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The immune system acts across multiple

scales involving complex interactions and

feedback, from somatic modifications of

DNA to the systemic inflammatory reac-

tion. Computational modeling provides a

framework to integrate observational data

collected from multiple modes of experi-

mentation and insight into the immune

response in health and disease. This

Message attempts to illustrate how differ-

ent computational methods have been

integrated with experimental observations

to study an immunological question from

multiple perspectives by focusing on a very

particular, though fundamental, compo-

nent of adaptive immunity: B cells and

affinity maturation (Figure 1). B cells bind

foreign antigens through their Immuno-

globulin (Ig) receptor. Affinity maturation

is the process by which B cell receptors

that initially bind antigen with low affinity

are modified through cycles of somatic

mutation and affinity-dependent selection

to produce high-affinity memory and

plasma cells. How this process can reliably

generate orders of magnitude increases in

affinity over a period of weeks is one of the

many questions where computational

modeling has made important contribu-

tions (for example, the cyclic re-entry

model [1]). Yet, even the seemingly

straightforward matter of detecting anti-

gen-driven selection remains controversial,

and such fundamental questions as wheth-

er increased proliferation or decreased

death drives the preferential expansion of

higher-affinity B cell mutants remain

unanswered. A good biological introduc-

tion to the immune system is available on

the NIH website [2], while more detailed

information can be found in any number

of textbooks [3]. An animation by Julian

Kirk-Elleker provides a visual introduction

to the affinity maturation process (http://

web.mac.com/patrickwlee/Antibody-affini-

ty_maturation/Movie.html). The kinds of

computational techniques described here

have been widely applied in other areas of

immunology, including the innate response

[4,5], viral dynamics [6], and immune

memory [7]. A classic introduction to

computational immunology geared to the

more mathematically inclined was written

by Perelson and Weisbuch [8]. The rapidly

expanding area of immunoinformatics was

covered in a recent issue of PLoS Computa-

tional Biology [9], and several other applica-

tions were explored in a 2007 volume of

Immunological Reviews (216) devoted to quan-

titative modeling of immune responses.

Germline and Somatic Diversity

The adaptive immune system operates

by clonal selection. A preformed reper-

toire of diverse Ig receptors for antigen is

clonally distributed among a finite but

large number of B cells. These receptors

are generated by a somatic recombination

process that brings together a number of

interchangeable gene segments present in

the DNA. Recombination signals (RSs)

associated with each segment help deter-

mine the efficiency of segment pairing, but

high variability both across and within

species has made experiments difficult to

interpret. Computational models have

been used effectively to exploit the corre-

lation structure of known RSs to predict

recombination efficiency and to recognize

new RSs [10]. Hypotheses concerning

gene segment usage (e.g., random versus

sequential) have also been investigated

using probabilistic models to simulate the

distribution of cells with different rear-

rangements [11]. Along with investigating

the ‘‘how’’ of Ig rearrangement, compu-

tational modeling has been used to explore

why such diversity is necessary [12].

Foreign antigens are recognized by

individual B cells that happen to have

receptors that bind, with the threshold for

activation being set low, since in general

these chance ‘‘fits’’ between receptor and

pathogen will have weak interactions.

During the course of an immune response,

Ig receptors that initially bind antigen with

low affinity are modified through cycles of

somatic mutation and affinity-dependent

selection to produce high-affinity memory

and plasma cells. Somatic mutation is a

process unique to B cells responding to

antigen that results in a mutation rate that

is 7–8 orders of magnitude above normal

background (and thus often referred to as

hypermutation). Identifying somatic mu-

tations in experimentally derived Ig recep-

tor sequences is critical to understanding

this process, but can be challenging since

the germline sequence for individual B

cells is chosen stochastically during cell

maturation in the bone marrow and thus is

not known a priori. Imprecision in the

recombination process, and the action of

various enzymes that can add or delete

nucleotides during rearrangement, further

compounds this problem. Hidden Markov

models and other computational ap-

proaches have been instrumental to pre-

dict germline sequences, including the

most likely combination of gene segments

involved [13,14].

Analyzing the interaction between so-

matic hypermutation and germline codon

usage in the Ig receptor has provided

insight into strategies used by the immune

system to adapt to pathogenic challenge.

In general, more mutable codons are used

in the complementary determining regions
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(CDRs), where most contact residues for

antigen binding are found, and less so in

framework (FW) regions, which provide

the structural backbone of the receptor

[15]. This suggests that Ig receptors have

evolved to focus mutations to maximize

potential benefit and minimize the possi-

bility of producing non-functional recep-

tors, although not all isotypes behave the

same way [16]. A critical resource for

these kinds of studies is the IMGT

database (http://imgt.cines.fr), which con-

tains a wealth of sequence information,

including the germline Ig genes of several

species and links to analysis tools.

Mutation Analysis

The mutation patterns in experimentally

derived Ig sequences provide a kind of fossil

record for the affinity maturation process,

and can furnish important evidence of

antigen-driven selection. The most com-

mon tests for selection compare the ob-

served frequency of replacement mutations

to their expected frequency under the null

hypothesis of no selection. Elevated fre-

quencies indicate positive selection, while

decreased levels indicate negative selection

with significance determined by a binomial

test [17,18]. Such inferences depend on the

difficult task of accurately defining the

features of a ‘‘random’’ mutation process.

A main problem is that somatic hypermu-

tation, while stochastic, displays intrinsic

sequence-specific biases that can give the

appearance of selection. This has led some

to suggest that such methods cannot be

used as reliable indicators of antigen-driven

selection [19], while our own work shows

that more comprehensive models along

with better statistics can be used to detect

selection in vivo with high specificity [20].

Low sensitivity is another problem that

plagues methods for detecting selection.

Additional information may be extracted

from B cell lineage trees (also called clonal

trees), which depict the relationships

between groups of B cells that share a

common ancestor (often generated from

microdissection experiments). Unlike the

case for phylogenetic trees, the relatively

small number of mutations and sequences

means there are often few ambiguities in

creating these trees. Monte Carlo simula-

tion approaches have been used to link the

topological properties of B cell lineage

trees to underlying biological processes

such as somatic hypermutation [21] and

selection [22]. Inferences based on lineage

tree properties are challenging since many

different biological processes can produce

similar changes in tree shape, and direct

tests for selection based on these properties

have yet to be developed for the immune

response.

Population Dynamics

Affinity maturation involves extensive

proliferation and death. Accurate rate

measurements for these processes can help

determine their relative contribution to the

preferential expansion of higher-affinity B

cell mutants. Dividing cells can be labeled

Figure 1. A wide range of experimental techniques are used in combination with computational modeling to probe the process of
affinity maturation at multiple scales (from DNA to tissue). Population dynamics of splenic germinal center B cells is probed by quantifying
labeled cells over time with flow cytometry (left panes). Microdissection of cells from tissue sections combined with sequencing of the Ig receptor
provides information on germline receptor usage and somatic hypermutation (center panes). Histology is supplemented with intravital multi-photon
microscopy to visualize and quantify spatiotemporal dynamics (right panes).
doi:10.1371/journal.pcbi.1000128.g001
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using bromodeoxyuridine (BrdU), a thy-

midine analog that gets incorporated into

DNA during S phase. The fraction of

labeled cells is tracked during BrdU

administration and following withdrawal

using flow cytometry. To interpret these

data, Bonhoeffer et al. [23] proposed a

simple model that assumes a single B cell

population that proliferates at rate p and

undergoes apoptosis at rate d. To model

BrdU labeling, this population is split into

unlabeled (BU) and labeled (BL) subsets:

dBU

dt
~s{ pzdð ÞBU

and
dBL

dt
~2pBU{dBL

where we have assumed an unlabeled

source of cells (s) and 100% labeling

efficiency.

Similar kinds of population dynamic

models have been developed to help

interpret experiments using the cell dye

carboxyfluoroscein succinimidyl ester

(CFSE) [24]. In this case, division results

in a halving of the signal intensity so that

each measurement provides information

on the number of divisions undergone by

individual cells since labeling. Proliferation

and death rates are estimated by param-

eter optimization producing the best (e.g.,

least-squares) fit of the model with exper-

imental data. Confidence intervals are

often determined using bootstrapping.

However, the simplest models, such as

presented above, often do not provide

good fits, and significant controversy still

exists as to the proper model to use for a

particular situation [25,26].

The biological mechanisms underlying

the preferential expansion of rare higher-

affinity B cell mutants are largely un-

known. Population dynamic models in-

cluding somatic hypermutation and selec-

tion can be used to explore the

consequences of different hypotheses. In-

deed, such modeling played an important

role in suggesting that a process involving

cyclic re-entry was necessary to achieve

efficient affinity maturation [1], and

showed how it could be mapped onto the

micro-architecture of germinal centers (the

sites of affinity maturation that form in the

secondary lymphoid organs during im-

mune responses) [27]. Other studies have

investigated different selection mecha-

nisms, including competition for space

[28,29]. The predicted efficiency of affin-

ity maturation can depend on the under-

lying model of the affinity landscape.

While some models use decision trees to

simulate the mutation process [20,30],

other frameworks have also been devel-

oped to capture statistical properties of

somatic hypermutation and affinity matu-

ration [1,31,32]. The estimation of un-

known parameters is another important

component of these studies, and it is

common to choose values that maximize

affinity maturation (under the assumption

that evolution has optimized this process).

However, quantitative modeling of specific

responses has predicted that many cells

with affinity-increasing mutations are not

expanded as would be expected for

optimal affinity maturation [33,34]. In-

deed, there is still ongoing discussion

about why B cells mutate their Ig receptors

at all [35], an area where computational

modeling should be able to make impor-

tant contributions.

Spatiotemporal Dynamics

The spatial structure of the germinal

center is thought to play an important role

in affinity maturation, and many models

include multiple compartments. However,

it has only recently become possible to

visualize the spatiotemporal dynamics of

immune responses in vivo using ‘‘intravital

multi-photon microscopy,’’ which allows

tracking of individual cells in the lymph

nodes and germinal centers [36]. While

much initial work has focused on statistical

analysis of different cell populations (e.g.,

comparisons of velocity and displacement

rates), and addressing the question of

whether cell movement is random or

directed, more detailed computational

modeling will play a key role in under-

standing these complex datasets. Spatially

explicit simulations have already led to the

important insight that some migration

behaviors, such as directed motion on a

short timescale and random motion on a

longer timescale, may result simply from

the crowded microenvironment of the

lymph nodes [37]. Other studies have

started to integrate data from several

experiments to link models of affinity

maturation with migration patterns, rais-

ing questions about whether the widely

accepted cyclic re-entry model can be

consistent with the observed efficiency of

affinity maturation [38]. Integrating ob-

servations from different modes of exper-

imentation (Figure 1) continues to be a

challenge.

Discussion

Modeling and computational approach-

es have been widely applied to problems in

immunology, and are finding increasing

applications as experiments become more

quantitative and seek to extract informa-

tion on kinetics. Virtually all of the top

immunology journals now publish papers

with significant computational compo-

nents, which was not the case just a few

years ago. In some ways, this success

presents a challenge for those looking to

get started in the field. Leading computa-

tional immunology research groups often

publish their work in domain-specific

experimental journals and present at

biology conferences, so finding and fol-

lowing state-of-the-art research requires

tracking several journals and becoming

familiar with many different areas of

biology.
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