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Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer’s

Disease (AD). Most frequently they appear since the mild cognitive impairment

(MCI) stage preceding clinical AD, and have a prognostic importance.

Unfortunately, these symptoms also worsen the daily functioning of patients,

increase caregiver stress and accelerate the disease progression from MCI

to AD. Apathy and depression are the most common of these NPS, and

much attention has been given in recent years to understand the biological

mechanisms related to their appearance in AD. Although for many decades

these symptoms have been known to be related to abnormalities of the

dopaminergic ventral tegmental area (VTA), a direct association between

deficits in the VTA and NPS in AD has never been investigated. Fortunately, this

scenario is changing since recent studies using preclinical models of AD, and

clinical studies in MCI and AD patients demonstrated a number of functional,

structural and metabolic alterations a�ecting the VTA dopaminergic neurons

and their mesocorticolimbic targets. These findings appear early, since theMCI

stage, and seem to correlate with the appearance of NPS. Here, we provide an

overview of the recent evidence directly linking the dopaminergic VTA with

NPS in AD and propose a setting in which the precocious identification of

dopaminergic deficits can be a helpful biomarker for early diagnosis. In this

scenario, treatments of patients with dopaminergic drugs might slow down

the disease progression and delay the impairment of daily living activities.
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neuropsychiatric symptoms, mesolimbic, mesocortical, ventral tegmental area,
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Introduction

Alzheimer’s Disease (AD) is the prevailing form of age-associated dementia,

accounting for approximately 60–80% of cases (1–3). The neuropathology of AD and the

progressive cognitive decline are highly linked to the presence amyloid-beta (Aβ) and

neurofibrillary tangles, whose deposition in the brain first appears in neocortical regions

involved in cognition—mainly the entorhinal cortex and the hippocampal formation—

and later spreads to neural hubs that underlie motor and sensory structures, planning,

emotion and spatial navigation (4–10).
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Neuropsychiatric symptoms (NPS) are also particularly

common in the course of the disease, affecting up to half of

patients with Mild Cognitive Impairment (MCI) and nearly all

patients with AD-dementia (11–14). These symptoms mainly

include depression, anxiety, psychosis, agitation, irritability

and sleep disturbances, although apathy—described as loss of

motivation, decreased interest and lack of emotional reactivity

(15)—is the most common of these symptoms, with a prevalence

in approximately 50% of MCI and 80% of AD patients (16–20).

Due to their appearance since the MCI stage, apathy and

other NPS have an important prognostic value, as they help to

predict the incidence of dementia, conversion from MCI to AD,

and the acceleration in disease progression and cognitive decline

(13, 21–25). However, the manifestation of these symptoms is

not to be underestimated as they contribute significantly to

worsening the daily functioning and disability of patients, they

accelerate and prolong hospitalization and financial burden,

and they worsen caregiver distress due to increased reliance

of patients for everyday living (26, 27). Of note, in line with

the faster disease progression in patients with NPS, recently

an association was observed between apathy and an increased

risk of mortality in dementia and elderly people (28, 29). Thus,

interventions focused on treating NPS could have an important

impact on patients, caregivers, and society. As such, an increased

knowledge of the biological mechanisms underlying apathy and

other symptoms in AD would result in a better perception of

the disease and its etiology, and could lead to earlier and more

efficient treatments and care planning.

The rising interest in NPS observed in MCI and early AD

patients led to a number of investigations of brain structure

in post-mortem tissue and in metabolic and neuroimaging

studies, to correlate brain alterations with NPS, with main focus

on apathy and depression. These studies appear to highlight

abnormalities/deficits mainly in the medial frontal cortex, as

well as in other brain regions such as the posterior and anterior

cingulate cortex, medial orbitofrontal cortex and the ventral

striatum for the development of apathetic or depressive behavior

in subjects with MCI and AD (30–39). Of note, all of these

regions are interconnected. More importantly still, each region

receives monosynaptic dopaminergic projections from the

ventral tegmental area (VTA) of the midbrain. The widespread

involvement, in apathy and depression, of these brain regions

modulated by dopamine perhaps makes it unsurprising that

these NPS are considered, at least in part, hypodopaminergic

symptoms (33, 40).

In this Perspective, we will examine in more detail the

particular connections between the dopaminergic VTA and

brain areas involved in the appearance of NPS and other

relevant cognitive symptoms in AD. We will also describe

the most recent preclinical and clinical studies that argue

in favor of a precocious dysfunction of VTA dopaminergic

neurons in AD and its contribution to the early appearance of

NPS. Finally, we will propose a scenario in which the prompt

identification of dopaminergic deficits since the MCI stage

and an early dopaminergic-based pharmacological treatment of

patients might be particularly beneficial for improvement of

NPS, and therefore particularly relevant to test the effectiveness

for slowing down the disease progression.

The mesocorticolimbic dopamine
system

The VTA (area A10 in humans) is comprised of a group of

notoriously heterogeneous neurons located near the midline in

the midbrain, in close proximity to the more lateral substantia

nigra pars compacta (SNpc, A9). In addition to dopamine

neurons, the VTA contains GABAergic and glutamatergic

neurons, while some dopaminergic neurons were also shown to

co-release dopamine together with glutamate or GABA (41, 42).

The mesocorticolimbic dopaminergic pathway consists of

cell bodies of dopamine neurons located in the VTA, that

send ascending long-projection fibers rostrally toward limbic

and cortical regions through the medial forebrain bundle,

respectively forming the mesolimbic and mesocortical branches

of the mesocorticolimbic system (Figure 1, Panel A). In recent

years, the use of advanced tracing and optogenetics techniques in

animals, and the improvement in imaging methods, have helped

to well–define the circuit organization of the mesocorticolimbic

system (41, 43–50). The most dense mesolimbic innervation

from the dopaminergic VTA is at the level of the nucleus

accumbens (NAc); these fibers then either remain in the NAc,

innervating the core and shell subdomains, or they diverge to

reach their terminal targets by extending toward the dorsal

striatum and other limbic regions such as the amygdala and

hippocampus. The mesocortical fibers instead, after going along

the medial forebrain bundle, either bypass the NAc to extend

dorsally toward the prefrontal cortex (PFC), or cross the

NAc and dorsal striatum en route to the PFC. Of note, the

mesocorticolimbic wiring is one of the last neuronal circuits of

the brain to reach maturity. As observed both in rodents and

non-human primates, this circuitry changes significantly not

only during embryonic life and early postnatal development but

also later on, to finally reach themature form during adolescence

(51–54). This peculiar feature of the mesocorticolimbic system

is perhaps the basis for the increased vulnerability of this system

to early-life stress and the many different positive or negative

experiences that can drastically, and permanently, shape its

development and function (55–58).

The vast connections of the mesocorticolimbic dopamine

system with the various cortical, subcortical and limbic regions

reflects the heterogeneity of its many functions, further

enhanced by the functional and molecular heterogeneity of

the VTA neurons themselves. In fact, the mesolimbic and

mesocortical dopamine pathways have been shown to differ

in their molecular markers, electrophysiological properties,
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FIGURE 1

The mesocorticolimbic dopaminergic system. (A) Sagittal view of the mesocorticolimbic dopamine pathway and its principal target nuclei in the

mouse (upper) and human (bottom) brain. (B) Representation of the impaired (thin line) dopaminergic inputs from the VTA described so far

during the progression of AD (see text for details). Representations are adapted from the mouse and human brain atlas (Allen Institute). PFC,

prefrontal cortex; HP, hippocampus; dSTR, dorsal striatum; vSTR, ventral striatum; MFB, medial forebrain bundle; VTA, ventral tegmental area.

anatomical organization and response to various stimuli

(41, 59–63). This intrinsic variability and extensive neuronal

connections of the mesocorticolimbic system allow for the vast

range of its functions: indeed this system participates, amongst

others, in brain functions like fear, aversion and reward, positive

and negative reinforcement, motivated behavior, working-

, place- and reward-associated memory, object recognition,

decision-making, cognitive and executive functions, goal-

directed behaviors, temporal control and food-intake (64–

73). It is therefore not surprising that the mesocorticolimbic

system has been highly implicated in a number of mood and

neuropsychiatric disorders, ranging from anxiety, schizophrenia

and depression to food and drug addiction, attention-deficit

disorders and dementia (66, 72, 74–80).

Dopamine in Alzheimer’s disease

Indirect evidence of mesocorticolimbic
system dysfunctions in AD

It is well–known that the dopaminergic systems undergo

several changes during normal aging. For example, decreased

release of dopamine from its mesocorticolimbic terminals,

reduced dopamine receptor expression, and in particular D2

receptors, or reduced dopamine transporter (DAT) expression

in areas like the putamen, hippocampus and PFC are all

features that are commonly observed in the human brain during

physiological aging (80–83). Given the link between aging and

dementia, it was not surprising that dopamine has intrigued

neuroscientists also in relevance to AD (84–87). Thus, a number

of earlier works provided evidence of reduced expression

of dopamine receptors, DAT and tyrosine hydroxylase (TH;

the rate-limiting enzyme necessary for dopamine synthesis)

in post-mortem brains of people with AD, particularly in

mesocorticolimbic areas such as the PFC, NAc and hippocampus

(88–94). Additionally, these works demonstrated that at least

40% of AD cases also show pathological changes in the VTA

and its dopamine neurons including Aβ plaques, tangles and

decreased dopamine content (95–101). Although indirect, the

evidence provided by these works support the notion that the

mesocorticolimbic dopamine system undergoes changes in AD.

Yet, such works could not answer the question of whether the

deficits in the dopaminergic midbrain are an early event, or

one of the many devastating consequences of brain damage

occurring while the disease progresses.

Early functional alterations of the
mesocorticolimbic system in preclinical
AD

Direct evidence supporting the contribution of

dopaminergic system dysfunctions in early AD came from

a preclinical study using the Tg2576 mouse model of AD.
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This mouse model overexpresses the human APPswe mutant

(K670M/M671L) allele of familial AD (102). With more than

1,000 papers published over the last 20 years, this transgenic

model is characterized by a particularly slow disease progression

and has thus been essential for disentangling the early

mechanisms underlying the disease (102–104). Indeed, Tg2576

mice develop early synaptic alterations in the hippocampus

and cortex, reduced spine density of hippocampal pyramidal

neurons, changes in hippocampal synaptic plasticity and deficits

in memory and cognition that start since about 3 months of

age (102–110).

The evidence linking the dopaminergic VTAwith these early

deficits in Tg2576 mice came after the observation of substantial

apoptotic cell death of VTA dopamine neurons in these mice,

accompanied by significant levels of local neuroinflammation,

starting between 2–3months of age and progressively worsening

with age (111). The work by Nobili, et al., and subsequent

papers, showed that the progressive degeneration of VTA TH+

neurons results in lower dopamine outflow in the hippocampus

and correlates temporally with impairments in hippocampal

neuronal function, synaptic plasticity, spatial memory and fear-

associated memory performance (111–113). On the other hand,

other brain regions containing TH+ neurons, in particular the

SNpc and locus coeruleus (LC), are intact in Tg2576mice at least

until 6 months of age, suggesting that the early degeneration

is selective for mesocorticolimbic neurons in the VTA and can

account for the AD-like memory symptoms in these mice (114).

Importantly, subchronic in-vivo treatment of Tg2576 mice

with levodopa (L-DOPA; the natural dopamine precursor) or

selegiline (an inhibitor of dopamine degradation by monoamine

oxidase B) can completely rescue synaptic plasticity, pyramidal

neuron excitability and memory deficits (111, 112), in line

with previous evidence using different dopaminergic treatments

(115–121). Similarly, a pro-autophagic treatment targeting the

VTA dopamine neurons in Tg2576 mice, effective in delaying

the neurodegenerative process, could also ameliorate the AD

phenotype (122).

Since the early work in Tg2576 mice, alterations in the

VTA, reductions of DAT in the hippocampus and loss of TH+

neurons were also observed in other mouse models of AD

(3×Tg-AD, APPswe/PS11E9 and 5xFAD) (123–126). Overall,

these works highlighted the dopaminergic VTA as a brain

region associated with early AD, showing that the reduction of

the mesocorticolimbic dopamine input precedes degeneration,

inflammation or plaque formation in target areas, indicating

also that hippocampal-related memory dysfunction in AD is

secondary to VTA dopamine neuron degeneration. Of note,

given the fact that the Tg2576 mouse overexpresses the APPswe

mutation, one can assume that the early degeneration of the

dopaminergic VTA can be associated with the higher levels

of soluble and neurotoxic Aβ oligomers in this mouse, at

a stage when insoluble Aβ (Aβ plaque deposition) is still

undetectable (111). Indeed, Aβ oligomers have been found

to impair autophagy and mitochondrial dynamics in AD, as

demonstrated in cellular models and in dopaminergic neurons

of the Tg2576 mouse model, thus contributing to cell death

(122, 127, 128).

Importantly, the paper by Nobili et al., could explain not

only memory deficits but also the occurrence of NPS in AD

(111–114). This conclusion mainly derived from the evidence

that the degeneration of VTA dopamine neurons in Tg2576

mice, and the sebsequent reduction of dopaminergic innervation

in limbic brain areas related to reward, stress and emotional

processing (129)—such as the NAc and ventral hippocampus—

were associated with deficits during consumption of palatable

food, affecting not only the ability of Tg2576 animals to

favor an agreeable food such as chocolate over normal

chow, but also reducing the overall levels of consumption.

This depressive-like behavior in Tg2576 mice was completely

rescued by selegiline, as sub-chronic treatment levels could

improve impairments in mesolimbic reward processing by

enhancing, in treated Tg2576 mice, the preference for chocolate

eating and the amount of consumption (111). Although

interpretations of results from animal behavioral studies,

particularly in relevance to neuropsychiatric features of human

diseases, are inherently complicated, this study could prove

a first link between mesocorticolimbic dopamine deficits,

neuropsychiatric-like deficits and AD at an early pre-plaque

disease stage.

Mesocorticolimbic system dysfunctions
in MCI and AD

Given the small size of brainstem nuclei like the VTA

(approximately 60,000 dopamine neurons in the adult human

brain), the resolution power of imaging techniques in humans

has been a limiting factor that likely contributed to the

neglection of such small brain regions from AD screening in the

past. The first study on human subjects showing direct evidence

of a functional disconnection of the VTA with brain areas

normally affected in AD was the study by Serra, et al. (130). The

authors recruited large numbers of amnestic MCI and sporadic

AD patients as well as healthy controls and used resting-

state functional MRI (rs-fMRI at 3T) to assess the functional

connectivity between the VTA and different brain areas (130).

The study showed a significant disconnection between the VTA

and the thalamus, medial-temporal regions and the parietal lobe

in MCI patients. As the disease advanced to the AD stage,

patients demonstrated additionally functional disconnection of

the posterior parietal cortex with the LC. The disconnection

from the VTA was mainly present in the hippocampus and

parietal regions in MCI patients, while in AD it involved most

regions of the default-mode network (130–132). A parallel study

used structural MRI to link the volume of the VTA with typical
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TABLE 1 Summary of clinical studies investigating direct evidence for an association between deficits in the mesocorticolimbic dopamine system

and NPS.

Group subjects

(Reference)

Screening

method

Mesocorticolimbic

alterations

Behavioral

assessment

method

NPS assessment results

- 84 probable AD

- 48 amnestic MCI (a-MCI)

- 37 HS (130)

- resting-state fMRI

at 3T

- a-MCI: lower FC in VTA

and the right parietal lobule

- AD: lower FC between VTA

and posterior cingulate cortex,

precuneus, parietal lobule.

NPI-12 (135). - Apathy, depression, and anxiety were

the most frequent NPS, no significant

differences between AD and a-MCI.

- Strong link between VTA connectivity

and NPS (agitation, irritability,

disinhibition) and sleep and eating

disorders

- 60 AD-D

- 53 MCI

- 54 HS (136)

- structural MRI

at 3T

18F-FDG-PET

- 77.7% of structures showing

gray matter volume

reductions in MCI and AD-D

belong to the

mesocorticolimbic DA

pathway.

- 58.3% of VTA targets

present significant gray

matter reductions, with most

detectable at the MCI stage.

- Regions of the

Mesocorticolimbic pathway

show significant metabolic

connectivity changes in AD.

NPI-12 - Higher NPI total and depression

scores vs. HS MCI: higher scores for

anxiety, ADD higher scores in Apathy/

Indifference, aberrant motor behavior,

appetite changes, Irritability.

-Higher NPI scores associated with

severe atrophy. Depression score

correlated with atrophy in medial

orbitofrontal cortex, anxiety with

atrophy in the v. striatum, apathy with

atrophy in HP, entorhinal area, para-HP

gyrus and amygdala.

- 29 MCI, 34 AD-D with

delusions

- 29 MCI, 34 AD-D with no

delusions

- 63 HS (137)

- structural MRI at

1.5 or 3T

- greater gray matter loss in

left and right caudate nuclei in

patients who later developed

delusions.

- NPI-12 -

NPI-Questionare

[NPI-Q; (138)].

- subjects with delusion presented with

higher NPI scores already 1 year before

the manifestation of symptoms.

- greater longitudinal gray matter loss in

delusional patients

was observed in the bilateral

medio-temporal areas (bilateral

para-HP gyri and left HP) and in the

right anterior cingulate cortex belonging

to the mesocorticolimbic dopaminergic

pathway.

AD-D, Alzheimer’s with Dementia; HS, Healthy subjects; FC, functional connectivity, NPI-12, Neuropsychiatric Inventory; HP, hippocampus.

AD clinical markers, in particular hippocampal size andmemory

index (133, 134). Themain finding of the study was that the VTA

volume is strongly associated with the size of the hippocampal

formation andmemory abilities of both AD patients and healthy

controls, thus indicating that a smaller VTA size or shrinkage of

the nucleus might correspond to a worse memory performance

and smaller hippocampus. This conclusion did not involve the

entire midbrain, since no association was observed between the

SNpc and the size of the hippocampus in AD patients (133).

Interestingly, the study by Serra, et al. (130) was the first to

observe a direct association between functional disconnections

of the VTA and early NPS since the MCI stage (Table 1):

comparison of patients with and without these symptoms

confirmed that patients with apathy, depression or anxiety

showed a stronger disconnection between the VTA and the

default-mode network. Subsequent studies showed additional

deficits that mostly affect the mesocorticolimbic system, while

leaving the nigrostriatal system largely intact. For example, by

combining structural MRI and 18F-FDG-PET glucose metabolic

data, Iaccarino et al., showed significant tissue atrophy, reduced

metabolism and widespread loss of gray matter in VTA targets

in the medial temporal lobe related to memory performance, but

also in targets related to NPS such as the ventral striatum, orbito-

frontal cortices and amygdala in both MCI and AD patients
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(136). On the other hand, regions of the nigrostriatal pathway

exhibited fewer alterations (136, 139). Similar results were

obtained with a DAT-Scan [(123I)FP-CIT-SPECT], focusing

specifically on the dopaminergic innervations (140).

An interesting finding was that the degree of loss of

dopaminergic inputs in the various brain targets examined

was analogous between the MCI and AD-with-dementia stages,

suggesting that the dopaminergic dysfunction is an early event

that also reaches a plateau early along the disease progression

(140). Of note, these studies also confirmed that the extend of

gray matter atrophy in mesocorticolimbic dopaminergic targets

since the MCI stage was associated with greater severity of

NPS, in particular depression linked to the meso-cortical route,

anxiety linked to the mesolimbic route, and apathy linked to

the mesohippocampal/meso-amygdaloid route (136). Indeed,

stronger loss of gray matter in dopaminergic pathways was also

paralleled by a worsening not only of episodic memory but also

of behavioral alterations, related to the emergence of psychiatric

symptoms and delusions in patients with AD (137). Given the

link between the mesocorticolimbic dopamine and NPS, and the

fact that these symptoms speed up the disease progression, it is

not surprising that functional disconnection of the VTA with

mesocorticolimbic targets can accelerate the conversion from

the MCI stage to clinical AD (137, 141, 142).

Conclusions: Implications for early
diagnosis and treatment

Overall, the above mentioned clinical studies show that the

various functional, structural or metabolic alterations affecting

the dopaminergic VTA and its mesocorticolimbic targets since

the MCI stage (Figure 1, panel B) are a very precocious

phenomenon in the disease progression, that can be related with

the early appearance of NPS. In fact, today the assessment of

CSF biomarkers and the application of the Neuropsychiatric

Inventory (NPI) for evaluation of NPS are standard clinical

practices, with a strong proven link between the two, such

as increased levels of total (t-tau) and phosphorylated tau (p-

tau) proteins and low levels of Aβ42 correlating with apathy,

anxiety, agitation, and irritability (143–148). Combined with

these diagnostic tools, early identification of alterations in

the mesocorticolimbic dopamine system could provide an

additional valid biomarker aimed at the prognosis of NPS and

thus prediction of disease acceleration and faster conversion

fromMCI to AD.

Another aspect to consider is the possibility of early

intervention based on a pharmacological treatment against

dopamine-related symptoms since the MCI stage, with the aim

of slowing down their appearance, improving the quality of life

and delaying the conversion to AD. Several dopaminergic drugs

have already shown to have positive effects in mild-AD patients

(80, 149–153), but their effectiveness as agents that can delay

conversion from MCI to AD has yet to be investigated. Also,

these earlier clinical trials with dopaminergic drugs have focused

mainly on cognitive rather that neuropsychiatric deficits. Yet,

today there is increasing demand for the approval of specific

drugs for the treatment of NPS in AD, considering also that no

such drugs have been approved so far by the FDA. Indeed, drugs

usually prescribed to patients with NPS are often anxiolytics,

atypical antipsychotics, antidepressants or mood stabilizers, all

unapproved for AD, with uncertain efficacy and important

adverse effects (154–158). Thus, focused clinical trials that are

specific for NPS in MCI and AD are essential. Fortunately,

progress in this field is starting to emerge with specific focus on

catecholamine reuptake inhibitors like methylphenidate (159–

162).

Since disease-modifying treatments have failed, new studies

need to focus on a paradigm shift for preventing and treating

AD. The emerging experimental and clinical results pinpoint

the VTA atrophy as a supportive feature for the diagnosis of

probable AD and a target for next pharmacological treatment.
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