11 of REV-ERBβ, which
is one of the key structural elements for ligand binding and corepressor recruitment in
REV-ERBβ. It is also evident that subtle changes in the protoporphyrin IX metal center and
ring conformation can influence the agonist versus antagonist actions of protoporphyrin
IX. That agrees with other studies suggesting that a ligand binding to the iron metal center
in Heme drives alterations in REV-ERBβ activity. This study provides new information
about the interactions of porphyrins with the cancer suppressor REV-ERBβ and the effects
of those interactions on the ability of REV-ERBβ to regulate transcription. Those results
will be useful in efforts to develop novel porphyrin-based agents for cancer therapy.

4. Materials and Methods
4.1. Macromolecule Preparation

Two crystalline structures of nuclear receptor REV-ERBβ were used as target molecules
in this study. Both receptor structures were downloaded from the Protein Data Bank
with PDB ID 3CQV (Agonist-REV-ERBβ) [20] and 4N73 (Antagonist-REV-ERBβ) [21], re-
spectively. The preparations of macromolecules were conducted by removing the water
molecules and natural ligand, adding polar hydrogen atoms, and calculating the Koll-
man charges.

4.2. Ligand Preparation

The ligands used in this study were natural ligands bound to each REV-ERBβ crystal
structure. Iron protoporphyrin IX (Heme) was used as an agonist ligand, whereas cobalt
protoporphyrin IX (CoPP) was used as an antagonist ligand. Both structures were used as
inputs for molecular docking studies (Figure 14).
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Figure 14. (a) The structure of iron protoporphyrin IX (Heme). (b) The structure of cobalt protopor-
phyrin IX (CoPP).

4.3. Molecular Docking Study

The docking study was performed using AutoDock 4.2 with MGLTools 1.5.6 [37,38].
All ligands used in the simulations were set with maximum torsion [39]. The grid spacing
was changed from 0.375 nM, and the cubic grid map was 64 × 60 × 60 Å toward the REV-
ERBβ binding site. The docking parameters were set as follows: the number of Genetic
Algorithm (GA) Runs was set as 100, population size was set as 150, the maximum number
of evaluations was set as 2,500,000, and 100 runs were performed. Then, special parameters
were prepared for iron (Fe) and cobalt (Co) as the central metal atom of protoporphyrin
IX, respectively, and all other parameters were set as the default values. The docking
process was performed as follows. First, molecular docking was performed to evaluate
the docking poses. Then, defined docking was conducted on the binding pocket. Three to
six independent docking calculations were conducted. The corresponding lowest binding
energies and predicted inhibition constants (pKi) were obtained from the docking log files
(dlg) [40]. AutoDock Tools and Discovery Studio 2016 were used to visualize the docking
results. Surface representation images showing the binding pocket of REV-ERBβ were
generated using Discovery Studio 2016 software [41].

4.4. Molecular Dynamics Simulation

Molecular dynamic simulations were performed for both ligands against each nuclear
receptor REV-ERBβ. The simulations were performed using Gromacs2016 [42–46], and
the analyses were performed with visual molecular dynamics (VMD, Theoretical and
Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-
Champaign) [47]. AMBER99SB-ILDN force field [48,49] was used to parameterize the
protein. The ligand was parameterized using two software programs: AnteChamber
Python Parser interfacE (ACPYPE) for protoporphyrin IX [50] and ForceGen for the central
metal atoms iron (Fe) and cobalt (Co) [51]. Long-range electrostatic force was determined
by the Particle Mesh Ewald method [52]. Neutralization of the system was performed
by adding Na+ and Cl− ions. The cubic of TIP3P water model was used to solvate the
system. Berendsen thermostats and barostats are used during the heating stage with the
pressure being maintained at 1 bar. The steps of the simulation included minimization
until 500,000 steps, heating until 310 K, temperature equilibration (NVT) in 500 ps, pressure
equilibration (NPT) in 500 ps, and a production run with a 2 fs timestep for 200 ns. The
stability of the system was verified by analysis of the energy, temperature, pressure, and
root-mean-square deviation (RMSD). Analyses of the binding-pocket analysis and cavities
were carried out using POVME 3.0 [53].
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4.5. Protein-Peptide Docking

Protein-peptide docking was carried out between the nuclear receptor corepressor
(NCoR) and the structures of the CoPP and Heme complexes obtained from molecular
dynamics simulations to observe the ability of each ligand to recruit the corepressor. The
NCoR structure that formed in crystals with REV-ERBα was downloaded from Protein
Data Bank (PDB ID 3N00) [54] and then separated. PATCH Dock software was used to
observe protein–protein interactions based on molecular docking. That software uses the
shape complementarity of soft molecular surfaces to generate the best starting candidate
solution [55,56]. The default clustering RMSD 2.0 Å was used, and the complex type was
chosen to be protein–small ligand. Connolly dot surface representations of the molecules
as different components such as convex, concave, and flat patches were generated using
the PATCH Dock algorithm [57,58]. Then, the PATCH Dock solutions were optimized
for small-size molecules, provides a list of refined complexes, reshuffled the molecule’s
relative orientation, and the side-chains interface of the top 10 candidate solutions were
rescored. The orientation of the relative molecules were amended by confining the flexi-
bility of the side-chains of the interacting surface and allowing movements of small rigid
bodies [59]. The results of the protein-peptide docking simulation were identified based on
the PatchDock score, atomic contact energy (ACE) score, and MM/PBSA binding energy.
The interactions and binding in the docked conformations in PDB format were visualized
using the Discovery Studio 2016 software.

4.6. MM/PBSA Calculation

MM/PBSA calculation was performed using the g_mmpbsa package [60] integrated
in the Gromacs software. Polar desolvation energy was calculated with the Poisson-
Boltzmann equation with a grid size of 0.5 Å. The dielectric constant of the solvent was set
to 80 to represent water as the solvent [61,62]. Non-polar contribution was determined by
calculation of the solvent-accessible surface area with the radii of the solvent as 1.4 Å [63].
The binding free energy of the complex was determined based on 200 snapshots taken from
the beginning to the end of the molecular dynamic simulation trajectories of the complex.

5. Conclusions

The mechanism of action of the agonist of iron protoporphyrin IX (Heme) and the
antagonist of cobalt protoporphyrin IX (CoPP) against the REV-ERBβ nuclear receptor can
be predicted based on the results of molecular dynamics simulations. The replacement of
the central metal atom has been shown to affect the affinity of the two porphyrins to the
REV-ERBβ receptor and changes to the protein conformation during molecular dynamics
simulations. This phenomenon will affect the ability of the REV-ERBβ receptor to bind
to the NCoR corepressor which plays a role in regulating cancer cell signals to suppress
target gene transcription. Therefore, in silico studies are very important in designing and
developing porphyrin derivatives, especially for the therapy of cancer.
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