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Petros et al. studied SARS-CoV-2 transmission at a university by integrating

epidemiological metadata, Wi-Fi-based location data, and viral sequences from

wastewater and clinical samples. They identified a novel viral lineage and used

digital contact tracing, genomics, and functional assays to delineate the social and

biological factors contributing to its expansion.
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CONTEXT AND SIGNIFICANCE

Understanding the factors that

influence the transmission of

SARS-CoV-2 and other pathogens

is critical to mitigate outbreaks.

Here, researchers at Colorado

Mesa University and at the Broad

Institute of MIT and Harvard

designed and assessed an

infectious disease surveillance

program that included diagnostic

testing and symptom reporting,

wastewater surveillance, and

digital contact tracing of students

at a university. Viral spread on

campus was a result of social

behaviors, such as the number of

contacts and the types of

interactions an infected person

had, and biological factors, such

as the SARS-CoV-2 variant an

infected person harbored. The

authors’ findings highlight the

need to design surveillance
SUMMARY

Background: Universities are vulnerable to infectious disease out-
breaks, making them ideal environments to study transmission dy-
namics and evaluate mitigation and surveillance measures. Here, we
analyze multimodal COVID-19-associated data collected during the
2020–2021 academic year at Colorado Mesa University and introduce a
SARS-CoV-2 surveillance and response framework.
Methods: We analyzed epidemiological and sociobehavioral data (de-
mographics, contact tracing, and WiFi-based co-location data) along-
side pathogen surveillance data (wastewater and diagnostic testing,
and viral genomic sequencing of wastewater and clinical specimens)
to characterize outbreak dynamics and inform policy. We applied rela-
tive risk, multiple linear regression, and social network assortativity to
identify attributes or behaviors associated with contracting SARS-
CoV-2. To characterize SARS-CoV-2 transmission, we used viral
sequencing, phylogenomic tools, and functional assays.
Findings: Athletes, particularly those on high-contact teams, had the
highest risk of testing positive. On average, individuals who tested
positive had more contacts and longer interaction durations than indi-
viduals who never tested positive. The distribution of contacts per indi-
vidual was overdispersed, although not as overdispersed as the distri-
bution of phylogenomic descendants. Corroboration via technical
replicates was essential for identification of wastewater mutations.
Conclusions: Based on our findings, we formulate a framework that com-
bines tools into an integrated disease surveillance program that can be im-
plemented in other congregate settings with limited resources.
Med 3, 1–18, December 9, 2022 ª 2022 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

http://creativecommons.org/licenses/by/4.0/


programs that capture social

behaviors and viral lineage

information in congregate

communities.
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INTRODUCTION

Infectious disease outbreaks are existential threats to congregate communities; uni-

versities, in particular, are susceptible because of close-quarters housing,1,2 dense

social networks,3–5 and widespread involvement in sports teams and other student

organizations.5,6 Students may also be individually vulnerable to infection due to

sleep deprivation7 and poor hygiene.8 In addition to their own susceptibility, univer-

sities have potential to drive transmission in surrounding communities.9–11

At the same time, residential universities are ideal environments for the study of

pathogen transmission and the impact of interventions due to their semi-insular na-

ture and their role as centers of innovation.12 In response to SARS-CoV-2 they widely

employed high-cadence testing,13–15 vaccination programs,16,17 strict isolation of

cases in dedicated facilities,18–21 and social distancing measures.22–25 In addition,

universities are well-positioned to test and implement new surveillance methods

that can subsequently be applied at greater scale. For example, they were among

the first to implement SARS-CoV-2 wastewater surveillance,18,26 institution-wide

viral sequencing,21,27 and contact tracing via WiFi network co-location data.28,29

Colorado Mesa University (CMU) committed to in-person instruction of approxi-

mately 8,000 students for the 2020–2021 academic year, motivated by a desire to

avoid amplifying resource disparities via remote learning. This decision necessitated

a rigorous SARS-CoV-2 surveillance program, balancing public health goals with effi-

cient use of limited resources. Given these considerations, CMU eschewed manda-

tory periodic testing of all university members in favor of a surveillance program with

randomized testing and robust reflexive testing—i.e., strategic testing of students

due to reported symptoms, contact with recently diagnosed individuals, or a posi-

tive wastewater signal in their residential dorm.

CMU piloted Lookout, a tool integrating multiple data types to identify, alert, and

test individuals or groups at increased risk of infection (Figure 1; demo: https://

sentinel.network/lookout-demo-campus). Lookout integrated numerous data types,

including symptoms (reported through the companion mobile app, Scout30), clinical

diagnostic test results, student attributes (e.g., residence hall and sports team affil-

iations), self-reported contacts of positive individuals, viral genome sequences from

diagnostic specimens, and wastewater viral titers. The interactive dashboard al-

lowed the administration to quickly identify students at risk of infection and to mini-

mize opportunities for transmission. Here, we explore the utility of combining these

and additional data types (including WiFi co-location logs and genome sequences

from wastewater effluent) to design effective disease surveillance systems.
Colorado Mesa University, Grand Junction, CO
81501, USA

21University of Massachusetts Medical School,
Worcester, MA 01655, USA

22Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School,
Worcester, MA 01655, USA

Continued
RESULTS

CMU deployed a comprehensive and effective surveillance program based on

a multi-pronged testing approach

Over the 2020–2021 academic year, CMU’s surveillance program identified 1,113

COVID-19 cases (1,076 students, 37 faculty or staff) through randomized and reflex-

ive testing. The test positivity rate was 5.1% in Fall 2020 (August 17–November 20)
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Figure 1. Lookout implements real-time monitoring of COVID-19 cases

The Lookout tool integrates diagnostic test results, student metadata, viral genome sequences,

and wastewater viral titers. A demo with representative synthetic data is available at https://

sentinel.network/lookout-demo-campus/. Overview: current data on community case burden, test

volume, high-incidence groups, and symptom and exposure attestation. Clearance: counts of the

individuals complying with the training and symptom attestation requirements for campus entry.

Testing: reports of positive tests in the past 7 days as well as the volume of tests scheduled, taken,

and missed for the current week. Testing—baseline: the number of tests administered over time

relative to the amount needed to successfully test the entire population before a return to campus.

Wastewater: viral loads over time, measured on a per-sewershed basis and aligned with individual

test results from the same residence halls. Dorms: spatial position of residence hall cases on a per-

floor basis. Individuals may be selected to view their campus associations (i.e., potential close

contacts) and current attestation, test, and isolation status. Case map: view of case locations for

members of the university community who live off campus, with hot spots for locations of high case

density. Sequencing: phylogenetic tree of viral genomes collected from university cases.

Individuals may be selected to highlight other individuals who are members of the same cluster.

Viral lineages are noted. Symptoms: timelines depict reported symptoms for students or staff,

including fever, cough, chills, sore throat, shortness of breath, loss of smell/taste, and runny nose.

Contacts: the list of contacts reported by cases, and their associated contact information. Lookup:

information on a user-queried individual, including group affiliations, test result history, symptom

history, attestation history, and contact history.
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and 1.5% in Spring 2021 (January 18–April 30) (Figures 2A–2C); individuals who

tested positive were moved to an isolation dorm. CMU’s randomized testing strat-

egy sampled students non-uniformly to test those at greater risk of onward transmis-

sion, i.e., on-campus students and athletes.

In addition, CMU tested individuals identified by institutional contact tracing as

close contacts. Of the identified positive individuals, 720 (65%) reported close
Med 3, 1–18, December 9, 2022 3
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Figure 2. Data types, incidence rates, and epidemiological risk factors for SARS-CoV-2 positivity on Colorado Mesa University’s campus

(A) Cohort description. A subset of students at Colorado Mesa University (CMU) tested positive for COVID-19 via reflexive or random surveillance qRT-

PCR testing. CMU provided demographic and behavioral metadata for each case. Most students who tested positive were enrolled in the WiFi proximity

program (gray). Some positive samples were available for viral genomic sequencing (yellow).

(B) Data collection time points (black) by data type during the Fall and Spring semesters. Data not shown for November 21–January 18 due to winter

recess.

(C) Upper: weekly COVID-19 incidence (black) and number of tests conducted (blue) over the 2020–2021 academic year. Lower: percent positivity rate.

Data not shown for November 21–January 18 due to winter recess.

(D) The difference between the number of cases observed and the number of cases expected (based on sports team size and scaled by the number of

cases expected; y axis) versus the number of cases expected (x axis) per sports team. The dashed line at y = 0 separates teams with more (above) or fewer

(below) cases observed than expected. Teams are colored by contact level (legend). M refers to men’s teams and W to women’s teams.

(E) The difference between the number of cases observed and the number of cases expected (based on class size and scaled by the number of cases

expected; y axis) versus the number of cases expected (x axis) per class year. The dashed line at y = 0 separates classes with more (above) or fewer

(below) cases observed than expected. Classes are colored by semester (legend).
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contacts, enabling subsequent detection of 93 distinct cases (8.4% of the total cases)

within a week of the sentinel case’s positive test. These efforts identified plausible

transmission links; among pairs of sequenced cases identified via contact tracing,

79% had closely related genomes (with a genetic distance of at most two mutations),

compared with 10% among randomly chosen sequenced pairs (Figure S2A).
4 Med 3, 1–18, December 9, 2022
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Frequent wastewater surveillance enhanced reflexive testing, identifying SARS-CoV-

2-positive residence halls whose residents were then randomly selected for follow-

up testing. The effort captured effluent from �75% (Fall) and �85% (Spring) of the

residential population. In response to spikes in viral titer, contributing residence

halls were oversampled for testing; when warranted, up to half of a hall’s residents

were tested. The success of this program is reflected in the correlations between

hall testing rates, which were primarily modulated by reflexive testing, and hall inci-

dence rates (correlation = 0.60, p = 0.04), and between wastewater titers and

contemporaneous case counts (correlation = 0.40, p < 0.001; Figures 5A, 5B, and

Figure S3).

To assess the overall efficacy of CMU’s surveillance program, we compared

CMU’s incidence rate to that of Mesa County, which had limited testing available

at the time. CMU’s weekly incidence exceeded county incidence rates and

predicted them with a lag time of 3 days (correlation = 0.73; Figures S1A and

S1B). This is consistent with reports that adequate university testing can fore-

shadow community outcomes12 and highlights the ability of university testing pro-

grams to serve as bellwethers. As the pandemic’s impact on the surrounding

community became clearer, the university sponsored testing for external commu-

nity members, both as a public benefit and to limit spread of SARS-CoV-2 into the

campus.31
Epidemiological analyses identify student attributes associated with SARS-

CoV-2 positivity and support a surveillance paradigm of targeted testing and

risk mitigation

We identified risk factors among a wide range of institutionally captured attributes

for individuals who tested positive: role (i.e., student or faculty/staff), sex, class

year,32 test date, association with a residence hall, and membership on a sports

team. Residence halls and sports teams were annotated with features, including

perceived contact risk for sports teams (Data S1). Our results support a two-pronged

surveillance strategy, in which groups at increased risk are targeted for higher-

cadence testing, while putatively causal factors are mitigated via institutional pol-

icies that reduce risk.

Athletes were 2.45 times as likely to test positive (Figure S1C), despite testing only

1.55 times as frequently as non-athletes. Meanwhile, on-campus students tested

positive 1.30 times as often as their off-campus peers (Figure S1C), despite testing

1.80 times as often. Thus, sports participation was associated with increased risk of

SARS-CoV-2 positivity, while residential living was not. Males, freshmen, and juniors

also exhibited more cases than expected (Figures S1C and 2E; Data S1). These find-

ings may underscore risk factors relevant for other universities, such as athletic

participation, while emphasizing that policy can mitigate factors otherwise pre-

sumed to be risky, such as on-campus living.

Among sports teams, we identified specific attributes that predicted differences in

case counts relative to team size. High-contact sports teams had increased incidence

rates (Data S1), with 50% more cases than expected from the risk for athletes as a

whole, while low-contact teams had 47% fewer (Figure 2D). We found no association

between either sports location (i.e., indoor versus outdoor sports) and incidence

rates or between sports testing and incidence rates (correlation = �0.05, p =

0.81), although sports played in both seasons had higher incidence rates than Fall

or Spring sports (Data S1). These findings are consistent with a model where
Med 3, 1–18, December 9, 2022 5
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individual athletes sporadically contract COVID-19, with an increased risk of further

transmission and thus outbreaks on higher-contact teams or teams with longer

seasons.

Because COVID-19 incidence rates varied from 9.7% to 27% across residence halls

(Data S1), we conducted linear regression with multiple possible predictors to char-

acterize factors that influenced incidence rates (Figures S4A and S4B). Two features

were significant predictors: percent occupancy (i.e., percent of available beds filled)

and private (versus hallway) bathrooms (see Figures S4C–S4E for model validation).

For every increase of 10% in occupancy, our model predicted an increase of 0.015 in

incidence, supporting institutional de-densification measures. Strikingly, halls with

in-unit or private bathrooms were predicted to have an incidence 0.059 higher

than those with hallway bathrooms, consistent with reports that a majority of

SARS-CoV-2 transmissions occur within households (here, within suites).33 Other

possible explanations include compensatory protective measures (i.e., masking or

social distancing) in larger bathrooms or increased hygiene of hallway bathrooms,

which were cleaned by professional staff rather than residents. Importantly, our

model does not account for possible social confounders such as clustering of certain

groups (e.g., athletes) within specific residence halls.

Distinct interaction dynamics of positive individuals within WiFi proximity

data reveal potential for digital contact tracing

We explored a dataset of anonymized daily logged connection locations (i.e., access

point and building) for students connected to campus WiFi for at least 15 min and

documented how such data can be extended for real-time disease surveillance.

Data were obtained from a program implemented in 2018 to assess facility use

and student engagement. Students were alerted about the program via a

campus-wide notice and could opt out; 98% of students participated.

Through an examination of campus-wide connectivity patterns, we identified asso-

ciations between student activity and CMU’s COVID-19-related policies. We found

elevated on-campus presence during weekdays (versus weekends) and in residence

halls (versus other building types) in Fall 2020 (Figures S5, S6A, and S6C), reflecting

university policies that discouraged on-campus gathering. When mitigation policies

relaxed in Spring 2021, weekend presence increased relative to Fall 2020

(Figures S6B and S6D). Moreover, after testing positive, individuals had 42% fewer

contacts than during the preceding 10 days, indicating adherence to isolation pol-

icies (Figure S7A). This quantification of policy adherence suggests that WiFi data

can be used to assess policy implementation or to determine the effects of policy up-

dates in real time.

We found that positive individuals exhibited distinct patterns in their social behav-

iors. Individuals who eventually tested positive exhibited larger social networks

than those who remained negative: they spent more days on campus (Figure S7B),

had more daily contacts (Figure 3A, left), and had longer interactions with each con-

tact (Figure 3A, right), creating more opportunities for viral transmission. Further-

more, pairs of students identified via contact tracing had significantly longer interac-

tions in the 10 days preceding their positive tests than other pairs of positive

students (Figures S7C and S7D). These pairs of positive students (i.e., pairs where

COVID-19 transmission may have occurred) interacted for significantly longer than

pairs in which transmission did not or could not have occurred (i.e., pairs involving

one or more students who never tested positive; Figures S7C and S7D). These pat-

terns suggest that WiFi tracing can be harnessed to automatically flag close contacts
6 Med 3, 1–18, December 9, 2022



Figure 3. Social connectivity network inferred from the WiFi co-location data identifies behavioral trends that correlate with case counts

(A) Left: distributions of daily contacts for students who tested positive (orange) versus those who remained negative (gray) over the course of each

semester. Right: distributions of average exposure time per contact, in minutes, for cases (orange) versus those who remained negative (gray). p values

via Wilcoxon rank sum test.

(B) Visual representation of the network metric attribute assortativity (AA). Network scenarios where the AA coefficient is equal to 1, 0, or �1 are

depicted. Positive AA values indicate a higher propensity for within-group interactions, while negative values indicate a higher propensity for between-

group interactions.

(C) Comparison of per-semester AA for individuals within a 10-day window of a positive test (i.e., pre-positives) versus those who never tested positive

(i.e., negatives). Ninety-five percent confidence intervals (Cis) (blue) were calculated by permuting pre-positive and negative labels within the proximity

network 40 times per day. The AA of the proximity network (black) was above the upper bound of the CI for 69.4% (66/95 days) of the Fall 2020 semester,

implying significance at p < 0.025. Results were consistent for Spring 2021 (Figure S8).

(D and E) Relationship between smoothed case counts and smoothed AA for Fall 2020 (D) and Spring 2021 (E). Smoothing via the Savitzky-Golay filter

(window length = 17, polynomial order = 4).
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of infected individuals, supplementing or even substituting for manual contact

tracing.

We further explored interactions between positive and negative individuals using attri-

bute assortativity (AA), which quantifies the extent to which individuals interact within

versus between groups (Figure 3B). We found that both positive (i.e., individuals who

test positive during the semester) and pre-positive (i.e., individuals within 10 days of a

positive test) individuals weremore likely to associate with one another than with nega-

tive individuals (Figures 3C and S8A–S8C). This relationship remained significant when

removing pre-positive individuals who identified one another as close contacts, sug-

gesting that it is not biased by reflexive testing following manual contract tracing (Fig-

ure S9). Interestingly, the AA for pre-positive individuals was a leading indicator of daily

case counts, by 8 days (Fall) and 3 days (Spring; Figures 3D, 3E, and S8D–S8F), sug-

gesting that the degree of within-group interactions among infectious individuals in-

creases in the days leading to these individuals’ positive tests.
Med 3, 1–18, December 9, 2022 7
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Figure 4. Viral genomic sequencing highlights case clusters, viral lineages, and phylogenomic

overdispersion

(A) Pango lineage proportions for university cases during Fall 2020 and Spring 2021.

(B) Phylogenetic tree with branch lengths scaled to time. B.1.2 clusters (blue), B.1.429.1 cluster

(orange), and all other lineages (black). Vertical bar on the left of each introduction indicates the

inferred ancestral root date of each cluster; cases are tip dots at right of the tree.

(C) Distribution of phylogenetic offspring, with a negative binomial distribution fit (dotted line) to

quantify overdispersion. Offspring were defined as all phylogenetic descendants of a single

introduction to campus; mean = 2.56 offspring per introduction; k = 0.13 (95% CI, 0.04–0.21).

(D) Distribution of the number of contacts from positive individuals identified during contact

tracing, with a negative binomial distribution fit (dotted line). Contacts were defined as individuals

with interactions longer than 15 min in the 48-h period prior to positive test or symptom onset;

mean = 1.71 contacts per positive individual; k = 0.83 (95% CI, 0.71–0.94).

(E) Distribution of the number of WiFi contacts observed from positive individuals, with a negative

binomial distribution fit (dotted line). Contacts were defined as individuals with interaction

durations greater than 15 min in the 48-h period prior to testing positive or symptom onset; mean =

177.94 contacts per positive individual; k = 0.89 (95% CI, 0.81–0.98).
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Phylogenetic analysis of clinical viral genomes identifies cluster size

overdispersion and cryptic transmissions, leading to concrete policy decisions

Viral genomic sequencing of residual biomaterial enabled exploration of transmis-

sion dynamics and monitoring of SARS-CoV-2 variants. At CMU, sequencing facili-

tated detection of 18 distinct Pango lineages (Figures 4A, S2B, and S2C).34 B.1.2

was the most abundant lineage at CMU and in Colorado, reflecting circulation be-

tween CMU and the surrounding community and highlighting the importance of

CMU’s sponsored testing for Mesa County.35 We identified continuous transmission

of this lineage between semesters, with 7 Spring cases descending from 17 Fall

cases as the result of an estimated 2–3 cryptic intermediate transmissions during

winter recess.36 This cluster was non-significantly enriched for off-campus students

relative to the remaining sequenced cases (83% versus 70% off-campus; p = 0.15);

possible off-campus continuation of the transmission chain over the break suggests
8 Med 3, 1–18, December 9, 2022
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that institutional surveillance programs may benefit from maintaining testing avail-

ability during school breaks.

We detected overdispersion in both genomic and social clusters, highlighting

the importance of policies that minimize superspreading events. Of 41 detected in-

troductions to the university, onward transmission was only observed from 13, with 5

of the clusters containing 80% of sequenced cases (k = 0.12 in a negative binomial

model, consistent with other studies37,38; Figures 4B and 4C). We also observed

overdispersion in the number of contacts per individual using both contact tracing

and WiFi proximity data, where 80% of reported contacts were made by 33% (k =

0.83) and 43% (k = 0.89) of positive individuals, respectively (Figures 4D and 4E).

Notably, social overdispersion only accounted for 13%–14% (the ratio of social k�1

to phylogenomic k�1) of the overdispersion in phylogenomic cluster size, empha-

sizing that overdispersion in SARS-CoV-2 transmission consists of both social and

biological components. Below, we document the interplay between social and bio-

logical factors that influenced the expansion of a large case cluster.

Contemporaneous wastewater viral sequencing supplements lineage

detection and enables detection of emergent mutations

During 6 weeks from February to mid-March 2021, we obtained 42 wastewater

samples from 10 sites for sequencing; 9 samples were sequenced in duplicate (Fig-

ure S3C). The concurrent collection of wastewater samples and clinical specimens,

with high breadth of coverage among the residential population, allowed us to

directly compare viral sequences from wastewater with those from contempora-

neous cases. We validated the utility of wastewater viral sequencing as a component

of a comprehensive surveillance program, as currently instantiated by Lookout.

Wastewater viral titers were lower than titers of clinical specimens collected from up-

stream individuals (Figure S10A). We sequenced wastewater samples, which had

similar sequence coverage to clinical samples from CMU, suggesting that there

was no particular bias in viral RNA degradation in wastewater (Figures S10B–

S10E). We used the Freyja tool39,40 to detect eight lineages in wastewater, three

of which were found in concurrent clinical cases (Figure 5C; Data S1). Another three

were observed in clinical cases prior to wastewater collection, suggesting unde-

tected campus circulation, shedding from previously infected individuals, or envi-

ronmental persistence. The remaining two, B.1.533 and B.1.350, were present in

the US but not the campus or state35; each was detected at low abundance in a

single sample and may have originated from a single individual. Wastewater

sequencing thus identified lineages not concurrently detected via clinical

sequencing, demonstrating particular relevance in instances of incomplete clinical

genomic sampling.

In addition to detection of defined lineages, wastewater sequencing can also iden-

tify novel mutations; for this latter use case, we found that quality control mecha-

nisms were essential to identify true variation. Of 1,521 wastewater single-nucleo-

tide variants (SNVs), 85% and 68% were not found in consensus genomes from

CMU and Colorado clinical samples, respectively, and only 4% were derived from

clinical minor alleles (Figure 5D). We thus hypothesized that many mutations arose

from sequencing or amplification errors, a theory supported by the order-of-magni-

tude difference in the number of SNVs detected in wastewater versus clinical sam-

ples as a function of sample count (Figure S11). We subsequently developed quality

control methods to corroborate mutations via detection in state-wide clinical ge-

nomes. We achieved high specificity for discarding SNVs not seen in Colorado
Med 3, 1–18, December 9, 2022 9
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Figure 5. Wastewater surveillance and sequencing measures aggregate viral load, identifies circulating lineages, and parallels viral genomes from

contemporaneous clinical cases

(A) Average wastewater viral titers (orange) versus weekly residential case count (black). Residential case counts were calculated relative to the subsets

of dorms monitored (75% of residential population in Fall 2020; 99% in Spring 2021). There was an anomalous peak in wastewater viral titer observed in

April, which may be due to technical error, differential shedding patterns, or undiscovered positive individuals.

(B) Viral titer (y axis) versus binned weekly case count (x axis; binned by powers of 2) for each wastewater sample. Viral titer and case count were

significantly associated via Fisher’s exact test (on binned slopes; p = 0.04) and Spearman’s correlation = 0.40 (p < 0.001).

(C) Lineages detected on campus via wastewater or clinical sequencing.

(D) The number of single-nucleotide variants (SNVs) detected in wastewater samples; each bar represents a single sample. Individual samples are

organized on the x axis in order of total number of SNVs. For each sample, SNVs are categorized by whether they were present in clinical sequences from

CMU (black), in clinical sequences from Colorado (pink), or in neither (gray). On average, 51% of SNVs in a single wastewater sample were not found in

CMU clinical samples, and 36% were not found in Colorado clinical samples.

(E) Comparison of quality control methods to remove SNVs not validated by presence in Colorado clinical sequences. The three methods compared are:

(1) allele frequency (AF): discarding SNVs present at an allele frequency below a given threshold; (2) read depth (DP): discarding SNVs located at a site

with a read depth below a given threshold; and (3) replicates (Reps): discarding SNVs not present within both of two technical replicates of a given

sample. These analyses are limited to the nine samples for which technical replicates exist. Left: ROC curves for each of the three filters. Middle:

sensitivity and specificity for allele frequency-based quality control method. Right: sensitivity and specificity for replicate-based quality control method.
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when we required presence in both of two technical replicates (specificity = 98%) or

an allele frequency exceeding 25% (specificity = 92%); both methods had low sensi-

tivity (50% and 62%, respectively; Figure 5E), as each excluded SNVs corroborated

by clinical viral genomes. This analysis provides real-word evidence of the impor-

tance of replicates for identifying true SNVs in wastewater samples, a finding previ-

ously shown for clinical minor allele validation.41

Of 68 replicate-corroborated SNVs found across the 9 wastewater samples, 11 (16%)

were not seen in clinical CMU samples (Data S1). Six of the 11 were present in Col-

orado and had allele frequencies >96% in single wastewater specimens, likely re-

flecting on-campus circulation of viral genotypes unsampled by clinical sequencing.
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Of the five remaining mutations, two were non-synonymous mutations in ORF1ab

(I1970S, T3462I) and were novel compared with published global variation,35 two

were synonymous mutations, and one was a premature stop codon. The latter

mutation, with an allele frequency of 4%, may be spurious; the other four, with allele

frequencies between 27% and 100%, could reflect either gut tropism or cryptic

transmission. Although these mutations’ phenotypic effects remain unknown, their

identification serves as a proof-of-concept and provides a framework for the detec-

tion of novel mutations in wastewater.

Detection of novel lineage B.1.429.1 on campus leads to high-resolution

characterization of social and biological factors implicated in its spread

In Spring 2021, we detected a cluster of cases that was concerning due to its unprec-

edented size and genomic ancestry; we proceeded to characterize it analytically and

experimentally to identify the social and biological factors that contributed to its

spread. This B.1.429.1 cluster resulted from a single introduction to campus, which

proliferated into several star-like descendant sub-clusters, consistent with clonal

amplification (Figure 6A). In total, the outbreak lasted for 45 days; in its final 4 weeks,

it represented 33% of sequenced clinical samples and was the most abundant

lineage in 47% of wastewater samples (Figures 6A and 6B). B.1.429.1 descended

from B.1.429—then deemed a variant of concern (VoC) due to reduced antibody

neutralization and increased viral shedding, infectivity, and transmissibility42—and

also included the recurrent S:Q677H substitution, posited to further increase trans-

missibility43 (Data S1).

We integratedWiFi and genomic data to investigate whether social or biological fac-

tors were driving the spread of B.1.429.1. While B.1.429.1-infected individuals

trended toward having more contacts than those contemporaneously infected with

other viral lineages, the results were nonsignificant (Figure S12A);moreover, they dis-

played no differences in interaction durations (Figure S12B). Thus, we hypothesized

that B.1.429.1’s expansion was at least in part due to inherent qualities of the lineage

rather than the social dynamics of the individuals within the cluster. We did find that

B.1.429.1-infected individuals clustered together in social networks (Figure 6C); i.e.,

they were on average one social connection closer to one another than to other pos-

itive individuals. WiFi-connected B.1.429.1 pairs also had significantly lower viral ge-

netic distances than non-connected B.1.429.1 pairs (Figure 6D), demonstrating that

connections observed in the WiFi network include plausible transmission events.

We inferred direct transmission links among B.1.429.1 cases and found that WiFi-in-

ferred transmission networks paralleled those constructed with traditional contact

tracing data. Alone, manual contact tracing and genomic sequencing resolved trans-

mission links for 61% and 68% of individuals, respectively (Figures S12D and S12E).

Thus, we combined genomic data with traditional (2 days before tests) or WiFi-

derived (2 or 10 days before tests) contact tracing, producing transmission models

connecting 82%, 87%, and 74% of sequenced cases, respectively (Figures 6E, 6F,

and S12F). We compared the cluster topology of these networks (via Jaccard dis-

tance; Data S1) and found that the WiFi 10-day data best approximated the tradi-

tional contact tracing data in transmission reconstruction. Due to the paucity of dis-

tinguishing mutations present between individual consensus sequences,44 we used

intrahost viral variation to supplement our transmission links. We identified a clear

transmission chain where a singlemutation present at low frequency in one specimen

(no. 26 in Figures 6E and 6F) reached fixation in two specimens (nos. 27 and 28 in

Figures 6E and 6F) collected 1 week later, consistent with bottlenecked transmission.

These three individuals clustered together in all reconstruction networks, but without
Med 3, 1–18, December 9, 2022 11



A

B

C

E F G

D

Figure 6. A multimodal exploration of the novel lineage B.1.429.1 via clinical and environmental genomic sequencing, WiFi proximity analyses,

transmission reconstruction networks, and experimental validation

(A) Phylogenetic tree showing the relationship between cases within the B.1.429.1 case cluster. Tree tips are anchored at their dates of sample

collection, and branch lengths are scaled by maximum likelihood.

(B) Three wastewater samples and three clinical samples (y axis), all of the B.1.429.1 lineage. The three wastewater samples had B.1.429.1 as the sole

identified lineage, and were extracted from site 3, for which residential halls B and M were the only upstream contributors. Clinical viral genomes from

three students believed to have contributed effluent to these wastewater samples, based on residential status and test date, are shown. The x axis

represents all SNVs present in at least one wastewater sample with 25% allele frequency or greater. SNVs are grouped by genomic position.

(C) Social proximity network for interactions occurring between putatively infectious individuals. Edges represent one or more simultaneousWiFi access

point connections between two individuals within 10 days of their positive tests. Each node represents a positive individual. The node color represents

their sequencing status (legend).

(D) Genetic distance for individuals infected with the B.1.429.1 lineage who are or are not connected via the social proximity network shown in (C). Effect

size = 1 mutation. p value via rank sum test.

(E and F) Transmission reconstruction network for B.1.429.1 cases created with genomic information as well as manual (E) or WiFi-inferred 10-day (F)

contact tracing data.

(G) Cell-cell fusion activity of viral pseudotypes with the ancestral allele, or with the S:Q677P or S:Q677H amino acid changes, relative to a luminescent

control with no Spike protein expressed.
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the transmission direction inferred from minor alleles or phylogenetic descent,

implying that transmission network reconstruction tools require further refinement.

Finally, we studied viral phenotypic factors that could explain the increased trans-

mission of B.1.429.1 on campus. We assessed the impact of the S:Q677H mutation

found in B.1.429.1 on single-cycle infectivity and on cell-to-cell fusogenicity in lenti-

viral pseudotypes (Figures S12G and S12H). While the mutation did not alter cell-

free virion infectivity (Figure S12C), it significantly increased fusion efficiency relative

to the ancestral B.1.429 spike protein (Figure 6G), likely due to its proximity to the

protein’s polybasic cleavage site. The S:Q677P mutation, which was detected in

contemporaneous CMU lineages, had a similar phenotype. This finding is consistent
12 Med 3, 1–18, December 9, 2022
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with a phenotypic advantage among SARS-CoV-2 haplotypes bearing S:Q677H or

S:Q677P.

Fortunately, B.1.429.1 was minimally detected outside the campus, pointing to the

success of CMU’s containment policies. This vignette highlights the power of system-

atic, multimodal surveillance programs to not only identify and mitigate transmission

events, but to also contribute to novel biological characterization of viral lineages.
DISCUSSION

Here, we analyzed clinical diagnostic data, case attributes, WiFi co-location logs,

wastewater samples, and viral genomic sequences to assess CMU’s pandemic

response program and to determine the relevance of each data type to infectious

disease surveillance. Our analyses showed that CMU effectively identified positive

cases through contact tracing, wastewater surveillance, and increased focus on

high-risk groups. Via analyses of WiFi connectivity data, we confirmed adherence

to school policies and evaluated the ability of WiFi data to replace or supplement

traditional contact tracing. In addition, we leveraged phylogenetic and epidemio-

logical analyses to propose future policies to limit disease spread (e.g., continued

testing during school breaks and risk prediction for testing prioritization) and to

identify and mitigate specific factors associated with increased risk (e.g., requiring

masking or increased testing to participate in high-contact sports). Our sequencing

of wastewater samples not only identified lineages independently of clinical

sequencing, but also allowed us to evaluate methods necessary for the detection

of novel mutations in wastewater. Finally, through analysis of case cluster overdis-

persion and the novel lineage B.1.429.1, we highlighted the relevance of investi-

gating both virological and sociobehavioral factors that can influence transmission.

Importantly, we used some data types to inform policy in near real time. Risk analyses

and contact tracing data suggested that spread primarily occurred in social groups,

suchas inhigh-contact sports teams;CMUthus invited students to register in social units

in Spring 2021, where they could associate freely but were subject to reflexive testing in

the case of a positive test.Moreover, students were alerted to the presence of a VoCon

campus 1–3 weeks after the lineage’s arrival, including time for viral genomic

sequencing, bioinformatics analysis, and the creation of straightforward and trans-

parent messaging that re-emphasized public health protocols. On the other hand,

wastewater sequencing and WiFi connectivity data were analyzed retrospectively, but

demonstrate the utility of these tools in future prospective surveillance programs.

Our results lead us to formulate a framework combining the analyzed tools within an

integrated disease surveillance system (Figure 7). We emphasize beginning with symp-

tom reporting, contact tracing, and isolation of infected individuals, and continuing

with efficient testing strategies, such as wastewater surveillance. While contact tracing

is essential, it is also time intensive and expensive to maintain; with further research,

WiFi proximity and geolocation data could potentially replace these efforts. Gathering

epidemiological metadata, symptom attestations, and diagnostic test results digitally

and with programmatic synthesis in mind is also a high priority because it can facilitate

real-time analyses and subsequent policy adjustments; the Lookout system serves as a

useful template (Figure 1).30 If finances allow, we suggest adding genomic surveillance

to identify transmission patterns and concerning lineages or mutations. For commu-

nities with wastewater surveillance, sequencing these samples provides a cheaper

alternative to clinical sequencing of all upstream individuals and enables identification

of lineages or mutations of interest. This tool cannot wholly replace clinical sequencing
Med 3, 1–18, December 9, 2022 13



Figure 7. A stepwise approach to outbreak surveillance with consideration of resource limitations

The actions to employ during an institutional outbreak, with delineation of relative cost and information feedback cycles. During an outbreak, initial

mitigation measures can be deployed prior to and independent of a surveillance program. A basic surveillance program will first incorporate testing, the

results of which will inform additional mitigation policies. Next, analyses of case attributes can be used to assess the risk of infection for specific sub-

populations; these analyses will allow for development of specialized, directed testing strategies. Finally, while more expensive, viral genomic

sequencing of clinical or environmental samples can be used to identify transmission trends and to detect emergent viral genomic variation with

potential public health or clinical relevance. This can be used to inform institutional policy and mitigation efforts. Actions involving solely personnel

time are the least expensive to implement (i.e., mitigation, risk analyses), while actions requiring both personnel and laboratory consumables are more

expensive (i.e., testing), and actions requiring highly trained personnel, laboratory consumables, and prolonged instrument time are the most

expensive to implement (i.e., viral sequencing).
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due to its inability to discern transmission trends. It is important to emphasize that dis-

ease surveillance is not a one-size-fits-all endeavor; in fact, we found parallel results

across data types.We suggest that the automated integration of a subset of data types

will more powerfully combat infectious disease outbreaks than a siloed implementa-

tion of all data types.

Limitations of the study

Our findings are subject to methodological and policy-based limitations. As with all

studies of infectious disease surveillance, transmission events and clustering can

violate statistical assumptions of independence among individuals. In addition, we

could not separate the impact that individual attributes (e.g., a particular sports

team or residence hall) had on risk of infection due to lack of data on the overlap be-

tween these attributes. Moreover, incomplete sampling of residual diagnostic and

wastewater samples limited us to a partial snapshot of SARS-CoV-2 genetic diversity

at CMU (Figures 2A and S3C). Furthermore, WiFi co-location data remain underex-

plored and do not capture off-campus interactions. As our study largely took place

prior to the widespread availability of SARS-CoV-2 vaccines45 and rapid antigen

tests,46 we cannot assess their impact on transmission or policy. Furthermore, there

are barriers to the implementation and execution of these surveillance approaches,

particularly for approaches with greater novelty (Data S1). Finally, CMU’s surveillance

paradigm prioritized community safety over individual privacy; thus, some of our

findings may not be generalizable to institutions with different prioritizations.
14 Med 3, 1–18, December 9, 2022
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Accounting for resource constraints, we built upon CMU’s community-driven mindset

to develop an efficient surveillance program and lay the groundwork for future ad-

vances. While a number of analyses here were conducted retrospectively, updates

to surveillance software, such as Lookout,30 could enable timely identification of risk

factors, proximity and location patterns, and lineages or mutations that are rising in fre-

quency or that have been categorized as VoCs. Moreover, this tool can be adapted for

use with other seasonal (e.g., influenza) or emerging pathogens. These programs can

further refine outbreak reconstruction tools by incorporating genomic data (including

major and minor alleles) and contact tracing (obtained from manual efforts or WiFi an-

alyses), with reported contacts weighted by the length or nature of the interaction. In

summary, we propose the automated integration of multiple data types as the most

powerful way to combat infectious disease outbreaks as they unfold.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

SARS-CoV-2 (COVID-19) Spike S1 antibody [HL1] GeneTex #GTX635656; RRID: AB_2888549

SARS-CoV/SARS-CoV-2 (COVID-19) spike
antibody [1A9]

GeneTex #GTX632604; RRID: AB_2864418

Bacterial and virus strains

Bovilis Coronavirus Calf Vaccine Merk Animal Health #16445

Biological samples

Saliva specimens CMU N/A

Wastewater specimens CMU N/A

Chemicals, peptides, and recombinant proteins

GlutaMAX Supplement ThermoFisher Scientific #35050061

TrypLE Express Enzyme (1X), no phenol red ThermoFisher Scientific #12604013

Nano-Glo Endurazine Live Cell Substrates ProMega #N2570

Critical commercial assays

MycoAlert Mycoplasma Detection kit Lonza #LT07-318

QIAamp Viral RNA Mini Kit Qiagen #52904

QIAcuity One-Step Viral RT-PCR Kit Qiagen #1123145

MagMAX Viral RNA Isolation kit ThermoFisher Scientific #AM1939

NEBNext ARTIC SARS-CoV-2 FS Library Prep Kit New England BioLabs #E7658L

NovaSeq 6000 SP Reagent Kit v1.5 (300 cycles) Illumina #20028400

NovaSeq XP 2-Lane Kit v1.5 Illumina #20043130

Illumina DNA Prep Illumina #20027213, #20027214, #20027216

NextSeq 500/550 Mid Output Kit v2.5 (300 Cycles) Illumina #20024905

TransIT-LT1 Transfection Reagent Mirus #MIR2304

Steady-Glo Luciferase Assay System Promega #E2510

Deposited data

RNA sequencing data NCBI SRA BioProjects GenBank: PRJNA715749 and
GenBank: PRJNA622837

GISAID consensus genomes GISAID

Genbank consensus genomes NCBI Genbank BioProjects GenBank: PRJNA715749 and
GenBank: PRJNA622837

Plasmids AddGene Jeremy Luban Lab

Experimental models: Cell lines

HEK 293T/17 ATCC #CRL-11268

Oligonucleotides

CDC SARS-CoV-2 primers (N1, N2, RP) CDC https://www.cdc.gov/coronavirus/2019-
ncov/lab/rt-pcr-panel-primer-probes.html

BCoV forward and reverse primers
(NOC43-1, NOC43-2)

Integrated DNA Technologies https://doi.org/10.1086/381207

BCoV probe (NOC43-p) with HEX fluorophore
and OQA quencher

Sigma-Aldrich https://doi.org/10.1086/381207

ARTIC Network n-CoV-19 V3 primers ARTIC Network https://github.com/artic-network/artic-
ncov2019/tree/master/primer_schemes/
nCoV-2019/V3

Recombinant DNA

HIV-1 pNL4-3DenvDvpr luciferase reporter
plasmid (pNL4-3.Luc.R-E-)

NIH AIDS Reagent Program #3418

pcDNA3.1 SARS-CoV-2 S Epsilon Q677P Addgene #190463

pcDNA3.1 SARS-CoV-2 S Epsilon Q677H Addgene #190462

pcDNA3.1 SARS-CoV-2 S Epsilon Addgene #190461
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pcDNA3.1-hACE2 Addgene #145033

pcDNA3.1-TMPRSS2 Addgene #190276

pscALPs LgBit Addgene #190277

pscALPs HiBit-FLuc Addgene #190278

Software and algorithms

Study-specific analyses GitHub (Broad Institute) https://github.com/broadinstitute/
sc2-cmu-study

LoFreq version 2.1.5 https://doi.org/10.1093/nar/gks918 https://csb5.github.io/lofreq/

viral-ngs 2.1.28 Broad Institute dockstore.org/organizations/
BroadInstitute/collections/pgs

Freyja v1.3.4 GitHub (Andersen Lab) https://github.com/andersen-lab/Freyja

outbreaker2 (version 1.1.2) https://doi.org/10.1186/s12859-018-2330-z https://cran.r-project.org/web/packages/
outbreaker2/index.html

Nextstrain https://doi.org/10.1093/bioinformatics/bty407 github.com/nextstrain/ncov

MAFFT v7.471 https://doi.org/10.1093/bioinformatics/bty121 https://github.com/GSLBiotech/mafft

IQ-Tree https://doi.org/10.1093/molbev/msu300 http://www.iqtree.org

TreeTime https://doi.org/10.1093/ve/vex042 https://github.com/neherlab/treetime

baltic Gytis Dudas https://github.com/evogytis/baltic

TransPhylo https://doi.org/10.1093/molbev/msw275 https://github.com/xavierdidelot/TransPhylo

Other

4–20% Mini-PROTEAN TGX Precast
Protein Gels, 15-well

BioRad #4561096
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Christopher Tomkins-Tinch (tomkinsc@

broadinstitute.org).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All clinical viral genomic sequences were deposited in NCBI as part of BioProject

GenBank: PRJNA715749 or GenBank: PRJNA622837. Wastewater environmental

reads were deposited into the Sequence Read Archive (SRA). Accession numbers

are listed in Data S1. Metadata associated with student groups are provided in

Tables S1, S2, and S3 of Data S1. The single-subject, line-level data reported in

this study cannot be deposited in a public repository because it is identifiable.

However, summary statistics describing these data are described in the text, fig-

ures, and Data S1. Plasmids generated in this study have been deposited to Addg-

ene: https://www.addgene.org/Jeremy_Luban/. Additional Supplemental Items

are available at Mendeley Data: https://doi.org/10.17632/xsfy4p87pg.1.

d All original code has been deposited to GitHub and is publicly available as of the

date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

The study was conducted at the Broad Institute with approval from the MIT Institu-

tional Review Board under Protocol #1612793224 and from the WCG IRB under
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Protocol #20210166: Viral Emergence and Spread in Community Settings. A tem-

plated Institutional Review Board protocol is provided in Methods S1.

Cell culture

Female human 293T/17 [HEK 293T/17] (ATCC CRL-11268) cells were obtained from

and authenticated by the American Type Culture Collection (https://www.atcc.org).

Cells were tested for mycoplasma contamination using the Mycoplasma Detection

kit (Lonza LT07-318). Cells were cultured in humidified incubators with 5% CO2 at

37�C in DMEM supplemented with 10% heat-inactivated FBS, 1 mM sodium pyru-

vate, 20 mM GlutaMAX, 13 MEM non-essential amino acids, and 25 mM HEPES,

pH 7.2.

METHOD DETAILS

Wastewater collection and quantification

Installation and operation of wastewater samplers. Five on-campus sewage sites

were monitored in Fall 2020, with six additional sites added in Spring 2021. The

effluent collected at all sites originated from only on-campus sources. Of the five

original sites, three were downstream of specific non-isolation dormitories, a fourth

contained the wastewater from a dorm housing COVID-positive individuals in isola-

tion, and a fifth was located at the confluence of two dormitories and the waste

stream that began at the isolation dorm. The six sites added in Spring included

four dormitory sampling locations (two of which were downstream of academic

buildings), and two sites near academic buildings but upstream of residential build-

ings (Figure S3D).

Automatic wastewater samplers were custom built based off Reeves et al.47 Each

sample was a composite from a 24-h period. Samples were collected twice weekly

in the fall, and three times weekly in the spring (Figure S3C). Automatic samplers

pumped water continuously at a rate of approximately 4 gallons per 24 h. Samplers

consisted of stainless-steel strainers deployed into the sanitary sewer. Silicone flex-

ible tubing connected the strainer to a five-gallon high-density polyethylene (HDPE)

jerrycan; water was displaced via a peristaltic pump run by a portable battery. After

the 24-h sample collection period, the jerrycans were gently mixed and three 40 mL

samples were collected for processing at each site. Samples were collected with

sterile serological pipette tips in an autopipetter and transferred to sterile 45 mL

conical tubes. Samples were stored on ice or placed in a 4�C refrigerator overnight

for a maximum of 18 h prior to processing.

After each sampling event, the strainer and silicone tubing were cleaned by pump-

ing a 10% bleach solution through the system. These components were dried be-

tween sampling events by storing them in locked wooden sampling boxes anchored

above each open manhole. Each jerrycan was first sanitized with 10% bleach thrice,

and was subsequently cleaned thrice with dish soap and water and allowed to dry.

Upon deployment, wastewater was pumped through the system and sent back

into the sewer prior to sample collection to rinse the strainer and tubing.

Quantification of viral concentration. In the Fall semester, all samples were sent to

GT Molecular for viral titer quantification. At the beginning of the Spring semester,

samples were processed both at GT Molecular and on campus, with CMU validating

its data against results received from GT Molecular. From Feb. 15, 2021 onwards,

samples were processed solely at CMU. During Spring 2021, technical duplicates

were processed for three or four sites (of the eleven total) during each sampling

event, to serve as an internal validation of viral concentration.
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CMU followed a standard procedure to calculate viral titer.48 Each sample volume

was adjusted the next day to 40 mL and spiked with 13.6 mL Bovilis Coronavirus

Calf Vaccine (BCoV) (Merck Animal Health Cat. No.16445), reconstituted in 2 mL

0.01% Tween 20 in 13 PBS. BCoV was added to determine viral recovery yield of

the concentration step during subsequent RT-qPCR. The samples were inverted

three times to mix. 400 mL of 5% Tween 20 was added to each tube and samples

were inverted three times to mix. The samples were centrifuged at 7000 3 g at

4�C for 10 min. The supernatant was carefully transferred to a fresh 50 mL conical

tube without disturbing the pellet. The supernatant was concentrated with the

InnovaPrep concentrating pipette. Elution was done in 0.075% Tween 20/25 mM

Tris. The concentrated samples were stored on ice until all samples were processed.

Virus RNA was extracted with the QIAamp Viral RNA Mini Kit (Qiagen) with minor

changes to the manufacturer’s protocol. The tubes were incubated for 15 min at

room temperature upon pipetting 140 mL of the concentrated wastewater tubes

with 560 mL of AVL buffer containing carrier RNA. During the AW2 wash, the spin col-

umn was centrifuged three times, first for 3 min at full speed, and the next two spins

for 1 min each at full speed and with open lids. For each spin the old collection tube

was replaced with a new collection tube. After the third spin, the spin columns were

placed in microfuge tubes and incubated with open lids for 15 min at room temper-

ature to allow any remaining ethanol to evaporate. For the elution of RNA, 60 mL of

nuclease-free water was added to the membrane, incubated at room temperature

for 1.5 min, and spun at 6000 g for 2 min. The extracted RNAwas stored on ice briefly

until it was used for digital PCR.

The digital PCRs were performed as twoplex assays with TaqMan hydrolysis probes,

on the QIAcutyOne 2plex (Qiagen) platform. QIAcuty One-Step Viral RT-PCR Kit

(Qiagen) was used to quantify the viral load. The duplex reactions were 40 mL and

contained 24 mL of the purified RNA, 1X One-Step Viral RT-PCR Master Mix, 1X

Multiplex Reverse Transcription Mix, SARS-CoV-2 and BCoV forward and reverse

primers at 0.4 mM and probes at 0.2 mM. SARS-CoV-2 nCOV_N1 RUO primers and

probe and BCoV primers (NOC43-1 and NOC43-2) were purchased from IDT. The

BCoV probe (NOC43-p) labeled with HEX fluorophore and OQA quencher was pur-

chased from Sigma-Aldrich.

The QIAcuity was programmed to 50�C for 40 min for reverse transcription, 95�C for

2 min for initial heat inactivation, and 40 cycles of denaturation at 95�C for 5 s and

annealing/extension at 55�C for 30 s.

Flow-mediated mass balance correction. Proximity to dormitories was prioritized

for placement of wastewater samplers. In a few cases, there were other dormitories

or academic buildings that contributed sewage upstream of specific dormitories

(Figure S3D). In these cases, additional samplers were placed upstream, and the

background SARS-CoV-2 concentration for samples from upstream sites was sub-

tracted from concentrations obtained from downstream sites, using a flow-mediated

mass balance based on building-level portable water consumption to account for

dilution.
Viral genomic sequencing

Members of the CMU community underwent diagnostic testing for SARS-CoV-2

infection using either saliva or nasal specimens, collected in response to random sur-

veillance testing and reflexive testing. Residual material was only available for saliva
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specimens, accounting for a fraction of known cases during the 2020–2021 school

year (Figures 2A and S2B).

Saliva samples were collected from members of the campus community and sent to

Warrior Diagnostics, Inc., for clinical diagnostic RT-qPCR testing. Excess material

from specimens found to be positive for SARS-CoV-2 was inactivated and sent to

the Broad Institute of MIT and Harvard for viral genomic sequencing. In initial

sequencing rounds, samples were treated with 5 uL of proteinase K; we determined

that excluding this step did not negatively impact sequencing quality, and did not

include it in later sequencing. Total RNA was extracted from the samples using

the Thermo Fisher MagMAX Viral RNA Isolation kit. Concentration of viral RNA

was determined through RT-qPCR with primers and probes targeting the SARS-

CoV-2 N gene. Illumina sequencing libraries were prepared from tiled amplicons

amplified using the ARTIC v3 primer set.49–51 The libraries were pooled and

sequenced on Illumina NovaSeq and NextSeq instruments.

During the 6 epi-weeks from Sunday, Feb. 9 through Mar. 20, 2021, viral RNA from

aliquots of 42 samples of excess extracted wastewater was sequenced via the same

ARTIC v3 procedure. Samples were sequenced in three batches. The final batch of

nine samples was sequenced with technical replicates obtained by splitting the

cDNA produced from the RNA template prior to library construction.
Functional characterization of spike glycoprotein mutations

Lentivirus production. 24 h prior to transfection, 6 3 105 HEK-293T cells were

plated per well in 6-well plates. All transfections used 2.49 mg plasmid DNA with

6.25 mL TransIT LT1 transfection reagent (Mirus, Madison, WI) in 250 mL Opti-MEM

(Gibco). Single-cycle HIV-1 vectors pseudotyped with the indicated SARS-CoV-2

Spike constructs were produced by transfection of HIV-1 pNL4-3DenvDvpr luciferase

reporter plasmid (pNL4-3.Luc.R-E�; NIH AIDS Reagent Program, Division of AIDS,

NIAID, NIH: from Dr. Nathaniel Landau; ARP Cat #3418) with the indicated Spike

expression plasmid, at a ratio of 4:1.

Lentivirus infectivity assays. 16 h prior to transduction, HEK-293T cells stably ex-

pressing ACE2/TMPRRS2 as previously described52 were plated at 3 3 104 per

well. Cells were incubated in virus-containingmedia for 16 h at 37�C after which fresh

media was added to cells. 48 h after transduction, cells were assessed for luciferase

activity using the Promega Steady-Glo system (Promega Madison, WI).

Western blot analysis. Tissue culture media and cell lysate were collected 60 h after

transfection to produce lentivectors. Supernatant containing Spike pseudotypedpar-

ticles was layered on a 20% sucrose cushion in PBS and spun at 110,0003 g at 4�C for

2 h. The pellet was washed once with ice-cold PBS and resuspended in 15 uL of 23

SDS gel loading buffer. After removal of supernatant, transfected cells were lysed

in 300 uL 23 SDS-PAGE loading buffer. Protein preps were boiled for 5 min and

then separated by SDS-PAGE on a 10–20% Tris-Gycine gel (BioRad). Proteins were

electro-transferred from gels to nitrocellulose membranes, which were blocked for

an hour with Licor Blocking Buffer and detected with the indicated antibodies.

Cell fusion assay. ACE2/TMPRSS2 expressing cells were prepared by transfecting

293T cells with pcDNA3.1- ACE2 and pcDNA3.1-TMPRSS2 along with pscALPs LgBit.

Spike expressing cells were prepared by transfecting 293T cells with pcDNA3.1- con-

structs expressing the specified codon optimized SARS-CoV-2 Spike proteins, in

addition to the pscALPs HiBit-FLuc fusion expression vector. 24 h after transfection,
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ACE2/TMPRSS2 and Spike expressing cells were lifted from plates with TrypLE and

plated together in a 1:1 ratio for a total of 40,000 cells in 96-well white-walled tissue

culture plates. Promega Endurazine substrate was added to cells according to theman-

ufacturer’s protocol 1 h after plating and fusion was analyzed 4 h later. Fusion signal of

HiBit-LgBit interaction was normalized to Fluc signal to control for transfection effi-

ciency. Background fusion was determined by using 293T cells transfected with

pscALPs HiBit-Fluc alone with control pcDNA3.1- plasmid without Spike.

QUANTIFICATION AND STATISTICAL ANALYSIS

Epidemiological modeling

Relative risk analysis. For each risk factor of interest (Figure S1C), we calculated the

relative risk and its confidence interval. The relative risk is defined as:�
cases with risk factor

students with risk factor

�
�

cases without risk factor

students without risk factor

�:

The natural logarithm of relative risk is approximately normally distributed with

squared standard error defined as:

students with risk factor � cases with risk factor

cases with risk factor
students with risk factor

+

students without risk factor � case

cases without risk f
students without risk

enabling calculation of 95% confidence intervals.53

Each risk factor was studied individually; we could not assess the relationship be-

tween factors (e.g., whether the increased risk for males is explained by the

increased risk for athletes) as we do not have information on the number of individ-

uals at the intersection of risk factors.

Chi-squared analysis. For categorical variables with multiple levels (i.e., sports

teams, sports contact levels, sports locations, residence halls, and class years), we

assessed whether SARS-CoV-2 cases were distributed uniformly across levels. Spe-

cifically, we conducted chi-square goodness-of-fit tests where the expected number

of cases in level i was:

expectedi = sumjðcases in category jÞ � students in category i

sumjðstudents in category jÞ
P-values were calculated using the chi-square distribution, with degrees of freedom

equal to one less than the number of levels (Data S1).

The association between two quantitative variables (i.e., sports team testing rates

and incidence rates) was assessed using Pearson’s correlation.

Regression model. We constructed a linear model of COVID-19 incidence rates

(i.e., case counts/number of residents) in a residence hall as a function of: number

of students, percent occupied (number of available beds/number of students), num-

ber of floors, the presence of ameal plan requirement (‘‘dining hall’’), the presence of

an in-unit bathroom (‘‘private bath’’), the number of resident advisors (RAs), square

footage, ceiling height, and volume per person (i.e., a proxy for air volume: floor area

* ceiling height/number of residents). We assessed for multicollinearity among our

predictive variables and identified many correlations (Figure S4A). Because of these

relationships, our coefficients and their confidence intervals may not be robust; how-

ever, the model’s predictive power and R2 remain unaffected.
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We evaluated 511 models, using all possible combinations of predictors (29–1 com-

binations). For each model, we calculated the AIC and the BIC and selected the

model with the lowest AIC (�41.95) and BIC (�40.98). The model, with an adjusted

R2 of 0.95 (Appendix Figure 4B) is as follows:

incidencei = b1 � percent occupancyi + b2 � private bathroomi
b1 = 0:0015; b2 = 0:0587

We evaluated the model via examination of the residual plot for heteroscedasticity

(Figure S4C) and via leave-one-out cross-validation, i.e., we fit the model using (N-1)

data points and calculated the residual for the remaining data point to determine the

root mean squared error (Figures S4D and S4E).

Time series data. We used 2019 US Census Bureau data to determine the popula-

tion sizes of Mesa County and Colorado. Using the United States county-level

COVID-19 data, we determined a per-day incidence of COVID-19 cases and deaths

for Mesa County and for all of Colorado. We also determined a per-day incidence

rate for COVID-19 cases at CMU. We plotted rolling sums of 7 daily COVID-19 inci-

dence rates to determine weekly incidence rates (Figures 2C and S1A). We calcu-

lated Pearson correlation coefficients between CMU’s and Mesa County’s weekly

incidence rates using the numpy.corrcoef function.

We determined test positivity rates per semester by dividing the total number of

cases by the total number of tests.

Contact tracing analyses. A positive individual’s close contacts were defined as in-

dividuals who were within 6 feet of each other for 15 min or more, in the 48-h time

period prior to symptom onset or test date, regardless of whether masks were

worn. Each individual who tested positive was asked to report their close contacts.

This information was collated to include the number of contacts they reported, and

an anonymized identifier for reported contacts who tested positive at any point

throughout the academic year. We determined the number of individuals who

tested positive within 7 days of being reported as a close contact of a positive

individual.

For all reported pairs of two positive individuals where one was identified as a close

contact of the other and where both had sequenced viral samples, we calculated the

genomic distance (i.e., the number of single-nucleotidemutations differing between

their consensus-level viral genomes, Figure S2A).
WiFi analyses

Data acquisition and cleaning. Our partners at Degree Analytics, a behavioral an-

alytics company, collected WiFi connectivity data for Colorado Mesa University

from August 2020 through May 2021. Degree Analytics collected the date, starting

time, and duration of a specific device’s connectivity to WiFi access points (APs)

that were distributed across all university-affiliated spaces, including academic

buildings, residence halls, dining locations, administrative buildings, and athletic

spaces. Degree Analytics then ran device-specific data through a proprietary

algorithm to produce pairwise interactions, defined when two individuals simulta-

neously access the same (one or more) APs for at least 15 min, and unpaired con-

nections, where one individual connects to (one or more) APs for at least 15 min.

The proprietary algorithm accounts for some level of uncertainty; e.g., if a device

were to disconnect because it lost power and re-connect to the same AP a minute
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later, the device would be considered present at that AP before, during, and after

the brief lapse.

Importantly, we cannot confirm if two individuals were within a reasonable range of

each other for COVID-19 transmission; most AP-based interactions imply that the

devices are within 10 m of one another (but in the extreme cases, as much as 30 m

apart), which can span a wall or a floor. However, we anticipate that interactions at

a distance that could lead to COVID-19 transmission are present in our pairwise

data. Additionally, social networks, regardless of transmission mitigation strategies

(e.g., mask-wearing), can be inferred from these data.

The data was provided in the format of a device identifier (subsequently cross-refer-

enced with metadata, including COVID-19 testing results of the user), the date, the

AP (or set of APs), the building location (e.g., ‘‘Hall B00 or ‘‘academic building’’), the

length of time the user connected to the AP, and the (possibly empty) list of other

devices that were simultaneously connected to the same AP, each with the duration

of overlap.

To analyze pairwise interactions, the data were de-duplicated and cleaned, as in-

structed by Degree Analytics. We limited users within the dataset to only WiFi-

authenticated students, thus removing guests, faculty/staff, and stagnant devices

on the network. Next, we removed student identifiers that were only ever present

3 or fewer times on campus over the entire year, as we assessed that these individ-

uals were remote students who infrequently commuted to and participated in the

on-campus CMU community or testing program. This cleaning removed 45,354

identifiers from the original 53,100 identifiers, producing a finalized dataset of

7,746 students.

To assess for differences in presence across buildings and semesters, we quantified

the daily number of AP connections and the median duration of AP connections per

building and per day of week, for each semester (Data S1; Figure S6). Due to the dif-

ferences in connectivity patterns across semesters, we conducted all analyses on a

per-semester and per-day basis.

Interaction metric comparisons. We examined the daily interaction patterns for

users (i.e., nodes in our network), dividing them into students who tested positive

at some point over the semester (‘‘positives’’) and students who did not test positive

over the entire semester (‘‘negatives’’). Within our network, edges represent pairwise

interactions. We quantified an individual student’s daily interactions via: (1) number

of unique contacts, (2) average exposure time per contact, and (3) number of days on

campus (Data S1; Figures 3A, S5A, S5B, and S7B). We also determined the propor-

tion of users (positive or negative) on campus each day, calculated the Pearson

correlation between the positive and negative proportions, and compared these

proportions via the Mann Whitney U test (Figures S5C and S5D).

To investigate WiFi-derived contacts during the isolation period, we calculated the

median number of unique contacts across all positive individuals for each day in

the 10 days prior to vs. after an individual’s positive test (Figure S7A). The average

of the daily medians for each 10-day period was then used to calculate the percent

change between the two periods.

Next, we redefined positive users as those within the 10-day window before a

positive test (‘‘pre-positives’’), and negative users as those who were not
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currently within a 10-day window prior to testing positive (regardless of testing sta-

tus before or after the 10-day window). We examined pairwise interaction patterns

for pairs of users with: (1) two pre-positive users who were reported as contact

tracing pairs (i.e., CC positive pairs), (2) two pre-positive users who were not listed

as pairs in contact tracing (i.e., non-CC positive pairs) (3) a pre-positive and a nega-

tive user (mixed pairs), and (4) two negative users (negative pairs). We quantified

daily pairwise interactions via the median and the total daily interaction duration

and assessed for differences for both the Fall and Spring semesters (Data S1;

Figures S7C and S7D).

For all comparisons, we used the Mann Whitney U test to produce uncorrected p

values.

Attribute assortativity. The attribute assortativity (AA) coefficient is a metric that

quantifies the tendency for users to interact within vs. across particular cohorts.54

To compute this metric, we compared interactions either between positive and

negative individuals, or pre-positive and negative individuals (as defined in the pre-

vious sections). The AA coefficient is bounded between �1 and 1, where �1 repre-

sents a network where individuals only interact across-group, 0 represents a

perfectly mixed network, and 1 represents a network where individuals only interact

within-group (Figure 3B).

We calculated the AA coefficient for sub-groups of individuals per day (using the

NetworkX Python package),55 and generated 95% confidence intervals (CI) by

permuting attribute labels (40 times, with the lowest and second highest AA defining

the bounds of the 95% CI) across individuals within each day’s network (Figures 3C

and S8A–S8C). We expect CIs to overlap with the per-day AAs for approximately

95% of the days if positive individuals were equally likely to interact with other pos-

itive individuals as they were with negative individuals. We ran this procedure three

times for each semester (six times in total):

1. Defining positives as individuals who test positive for COVID-19 at some point

during the semester (Figures S8A and S8B)

2. Defining positives as all individuals who are within 10 days of testing positive

(i.e., ‘‘pre-positives’’; Figures 3C and S8C)

3. Defining pre-positives as individuals who are within 10 days of testing positive

and are not listed in contact tracing data as having a pairwise association with

another positive individual (i.e., ‘‘non-CC pre-positives’’; Figures S9A and S9B)

For the next analyses, we used the definition of pre-positives defined above as (2).

We assessed the relationship between pre-positive vs. negative attribute assortativ-

ity coefficients and case counts, with the hypothesis that social network structure

may be predictive of future case counts. We plotted both raw and smoothed data

(via the Savitzky-Golay filter; window length = 17, polynomial order = 4).56 We deter-

mined the lag time, in days, that produced themaximal Pearson correlation between

daily AA and case counts, for both the raw and smoothed data and for both the fall

and spring semesters (Figures 3D, 3E and S8D–S8F).

WiFi analyses specific to the B.1.429.1 lineage. We compared the total exposure

time and the median interaction duration (Data S1, Figures S12A and S12B) for pairs

of B.1.429.1-positive cases, pairs of non-B.1.429.1-positive cases, and pairs of nega-

tive individuals.
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We constructed a subgraph of the network where nodes represent individuals in the

pre-positive 10-day window, and edges connect two pre-positive individuals with

documented proximity. We defined two individuals as within the same social

network if they could be connected by a path. We examined whether the distribution

of the viral genome SNV distances for B.1.429.1 pairs within the same social network

differed from the distribution of SNV distances for B.1.429.1 pairs in different social

networks (Figure 6D) using the Mann Whitney U test.

To test the hypothesis that B.1.429.1 individuals clustered together in the network,

we quantified the shortest path57 between pairs of individuals, where: 1) both indi-

viduals had the B.1.429.1-lineage virus, or 2) one individual had B.1.429.1 and one

had a non-B.1.429.1 virus, using the Mann Whitney U test.
Wastewater analyses

Comparison of viral titers and weekly case counts. We conducted two analyses to

assess the relationship between viral titer and weekly case count. We first compared

each individual wastewater sample against its corresponding weekly case count,

across all collection sites except for Site 5 which collected effluent from isolated pos-

itive cases, using .Spearman’s correlation coefficient.

Second, we calculated each hall’s average wastewater viral titer (i.e., the average of

available samples from Sunday through Saturday) and each hall’s total case count for

each week. If a hall had no wastewater samples collected in a given week, it was

removed. We then proceeded in a hall-wise fashion to determine the sign of the

slope of the viral titer and case count (i.e., to assess whether titer and case count

rose or fell together from one week to the next). We created a contingency table

of the sign of the slope of viral titer vs. the sign of the slope of case counts, and eval-

uated its significance via Fisher’s exact test.

Viral sequencing analysis. We inspected sequence data for the presence of regional

blindspots in the genome distinct to wastewater as a sample type. To assess whether

specific regions of the genome were more susceptible to degradation in wastewater

vs. in clinical samples, we normalized read depth per base for each sample and

plotted the distribution of depth across all wastewater samples, alongside a corre-

sponding plot of depth from all clinical samples (Figures S10B and S10C). We

compared the median normalized depth per amplicon between wastewater and

clinical samples by calculating the Pearson correlation (Figure S10E). Next, we

compared amplicon read depth and Shannon entropy within the primer regions of

wastewater sequences by calculating the Pearson correlation (Figure S10D). We

used entropy data from a CDC-curated Nextstrain analysis focused on data from

Colorado as of August 2021.58

Development of quality controls for identifying SNVs in wastewater. We evaluated

three quality control filters to remove spurious SNVs identified in wastewater:

minimum allele frequency (AF), minimum read depth (DP), and presence in each

of two replicates from the same cDNA source (Reps) (Figure 5E). For both AF

and DP, we independently toggled their threshold from the absolute minimum

(AF = 0, DP = 0) to the absolute maximum (AF = 1, DP = 29903). Since replicates

were only available for nine of the forty-two wastewater samples, analyses were

limited to those nine samples.
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We investigated which quality control mechanisms identified the greatest number of

wastewater SNVs present in any Colorado clinical sample. For AF and DP thresholds,

sensitivity and specificity were defined as follows:

WW = set of SNVs in wastewater samples

CO = set of SNVs in Colorado clinical samples

Sensitivity of AF threshold x =
cardinalityð WW X CO X fSNVs with AF R xgÞ

cardinalityðWW X COÞ
Sensitivity of DP threshold x =
cardinalityð WW X CO X fSNVs with DP R xgÞ

cardinalityðWW X COÞ
< xgÞ

Specificity of AF threshold x =

cardinalityððWW � ðWWX COÞÞX fSNVs with AF

cardinalityððWW � ðWWX COÞÞÞ
< xgÞ

Specificity of AF threshold x =

cardinalityððWW � ðWWX COÞÞX fSNVs with AF

cardinalityððWW � ðWWX COÞÞÞ

For the Reps filter, sensitivity and specificity were calculated for each of the nine sam-

ples, rather than for the entire subset of samples. Sensitivity and specificity were

defined as follows:

WWX,union = set of SNVs found in either replicate of sample X.

WWX,intersection = set of SNVs found in both replicates of sample X

Sensitivity for sample X =
cardinalityð WWX ;intersection X CO Þ
cardinalityð WWX ;union X CO Þ
� WWX ;intersectionÞ X COÞÞ
COÞÞ
Specificity for sample X =

cardinalityð WWX ;union � WWX ;intersection � ððWWX ;union

cardinalityð WWX ;union � ðWWX;union X

Analysis of the expected number of unique SNVs contributed by additional
samples. We estimated the number of unique SNVs present within a given number

of CMUwastewater or clinical samples (Figures S11B and S11C). For clinical samples,

we bootstrapped 100 times over each possible subset size (i.e., from 1 sample to all

samples) to curate a set of clinical samples. We calculated the total number of unique

consensus-level SNVs across each set of n samples, then found the average number

of unique consensus-level SNVs that we could expect n samples to contribute.

For wastewater samples, we also bootstrapped 100 times over each possible subset

size (i.e., from 1 sample to all 42 samples) to curate a unique set of wastewater sam-

ples. We then calculated 1) the average number of SNVs across sets of n samples,

and 2) the average number of SNVs of AF greater than or equal to 25% across

sets of n samples. We repeated this process with the wastewater samples with tech-

nical replicates, again bootstrapping 100 times over each possible subset size (i.e.

from 1 sample to all 9 samples) to calculate the average number of replicate-

confirmed SNVs that we could expect from a set of n samples.

Finally, we calculated the smoothed first derivative (i.e., change in SNV count as a

function of the number of samples) using a window size of 5 (Figures S11D and S11E).
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Lineage identification in wastewater. To detect lineages across our wastewater

samples, we called SNVs using LoFreq with default parameters. We estimated the

relative abundance of constituent lineages using Freyja v1.3.4.39 We limited ana-

lyses to samples with at least 30% genome coverage, and lineages that were de-

tected with 95% confidence (per Freyja’s built-in bootstrapping capabilities, 5000

replicates) with at least 3% abundance. Lineages were assigned using Freyja with

a global UShER tree downloaded on March 14, 2022.
Viral genomic analyses

Viral genome assembly. Using the viral-ngs v2.1.28.0 pipeline, reads from

sequenced pools were demultiplexed, filtered to remove adapter and contaminant

sequences, depleted of reads mapping to the human genome, and assembled by

alignment to the reference sequence NC_045512.2. A total of 184 samples (of

278 received) from clinical diagnostic tests were successfully sequenced to yield viral

genomes with median assembly length of 29,827 bases (Figure S2C). Assembled

viral genomes with at least 24000 unambiguous bases were deposited in NCBI

GenBank as part of BioProjects GenBank: PRJNA715749 or GenBank:

PRJNA622837; accession numbers are listed in Data S1.

Lineage assignment. Lineages were assigned to viral genomes using Pango v4.0.6

with pango-data v1.9.34,59

Phylogenetic analysis. CMU genomes were aligned to the reference sequence

NC_045512.2 with MAFFT v7.471 using the "–addfragments" and "–keeplength" ar-

guments. These parameters, widely used in SARS-CoV-2 genome alignment, can pro-

duce alignments which omit insertions. This limitation was deemed acceptable due to

the rarity of known insertions in the SARS-CoV-2 genome at the time of sampling.

Using the Nextstrain augur pipeline, a maximum likelihood (ML) tree was created via

IQ-Tree using a GTR mutation model, as well as a time-resolved tree via TreeTime,

both rooted to the ancestral reference genome, NC_045512.2.60–62 A filter was

specified for TreeTime to exclude outlier sequences >4 interquartile distances

from the root-to-tip vs. time (i.e., molecular clock mean mutation rate) regression.

Internal tree nodes were assigned their marginally most likely dates. CMU samples

were placed in the context of viral genomes from state, national, and global data-

sets, weighted toward those collected in the US Mountain West or of short genetic

distance fromCMU viral genomes. The contextual genomes were obtained as part of

the open dataset of pre-aligned sequences curated by Nextstrain.63 Default augur

quality thresholds were applied to input sequences.

To identify introductions to the campus community, ancestral state reconstruction

was performed using TreeTime to produce a binary value indicating whether each

viral genome or internal ancestral tree node was university-associated or not. A state

change from not-associated to university-associated descendant cases was consid-

ered a putative introduction. Sub-trees for each introduction event were extracted

and plotted using the baltic Python library,64 for those where the confidence of

the inferred state was >0.8.

The number of intermediate hosts in a cluster noted to span semesters was esti-

mated using Trans-Phylo, and generation time distribution parameters reported

previously (shape = 3.63, scale = 1.408).36
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Overdispersion analyses. The distribution of offspring per cluster was calculated as

the total number of individuals in the cluster minus one (i.e., the introduction case

itself). A negative binomial distribution was fit to the data using ‘fitdistplus’ in R 4.1.2.

The manual contact tracing identified individuals in contact with an index case for

more than 15 min at less than 6 feet within the prior 48 h of the earliest of their pos-

itive test date or their symptom onset date. A negative binomial distribution was fit

to the number of contacts reported per positive case.

The number of contacts of each positive user, as inferred from theWiFi proximity da-

taset in the 48 h prior to the earlier date of either positive test or symptom onset, was

quantified, and a negative binomial distribution was fit to the resulting data.

Transmission network reconstruction. To reconstruct transmission networks, we first

excluded sequences with >7% ambiguous bases. The remaining sequences were

aligned to the reference genome NC_045512.2 using MAFFT v7.471 with the pa-

rameters "–addfragments" and "–keeplength". Positions identified as prone to

sequencing error or homoplasy were masked with ambiguous bases using the posi-

tions previously documented.65 The 5’ AND-30 untranslated regions of the genome

were also masked over the reference sequence positions 1–265 and 29558–29903.

Any sequences with >10% ambiguity or >7% gaps across the genome were

excluded.

Three forms of contact data were included in the transmission network model: 1)

contact tracing data from university tracing efforts; and contacts assumed from

shared proximity to Wi-Fi access points for individuals in contact within 2) 2 days

or 3) 10 days of both case dates. We also developed models with 4) solely genomic

and 5) solely contact tracing data for comparison. Case dates were the earlier of the

date of symptom onset, when known, and the date of diagnostic test.

The probability of direct transmission between cases bearing B.1.429.1-lineage virus

was estimated from case dates, viral genomes, and contact data using outbreaker2

with parameters previously described66 and a single chain of 40,000 iterations (of

which the first 10% were discarded). Visualizations include all transmission events

with a probability greater than or equal to 25%. For the three networks generated

with a combination of genomic and contact data, we compared clusters of 2 or

more individuals via the Jaccard distance.
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