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Editorial on the Research Topic

Accelerated Translation Using Microphysiological Organoid and Microfluidic Chip Models

The discovery of new therapeutic modalities is a lengthy and costly process (Niemeyer et al., 2018).
Despite considerable advances over the past few decades in our understanding of human
pathophysiology and emergence of new assays and experimental toolkits, high failure rate in
phase II and phase III clinical trials due to lack of compound efficacy remains a major challenge
for the biopharmaceutical industry (Harrison, 2016). This, for most part, can be explained by
limitations of preclinical models in predicting such failures early during drug development processes
(Krishnan et al., 2016; Li and Stewart, 2021). As such, development, validation, and application of
preclinical microphysiological systems (MPS), such as Organ-on-Chips and organoids, presents as
an indubitable approach to tackle this pressing unmet need.

Organs-on-Chips are living microfluidic devices that are fabricated using computer
microchip manufacturing methods and are commonly thumb-sized (Benam et al., 2015).
They contain continuously or intermittently perfused microchannels inhabited by living
cells or microtissues (Benam and Ingber, 2016; Benam et al., 2019). These platforms can
recreate aspects of the physicochemical and biomechanical microenvironments of human
organs, multicellular architecture, and inter-cellular as well as tissue–tissue crosstalk in vitro
(Fustin et al., 2019). Organoids offer an alternative approach to recreate certain complexities of
human organs in vitro. These are culture systems in which organ-specific progenitor cells can
rapidly expand and generate multi-cellular 3D structures (Niemeyer et al., 2018). Organs-on-
Chips and organoids, despite their reductionist nature and limitations (beyond the scope of this
Editorial), are emerging technologies with substantial potential to improve predictive
pharmacology in the preclinical space and to potentially reduce animal use, particularly
where little supporting scientific evidence is present for the utility of the animal models in a
particular condition.

The present research topic provides a brief, yet timely, snapshot of recent developments by
pioneers in theMPS world on application of these platforms to enable more accurate human-relevant
biology modeling for translational applications. The five articles in this Issue can be broadly
categorized into three groups based on the organ systems on which they primarily focused:
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musculoskeletal system (Charrez et al.; Lee-Montiel et al.),
urinary system (Chen et al.), and digestive system (Bein et al.;
Charrez et al.). Lee-Montiel et al., merged stem cell biology with
tissue microengineering to generate liver and cardiac MPSs
derived from the same induced pluripotent stem cell (hiPSC)
line, and then applied their integrated multi-Organ Chips
platform to study drug-drug interactions (Lee-Montiel et al.).
Charrez et al., developed a MPS populated with beating
cardiomyocytes that were differentiated from iPSCs. The
authors used this biodevice to evaluate cardiac safety of
candidate therapeutics. Specifically, they studied the impact of
repurposed drugs, hydroxychloroquine (HCQ) or azithromycin
(AZM), for treating severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). They found that exposure to
AZM lead to arrhythmias, and treatment with HCQ and AZM
combination therapy synergistically increased QT interval—a
measurement of heart ventricles depolarization and
repolarization (Charrez et al.), highlighting the utility of MPS
for cardiovascular safety pharmacology. Chen and colleagues in a
Mini Review discuss emerging organoid and stem cell-derived
microfluidic MPS kidney models, and their utility for studying
renal disorders and drug-induced nephrotoxicity (Chen et al.).
Cherne et al., refined and applied their previously reported
gut organoid flow chip (GOFlowChip) to create a dynamic
and multicellular MPS that emulates dendritic cell (DC)-
epithelial interactions in human stomach (Cherne et al.).
The authors recreated DC chemotaxis through a synthetic
hydrogel to demonstrate utility of their platform for real-
time imaging of cell-cell interactions, and analyses of gastric
response to challenge with pathogens, candidate drugs and
mucosal vaccines. Bein et al., used a human Intestine-on-a-
Chip microfluidic device populated with intestinal epithelial
and vascular endothelial cells to study host cellular and
inflammatory responses following infection with a seasonal
coronavirus (CoV) strain NL63 (Bein et al.). The authors
observed that cell culture under microfluidic flow in the
presence of peristalsis-like biomechanical forces led to
angiotensin-converting enzyme 2 (ACE2) expression—the
virus entry receptor for CoV NL63. Additionally, they
found that treatment of CoV-infected intestinal chips with
nafamostat mesylate, a synthetic pan-serine protease inhibitor

that has been clinically approved in Japan and South Korea
for over 3 decades, inhibited viral entry and resulted in a
reduction in both viral load and pro-inflammatory cytokine
secretion. This finding is in line with other reports of anti-
corona-viral properties of nafamostat in other organ systems
in vitro and in vivo (Yamamoto et al., 2020; Li et al., 2021;
Niemeyer and Benam, 2021; Niemeyer et al., 2021; Takahashi
et al., 2021).

To conclude, this research topic highlights several innovative,
inter-disciplinary, translational efforts in development and
application of human-relevant MPS that can advance predictive
pharmacology and potentially reduce attrition rates in
pharmaceutical developments. We hope this snapshot will
encourage further support and enthusiasm for such studies and
evolution of MPS technologies, so they become better characterized,
pharmacologically benchmarked, and more widely accessible. This
would in turn enable us collectively to address pressing unmet
medical needs, alleviate the cost and shorten the duration of
preclinical drug development processes, and reduce animal use in
preclinical development and discovery biology.
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