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Copper is an integral component of various enzymes, necessary for mitochondrial respiration and other biological functions. Excess
copper is related with neurodegenerative diseases as Alzheimer and is able to modify cellular redox environment, influencing its
functions, signaling, and catabolic pathways. Tryptophan degradation through kynurenine pathway produces some metabolites
with redox properties as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HANA). The imbalance in their
production is related with some neuropathologies, where the common factors are oxidative stress, inflammation, and cell death.
This study evaluated the effect of these kynurenines on the copper toxicity in astrocyte cultures. It assessed the CuSO4 effect,
alone and in combination with 3-HK or 3-HANA on MTT reduction, ROS production, mitochondrial membrane potential
(MMP), GHS levels, and cell viability in primary cultured astrocytes. Also, the chelating copper effect of 3-HK and 3-HANA
was evaluated. The results showed that CuSO4 decreased MTT reduction, MMP, and GSH levels while ROS production and cell
death are increasing. Coincubation with 3-HK and 3-HANA enhances the toxic effect of copper in all the markers tested except
in ROS production, which was abolished by these kynurenines. Data suggest that 3-HK and 3-HANA increased copper toxicity
in an independent manner to ROS production.

1. Introduction

Metals have a vital participation in some cellular processes as
enzyme cofactors, as structural and antioxidant components,
and also as part of metabolism. For this reason, their balance
in cell environment is important and their unbalance causes
damage in elemental cell structures as lipids and DNA; there-
fore, metals excess can be toxic mainly by oxidative stress
production [1–3]. Copper is the third most abundant essen-
tial transition metal that is naturally found in human liver
[4] and the most abundant in the brain [5]; this metal works
as structural and functional part in various systems. In CNS,

copper can act as cofactor of some antioxidant enzymes like
+ copper/zinc-dependent superoxide dismutase (SOD-1) and
has big importance in respiration mitochondrial respiration
as part of cytochrome c oxidase structure [6, 7]. In
addition, this metal participates in the neurotransmitter bio-
synthesis (noradrenaline) and can be stored in ceruloplasmin
[8–10]. Copper can be transported into the brain through
copper transporter 1 (Ctr1) and toward inner of brain cells
by the ATPase copper transporter (ATP7A) and the divalent
metal transporter (DMT1) [11–15]. It has been reported that
astrocytes have a great influence in cerebral copper
homeostasis and they can store big amounts of this metal
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due to specific characteristics as vast amounts of DMT1, ferri-
tin, metallothionein, and antioxidants as glutathione (GSH)
[13, 16, 17]. However, alterations in copper metabolism have
been related with neurodegenerative diseases as Alzheimer’s
(AD), Parkinson’s (PD), Menkes (MD), and Wilson’s (WD)
diseases, triggering an oxidative stress state in cell environ-
ment, resulting in disturbance of energymetabolism and reac-
tive oxygen species (ROS) production [18–21]. ROS can also
stimulate endogenous pathways that can be modulated by
redox environment as the kynurenine pathway (KP).

KP is the main route of tryptophan (Trp) catabolism.
Trp is an essential amino acid, which can be metabolized
through different pathways to form important substances
as serotonin and melatonin, but more than 95% is
degraded through KP [22], whose main aim is NAD+

production, an electron carrier and cofactor in some redox
reactions [23]. KP is present in the liver, kidney, and brain
of various mammals such as mice, rats, guinea pigs,
rabbits, monkeys, and humans [22, 24, 25]. Along the
pathway, different metabolites with neuroactive activity
and/or redox properties are produced. KP is highly regu-
lated by redox status of the cellular environment, but its
metabolites can also modify this environment due to their
redox properties [26]. The alteration in KP metabolite
levels has been associated with aging and several neurode-
generative diseases as Huntington, Parkinson, and Alzhei-
mer [27]. Specifically, 3-hydroxykynurenine (3-HK) and
3-hydroxyanthranilic acid (3-HANA) have been studied
by various research groups, which describe controversial
results. The metabolite 3-HK is found at nanomolar
concentrations in CNS in normal conditions, but its levels
are modified in neurodegenerative diseases. In fact, the
amount increases as much as three times in Huntington’s
disease [28, 29]. It has been reported that 3-HK is able to
induce cell death through apoptosis in brain regions as well
as in cell cultures and in vivo experiments (with DNA frag-
mentation and chromatin condensation) [30–33]. In addi-
tion, it has been shown that 3-HK generates oxidative stress
besides that it triggers protein aggregates in human lens
and finally cataract formation because of its interaction with
metals [33–35]. On the other hand, there are reports where it
was observed that 3-HK (0–100 μM) works as an antioxidant.
In this context, 3-HK and 3-HANA were able to decrease
lipid peroxidation and GSH oxidation in brain cortex
homogenates [36]; in Aldrichina grahami homogenates, 3-
HK was able to trap superoxide [37]. In other reports, it has
been demonstrated that 3-HK can capture hydroxyl and
peroxyl radicals [36, 38]. Recently, it was shown that 3-HK
can have chelating properties with metals as ferrous and
also can scavenge OH• and ONOO− in chemical combina-
tory assays [39].

Moreover, 3-HANA has also ambiguous characteristics
which cause toxicity in neuronal cultures and can produce
protein damage due to its interaction with metals and with
the ability to generate hydroxyl radicals through Fenton’s
reaction. Besides, it has been reported that 3-HANA can have
uncoupling effect in oxidative phosphorylation and is able to
decrease oxygen consumption-activating astrocytes and neu-
ron death [33, 34, 40–42]. Nevertheless, 3-HANA is

described as scavenger of OH• and ONOO− in chemical
combinatory assays and can act as a chelator of ferrous ion
[36, 39]. In addition, 3-HANA can be an inflammatory and
neuroprotector molecule since it induces hemeoxygenase-1
and suppresses cytokine and chemokine production stimu-
lated by IL-1/IFN-γ and toll-like receptor (TLR) ligands lead-
ing to neuroprotection [43].

Due to the fact that 3-HK and 3-HANA influence the
redox environment and knowing that copper can be toxic
to the cell, the aim of this work was to determinate the effect
of the coincubation of copper with these two kynurenine
metabolites, in the toxicity induced by this metal.

2. Materials and Methods

3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-
HANA), copper sulfate (CuSO4), thiazolyl blue tetrazolium
bromide, 2′,7′-diclorodihidrofluoresceine diacetate (DCF-
DA), and propidium iodide (PI) were obtained from Sigma
Chemical Company (St. Louis, MO, USA). Dulbecco’s mod-
ified eagle’s medium (DMEM) and fetal bovine serum (FBS)
were purchased from Gibco BRL (Grand Island, NY). All
other chemicals were of the highest commercially available
purity and obtained from known commercial suppliers. Solu-
tions were prepared using deionized water obtained from a
Milli-RQ (Millipore) purifier system.

2.1. Copper Chelation Assays. Chelation capacity of both KP
metabolites was assessed according to previous report [44],
where different concentrations of 3-HK and 3-HANA
(0-1mM) were tested. Briefly, a solution of chelator (50μl
of 3-HK or 3-HANA in different concentrations) was mixed
with CuSO4 (50μl) in HEPES buffer (50μl). After 2 minutes,
50μl of hematoxylin or DMSO (blank) was added and mixed
for 3 minutes. Then, the absorbance was measured during
4min. The wavelength used was different for each pH tested.
Three different pH (5.5, 6.8, and 7.5) and 2 different buffers
were tested (sodium acetate buffer pH5.5 and HEPES
buffer pH6.8 and 7.5), considering previous reports where
it was demonstrated that copper accumulation, as in the
pathologies, can change pH environment [45, 46].

2.2. Primary Astrocyte Cultures. Rat-cultured cortical astro-
cytes were obtained from the brains of 3 days postnatal Wis-
tar rats (PND). Cells were seeded in Roux flasks at a 9× 106
cells/ml density. The cells were maintained in DMEM sup-
plemented with FBS at 10% under incubation at 37°C with
CO2 (5%), until the cells were again seeded in 24-well plates
to be used. Over 95% of the cells were immunoreactive
for glial fibrillary acidic protein, an astrocyte-specific
marker [39].

2.3. MTT Reduction Assay. According to previous reports
[39, 47, 48], cellular function was evaluated by MTT reduc-
tion assay. This assay is employed as a functional status test
through the formation of formazan salts by the action of
dehydrogenases in viable cells [39]. Briefly, astrocytes
(100,000 per well) were treated with different copper concen-
trations (0–500μM), to stablish the toxic copper concentra-
tion. Then, CuSO4 (350μM) was coincubated with 3-HK
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Figure 1: Effect of CuSO4 on cellular function (a), ROS production (b), MMP (c), and cell viability (d) in astrocytes. After incubation for 24 h
with copper, MTT, DCFC-DA, JC-1, and iodide propidium were added to each well, respectively. Data are presented as mean values + SEM of
8 independent experiments from 4 different cultures. ∗p < 0 05 versus control (one-way ANOVA followed by Tukey’s test).
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Figure 2: Copper chelation capacity of 3-HK. Different conditions of pH were tested: pH 5.5 (a), pH 6.8 (b), and pH7.5 (c). Data are
presented as mean values + SEM of 8 independent experiments for each concentration. ∗p < 0 001 versus control (one-way ANOVA
followed by Tukey’s test).
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and 3-HANA (100μM) in DMEM medium for 24 h at 37°C.
After treatment, the medium was removed and 500μl MTT
(1mg/ml in DMEM medium) was added to each well. MTT
was incubated for 3 h at 37°C, then medium was removed,
and acid isopropanol was added to dissolve the blue forma-
zan salts. Quantification of resulting blue formazan salts
was done at a wavelength of 570nm in a plate reader
(EON, BioTek). The results were expressed as the percentage
of MTT reduction versus control values.

2.4. ROS Production Determination. ROS were evaluated
through DCF-DA oxidation [49]. Astrocytes (100,000 per
well) were treated with different copper concentrations (0–
500μM), and then copper (350μM) was coincubated with
3-HK and 3-HANA (100μM) in DMEM medium for 24 h
at 37°C. After that, medium was removed, and cells were
washed with saline solution and were added with 75μl of
trypsin. Cells were recollected, and 100μl of DCF-DA
(75μM) was added to the tubes and reincubated for 20min
at 37°C in darkness. After incubation, ROS formation was
quantified by flow cytometry at 488nm excitation and 532
emission considering 10,000 total events in FlowJo pro-
gramm. Data are presented as percentage of ROS production
versus control.

2.5. Mitochondrial Membrane Potential (MMP) Assay.Mito-
chondrialmembrane potential is amarker of healthy cells, and
JC-1, a lipophilic cation, is used to evaluate because it is
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Figure 3: Copper chelation capacity of 3-HANA. Different conditions of pH were tested. pH 5.5 (a), pH 6.8 (b), and pH 7.5 (c). Data are
presented as mean values + SEM of 8 independent experiments for each concentration. ∗p < 0 001 versus control (one-way ANOVA
followed by Tukey’s test).
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Figure 4: Effect of 3-HK and 3-HANA in the cellular
dysfunction induced by CuSO4 (350 μM). After 24 h of incubation
with 3-HK or 3-HANA (100 μM)+ copper, MTT was added to
each well and formazan salt was measured. Data are presented as
mean values + SEM of 6 independent experiments from 3 different
cultures. ap < 0 001 versus control and bp < 0 001 versus CuSO4
(one-way ANOVA followed by Tukey’s test).
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selective to changes in mitochondrial membrane potential
and can form red fluorescence aggregates (FL-1 channel,
emission length 525nm) with high MMP, whereas when
MMP is low, JC-1 is in its monomeric form (FL-2 channel,
emission length at 590 nm) and displays a green fluorescence
[50, 51]. After treatments, medium was removed, cells were
washed with saline solution, and then 75μl of trypsin was
added to each well. Cells were recollected and centrifuged at
2000 rpm for 10min. Medium was discarded, and mitochon-
drial membrane potential was evaluated through the label of
cells with 3μM of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylben-
zimi-dazolylcarbocyanine iodide (JC-1) for 15min at 37°C in
darkness. Then, cells were washedwith buffer assay two times.
After washing, cells were resuspended and analyzed by flow
cytometry. 10,000 events were assessed. Data are expressed

as mean fluorescence intensity (MFI) in FL-2 channel and
the percentage of cells that decreased MMP [39].

2.6. GSH Determination. GSH concentration was measured
with a glutathione detection assay kit (Abcam 65322). Briefly,
astrocytes were incubated with copper (350μM), 3-HK and
3-HANA (100μM), and with combinations of both in
DMEM medium for 24h at 37°C. After that, medium was
removed, cells were washed with saline solution, and then
75μl trypsin was added to each well. Cells were recollected
(100,000 cells) and centrifuged at 2000 rpm for 10min.
Medium was discarded, cells were washed with cold PBS,
resuspended in cell lysis buffer, homogenized, and centri-
fuged 10min at 4°C, and supernatant was collected. The cells
were deproteinized with perchloric acid and potassium
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Figure 5: Effect of coincubation of CuSO4 (350 μM) with 3-HK (100 μM) and 3-HANA (100 μM) on MMP in astrocytes. The MMP was
measured using JC-1 orange-red fluorescence. Changes in MMP were evaluated by flow cytometry. Representative dot plots of MMP are
showed in (a) control, (b) 3-HK, (c) 3-HANA, (d) copper, (e) copper + 3-HK, and (f) copper + 3-HANA. Percentage of mean
fluorescence intensity (MFI) is present in (g). Data are presented as mean values + SEM of 6 independent experiments from 3 different
cultures. ap < 0 001 versus control and bp < 0 001 versus CuSO4 (one-way ANOVA followed by Tukey’s test).
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hydroxide. Once deproteinized, samples were ready to use in
the GSH determination assay according to the kit’s instruc-
tions. Briefly, standard curve was prepared from 0.1μg/μl of
GSH and dilutions were done in lysis buffer. 50μl of standard
and 100μl of each sample were added to each well, and then
2μl of GST reagent and 2μl of monochlorobimane (MCB)
were added. The plate wasmixed, and fluorescence in samples
was immediately measured in a plate reader at 360nm excita-
tion and 460nm emission in a kinetic mode, every 3
minutes for 1 hour at 37°C. The results were expressed as
the percentage change in glutathione levels in treated versus
untreated control samples.

2.7. Viability Test Assay. Cellular death was assessed with
propidium iodide according to Magana-Maldonado et al.
[52]. Astrocytes were incubated with the combinations of
CuSO4 (350μM) with 3-HK or 3-HANA (100μM) in

DMEM medium for 24 h at 37°C. Then, medium was
removed, cells were washed with saline solution, and trypsin
(75μl) was added to each well. Cells were recollected and
centrifuged at 2000 rpm for 10min. Medium was discarded,
and propidium iodide (PI) was added (5μg/ml) and incu-
bated for 15min in darkness. After incubation with PI, sam-
ples were analyzed by flow cytometry, and a total of 10,000
events were assessed. PI fluorescence was determinated with
a FACSCalibur instrument, and data collection was per-
formed using unstained cells and positive controls for single
color. The results were expressed as cells death percentage.

2.8. Data Analysis. The results were expressed as mean
values± SEM. All data were analyzed by one-way analysis
of variance and Tukey’s post hoc test using the Prism soft-
ware (GraphPad, San Diego, CA, USA). Values of p < 0 05
were considered statistically significant.
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Figure 6: Effect of 3-HK (100 μM) and 3-HANA (100 μM) on ROS production induced by copper. After 24 h of incubation with the
kynurenines and copper, DCF-DA was added to all treatments to determinate ROS. Representative dot plots of MMP are showed in (a)
control, (b) 3-HK, (c) 3-HANA, (d) copper, (e) copper + 3-HK, and (f) copper + 3-HANA. Percentage of ROS production is showed in (g).
Data are presented as mean + SEM of 6 independent experiments from 3 different cultures. ap < 0 01 versus control and bp < 0 001 versus
CuSO4 (one-way ANOVA followed by Tukey’s test).
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3. Results

3.1. Concentration-Response Effects of Copper Toxicity in
Astrocyte Cultures. To evaluate copper toxicity, astrocytes
were incubated during 24h with different copper concentra-
tions (0–500 μM) in DMEM medium. Astrocytes showed
decrease on MTT reduction in a concentration-dependent
manner in all used concentrations, being the major effect
(80%) with 500μM of copper (Figure 1(a)). After it was
proven that copper had effect on cellular function and know-
ing that the dehydrogenases are responsible of MTT reduc-
tion, we evaluated how mitochondrial function was affected
and if ROS were implied in copper toxicity on astrocytes.
Copper reducedMMP in a concentration-dependent manner
(Figure 1(c)) and increased ROS production around 50% ver-
sus control; however, this effect was not concentration
dependent (Figure 1(b)). After the toxicity pattern was
observed, we evaluated cell death through propidium iodide
(PI), which is capable of binding and labeling DNA. After
incubation during 24 h with different concentrations of
copper, the cell death increased significantly since the lower
concentration (10 uM) was tested and this effect was concen-
tration dependent (Figure 1(d)).

3.2. Copper-Chelating Ability of 3-HK and 3-HANA.With the
purpose of testing if copper had an interaction with 3-HK or
3-HANA, we assessed the chelation capacity of 3-HK and
3-HANA for copper. The assay was carried out at three
different pH (5.5, 6.8, and 7.5) since we knew that copper
is able to modify the pH. Figure 2 shows the 3-HK ability
to form a chelating complex with copper in all pH tested.
This 3-HK ability to catch copper was more efficient in acid
pH being that the IC50 is at pH5.5= 56.223± 10.322μM,
IC50 at pH6.8= 74.731± 9.3231μM, and IC50 at
pH7.5= 74.232± 16.769μM.

On the other hand, 3-HANA had chelating capacity
for copper too, three different conditions were tested,
and in all of them, 3-HANA was able to catch copper
(Figure 3). At pH6.8, the most efficient ability to chelate
copper with an IC50=112.491± 7.212μM took place, fol-
lowing at pH5.5 with an IC50= 146.637± 4.922μM and
the pH where it was observed less effect was at pH7.5
with at IC50=559.497± 31.422μM.

3.3. Effect of 3-HK and 3-HANA in the Cellular Dysfunction
Induced by Copper in Astrocytes. After copper toxicity was
evaluated, we determined the kynurenine effect in the pres-
ence of this metal (350μM). Figure 4 shows that copper
decreases cellular function (around 50% versus control),
evaluated by MTT reduction assay, and the coincubation
with the kynurenines enhances this effect (around 80% ver-
sus control). The kynurenines alone do not have effect on
MTT reduction.

3.4. Kynurenines Enhance the Reduction of Mitochondrial
Membrane Potential Induced by Copper on Astrocytes. The
next step was to determine whether the effect on MTT reduc-
tion could be related with mitochondrial membrane potential
alterations. Representative figures are shown in Figures 5(a),
5(b), 5(c), 5(d), 5(e), and 5(f). 3-HK and 3-HANA (100μM)

alone do not induce effect on this parameter compared with
the control group. However, copper (350μM) is able to
reduce around 40% the MMP, while the coincubation of cop-
per with both kynurenines reduced around 60% the MMP
versus control.

3.5. 3-HK and 3-HANA Reduce ROS Production Induced by
Copper. Considering redox properties of 3-HK and 3-HANA,
the next experiment was to know if the potentiation in the
copper toxicity induced by the kynurenines was through
ROS production. Copper (350μM) induces around 60%
ROS production, and coincubation with 3-HK and 3-
HANA abolished this effect. Incubation of 3-HK and 3-
HANA alone did not have effect in ROS production
(Figure 6). Representative pictures are shown in Figures 6(a),
6(b), 6(c), and 6(d).

3.6. GSH Depletion Is Involved in Toxicity Pattern Induced by
the Coincubation of Copper and Kynurenines. As we know,
both copper and kynurenines can interact with GSH, and
then we evaluated the levels of this endogenous antioxidant
that it is in high concentration in astrocytes. 3-HK decreased
GSH levels around 20%, while copper decreased them
around 55%; 3-HANA did not have effect in this parameter.
However, the coincubation of copper with these kynurenines
decreased GSH levels around 70% versus control, in both
cases (Figure 7).

3.7. Effect of Copper Coincubation with Kynurenines on Cell
Viability. Figure 8 shows the effect of copper and kynure-
nines on cell viability. Representative pictures are shown in
Figures 8(a), 8(b), 8(c), 8(d), 8(e), and 8(f). 3-HK and 3-
HANA alone did not have effect on cell death, while copper
was able to increase the percentage of dead cells around
45%. Coincubation of copper with kynurenines enhanced
the number of dead cells (Figure 8(g)). Figure 9 shows repre-
sentative bright field micrographs of the different treatments.
3-HK and 3-HANA did not show difference compared with
control. However, in copper alone (Figure 9(d)) and the

Control 3-HK 3-HANA 3-HK 3-HANA
0
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40
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80
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120

CuSO4 (350 �휇M)
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a, b a, b

%
 G

SH

Figure 7: Effect of 3-HK and 3-HANA and their coincubation with
copper in GSH levels on astrocytes. GSH levels were determinated
after 24 h of incubation with the treatments. Data are presented as
mean values + SEM of 8 independent experiments for each
treatment. ap < 0 05 versus control and bp < 0 001 versus CuSO4
(one-way ANOVA followed by Tukey’s test).
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copper combination with 3-HK (Figure 9(e)) and 3-HANA
(Figure 9(f)), a considerable number of dead cells compared
with control can be seen.

4. Discussion

3-HK and 3-HANA are metabolites of tryptophan catabo-
lism, which possess redox properties and have been associ-
ated with neurodegenerative diseases as HD and AD. These
kynurenines are produced through KP, which is highly regu-
lated by redox environment. In this context, copper is an
integral part of many important enzymes involved in cellular
metabolism; however, its dyshomeostasis can generate
oxidative stress and it has been related with some neurode-
generative diseases in which also KP metabolites are involved
[53, 54]. In the present work, we evaluated the effect of 3-HK
and 3-HANA in the copper toxicity on astrocytes. We
performed the experiments in astrocytes since in the brain,
these cells are thought to play a key role in copper homeosta-
sis; in fact, it has been proposed that astrocytes can normally

accumulate this metal which will be used by themselves or
routed to neurons [53], and the second reason to use astro-
cytes is that 3-HK and 3-HANA cannot be enzymatically
degraded in these cells. First, we demonstrate that copper
had toxic effects on astrocytes as some previous reports
showed [55–57]. Copper was able to decrease cell functional-
ity and MMP and increase ROS production; these factors
may be closely related and be dependent on each other.
Despite the fact that copper has important functions as cofac-
tor of antioxidant enzymes as SOD 1, copper is also cytotoxic
considering that it can participate in ROS production
through Fenton’s reaction and to displace other elemental
metals [58, 59]. Besides, mitochondrial alterations and
changes in redox environment induced by copper can lead
to decrease cell viability as was observed in this work.

On the other hand, it has been shown that 3-HK and 3-
HANA are able to scavenge hydroxyl radical and peroxyni-
trite in chemical combinatory assays and also are able to
chelate some metals such as iron [39]. Keeping in mind this
background, we explore if 3-HK and 3-HANA would have
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Figure 8: Effect of 3-HK and 3-HANA on cell death induced by copper. The propidium iodide (PI) flow cytometry assay was used for the
evaluation of cell viability. Representative dot plots of IP are showed in (a) control, (b) 3-HK, (c) 3-HANA, d) copper, (e) copper + 3-HK,
and (f) copper + 3-HANA. Percentage of dead cell is showed in g. Data are presented as mean values + SEM of 6 independent experiments
from 3 different cultures. ap < 0 001 versus control and bp < 0 001 versus CuSO4 (one-way ANOVA followed by Tukey’s test).
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copper-chelating capability. Copper-chelating probes were
placed at three different pH (5.5, 6.8, and 7.5) by two reasons:
(1) in the method that we are using to determinate copper
chelation, the affinity of hematoxylin for cupric ions is
decreased when the pH is also reduced, and mainly (2)
because it has been described in previous reports that copper
accumulation, as in some pathologies, can change environ-
ment pH and this changes can influence the chelating capac-
ity of various molecules [44–46]. Our data show that both
kynurenine metabolites were able to chelate copper under
different conditions of pH; this results may be due to the
nature of 3-HK and 3-HANA since it has been reported that
these metabolites are good electron donors in electrochemi-
cal experiments [60].

According to redox and chelating properties of 3-HK and
3-HANA, we decided to evaluate their effect on the copper
toxicity. Both kynurenines were able to abolish ROS produc-
tion induced by copper; however, the toxic effect on mito-
chondrial and cellular function was enhanced by the
coincubation of copper with both kynurenines. These effects
may be due to the fact that both 3-HK and 3-HANA are able
to affect respiratory control (oxygen consumption in states 2
and 3 of mitochondrial respiration) [61] in addition to cop-
per toxicity in mitochondria. Both sceneries affect ATP pro-
duction and can lead to cell death as can be observed in
Figure 9. In this context, a previous report showed that 3-
HK and 3-HANA produced cellular damage but in an inde-
pendent way of ROS production, and actually, the oxidative
stress parameters evaluated were even below of basal levels
[39]. Moreover, the toxic copper effect enhanced by the
kynurenines can be due to the fact that these kynurenines
can be oxidized in the presence of copper as copper is reduced,

promoting cross-linking in important proteins [34]. Besides,
autoxidation of these hydroxykynurenines can form
compounds as xanthommatin radical, p-quinone, and 4,6-
dihydroxyquinolinequinonecarboxylic acid (DHQCA)which
are reactive [62] and can interfere with the mitochondrial
function and subsequently provoke cell toxicity. Other
parameter evaluated was the effect of copper and kynure-
nines on GSH, which is in high amounts in astrocytes [17].
GSH is responsible to form complexes with copper being
copper a natural pool in astrocytes; this complex is required
for the incorporation of copper into metallothionein and
for SOD activation. In the case of copper was overmuch,
GSH would be the first antioxidant to catch it and avoid a
triggering of oxidative effects [63–65]. Our data show that
copper (350 μM) decreased GSH levels and this effect was
also enhanced by 3-HK and 3-HANA. This could be
explained by the fact that in astrocytes, 3-HK can suffer a
deamination and this could occur slowly at physiological
pH or by the action of kynurenine aminotransferase (KAT),
forming 3-hydroxykynurenine glucoside (3-OHKG) in a
nonoxidative way, which in turn can form adducts with
GSH [66–68]. With the knowledge that KAT is the most
abundant KP enzyme in astrocytes, it is not hard to think
that 3-HK deamination is taking place and 3-OHKG can
form adducts with the large amounts of GSH in this cell
type, decreasing GSH available to catch copper and
allowing that free copper causes the greater damage
observed. Although that process has not been described
with 3-HANA, it has been shown that this metabolite is
also able to decrease GSH levels in some kind of cells
[69]. It is important to take into consideration that 3-HK
and 3-HANA could be good ROS scavengers and chelating

(a) (b) (c)

(d) (e) (f)

Figure 9: Effect of kynurenines on cell death induced by copper in astrocytes. Representative phase-contrast micrographs showing
the effect of coincubation of 3-HK or 3-HANA with copper. (a) Control, (b) 3-HK, (c) 3-HANA, (d) CuSO4, (e) CuSO4 + 3-HK
and (f) CuSO4 + 3-HANA.
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agents; however, their interaction with other cellular
components could increase the cell vulnerability to damage
toward other agents, as in this case, to copper.

5. Conclusion

This research provides important evidence about how two
endogen KP metabolites can intensify the cellular damage
induced by copper. It is relevant, because in some neurode-
generative diseases, they are found as common factors, the
alteration in copper concentrations or in other metals, as well
as KP metabolite alterations. The challenge for the future
research would be to know the precise modulation of KP
metabolites by metals and try to identify therapeutic targets
in diseases where these components are present.
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