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Background: Posthepatectomy liver failure (PHLF) is the leading cause of mortality in patients undergoing hepatectomy. However,
practical models for accurately predicting the risk of PHLF are lacking. This study aimed to develop precise prediction models for
clinically significant PHLF.
Methods: A total of 226 patients undergoing hepatectomy at a single center were recruited. The study outcome was clinically
significant PHLF. Five preoperative and postoperative machine learning (ML) models were developed and compared with four clinical
scores, namely, theMELD, FIB-4, ALBI, and APRI scores. The robustness of the developedMLmodels was internally validated using
fivefold cross-validation (CV) by calculating the average of the evaluation metrics and was externally validated on an independent
temporal dataset, including the area under the curve (AUC) and the area under the precision–recall curve (AUPRC). SHapley Additive
exPlanations analysis was performed to interpret the best performance model.
Results: Clinically significant PHLF was observed in 23 of 226 patients (10.2%). The variables in the preoperative model included
creatinine, total bilirubin, and Child–Pugh grade. In addition to the above factors, the extent of resection was also a key variable for the
postoperative model. The preoperative and postoperative artificial neural network (ANN) models exhibited excellent performance,
with mean AUCs of 0.766 and 0.851, respectively, and mean AUPRC values of 0.441 and 0.645, whereas the MELD, FIB-4, ALBI,
and APRI scores reached AUCs of 0.714, 0.498, 0.536, and 0.551, respectively, and AUPRC values of 0.204, 0.111, 0.128, and
0.163, respectively. In addition, the AUCs of the preoperative and postoperative ANN models were 0.720 and 0.731, respectively,
and the AUPRC values were 0.380 and 0.408, respectively, on the temporal dataset.
Conclusion: Our online interpretable dynamic ML models outperformed common clinical scores and could function as a clinical
decision support tool to identify patients at high risk of PHLF preoperatively and postoperatively.
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Introduction

Partial hepatectomy represents an effective treatment for a variety
of benign and malignant liver diseases[1–3]. Over the past few

decades, although its safety has improved significantly due to
tremendous advancements in surgical techniques and periopera-
tive management, posthepatectomy liver failure (PHLF), which is
a serious complication, remains unavoidable[4,5]. The incidence
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of PHLF varies between 1.2 and 32%, with clinically significant
PHLF being the leading cause of early postoperative
mortality[6,7]. In addition, clinically significant PHLF also leads to
prolonged hospitalization, increased healthcare costs, and
reduced long-term survival[8]. Therefore, precise prediction
through the identification of risk factors for clinically significant
PHLF is critical to decrease the incidence of PHLF.

Due to the absence of universally recognized methods, it is still
challenging to accurately predict PHLF. Clinical risk scores based
on blood tests, including the model for end-stage liver disease
(MELD), fibrosis-4 index (FIB-4), albumin-bilirubin (ALBI), and
aspartate aminotransferase-to-platelet ratio index (APRI) scoring
systems, are widely used to assess liver reserve function[9].
However, owing to the limited number of variables, these meth-
ods have several limitations for the prediction of PHLF[10–13] and
have unsatisfactory performance, with the area under the receiver
operating characteristic curve (AUC) ranging from 0.5 to
0.7[14–16]. In recent years, several nomogram models using the
logistic regression (LR) algorithm have been developed to predict
PHLF[17–20]. Despite havingmore included variables, they cannot
precisely describe the interactions between different risk factors
or address the nonlinear relationship between variables and
outcomes[21–23]. Therefore, more efficient methods are necessary
to improve the predictive performance of PHLF.

Machine learning (ML), a crucial subfield of artificial intelli-
gence, is capable of generating empirical models through big data
to dig deeper into the relationships between risk factors and
address nonlinearities arising from data[24,25]. Currently, only a
few studies have developed predictive models for PHLF based on
ML algorithms using variables such as perioperative clinical
features, computed tomography (CT), or MRI-based radiomic
features[14–16]. However, these studies still have several limita-
tions, including the use of a model based on a single ML algo-
rithm without comparing the ML algorithm with other
algorithms for predictive performance, the use of amodel focused
exclusively on prediction after surgery, and the applicability of
the prediction model, which requires specialized facilities and
experienced professionals. Thus, there is an urgent need to
establish a PHLF prediction model that is more accurate,
applicable, and capable of preoperative and postoperative pre-
diction based on the comparison of multiple ML algorithms.

In this study, we included various important perioperative
features and screened key risk factors to develop preoperative and
postoperative prediction models for clinically significant PHLF
using multiple ML algorithms. Our study aimed to identify
patients at high risk of PHLF before and after surgery, which will
aid in reducing the incidence of PHLF in clinical practice.

Methods

This study strictly followed the TRIPOD guidelines[26], and our
work has been reported in line with the strengthening the
reporting of cohort, cross-sectional, and case–control studies in
surgery (STROCSS) criteria[27] (Supplemental Digital Content 1,
http://links.lww.com/JS9/C788). This study was registered in the
Chinese Clinical Trial Registry (ChiCTR2400083151, https://
www.chictr.org.cn/showproj.html?proj=222899). The overall
workflow is illustrated in Figure 1.

Patient population

The study protocol complied with the Declaration of Helsinki
and received approval from the (Anonymised) Ethics (No.
Anonymised). The requirement for informed consent was waived
by the ethics committee because the study was retrospective.

The patient population originated from a cross-sectional study
in the Anonymised Hospital between March 2021 and October
2023. Initially, we recruited 362 patients who underwent ther-
apeutic hepatectomy by a single surgical team. The inclusion
criteria were as follows: (1) 18–85 years of age; (2) preoperative
Child–Pugh grade A or B; and (3) no cardiopulmonary or renal
insufficiency or hepatic encephalopathy preoperatively. The
exclusion criteria were as follows: (1) preoperative biliary
obstruction and (2) two-stage hepatectomy.

Data collection

In this study, we collected patient demographic, comorbidities,
preoperative laboratory, intraoperative, and postoperative data
from the electronic medical records. Patient demographic vari-
ables included age, sex, and BMI. The comorbidities included
diabetes, hypertension, fatty liver, viral hepatitis, cirrhosis, sple-
nomegaly, ascites, esophageal and gastric varices (EGV), pre-
operative Child–Pugh grade, and the use of hepatoprotective
agents. Preoperative laboratory tests included white blood cell
(WBC) count, platelet count (PLT), hematocrit (HCT), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), total
bilirubin (TBIL), direct bilirubin (DBIL), triglyceride, albumin
(ALB), γ glutamyl transpeptidase (GGT), indocyanine green
retention rate at 15 min (ICG15), interleukin 6 (IL-6), creatinine
(CREA), prothrombin time (PT), fibrinogen (FIB), international
normalized ratio (INR), c-reactive protein (CRP), procalcitonin
(PCT), erythrocyte sedimentation rate (ESR), hyaluronic acid
(HA), laminin (LN), type IV collagen (IV CoI), and type III pro-
collagen peptide (PIIINP). Intraoperative variables included
blood loss, operative time, laparoscopy, extrahepatic bile duct
resection, and extent of resection (major resection, ≥3 segments;
minor resection, <3 segments). Postoperative variables included
future liver remnant (FLR), standardized future liver remnant
(sFLR), and postoperative biliary obstruction.

HIGHLIGHTS

• Currently, there is still a lack of an efficient model for
precisely predicting the risk of clinically significant post-
hepatectomy liver failure (PHLF).

• Five preoperative and postoperative machine learning
models were constructed and compared with four clinical
scores, namely, the MELD, FIB-4, ALBI, and APRI scores.

• The established preoperative and postoperative artificial
neural network (ANN) models, based on creatinine, total
bilirubin, Child–Pugh grade, and extent of resection,
exhibited an excellent predictive performance that was
better than that of the four clinical scores and had the
potential to predict clinically significant PHLF.

• The ANN models were internally and externally validated
and deployed to the cloud and could be utilized as a
clinical-decision support tool to dynamically identify
patients at high risk for clinically significant PHLF.
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In addition, four clinical scores, namely, the MELD, FIB-4,
ALBI, and APRI, were calculated as follows[11,28–30]:
MELD=3.78× lnTBIL(mg/dL) +11.2× lnINR+9.57× lnCREA(mg/dL) +
6.43; FIB-4 = [age (years) × AST (IU/L)]/[1/2×platelets (109/L) ×
ALT (IU/L)]; ALBI =0.66× lgTBIL(µmol/L)-0.085×ALB(g/L);
APRI= 100×AST (IU/L)/PLT (109/L).

Sample size calculation

In this research, the sample size of the binary outcome prediction
model was calculated according to the following formula[31]:

n= exp ( φ− + ( ) + ( ) − ( )P MAPE0.508 0.259 ln 0.504 ln ln
0.544

). In this formula,

φ is the anticipated outcome proportion (φ =0.1), P is the number
of candidate predictor parameters (P= 4), and MAPE is the
average absolute error between the observed and true outcome
probability (MAPE= 0.05). According to calculations, the mini-
mum sample size required for this research is 260. The sample size
of our study is in accordance with the requirements.

Definition of PHLF

PHLF was defined as increased serum TBIL and INR after post-
operative day 5 according to the International Study Group of
Liver Surgery (ISGLS) diagnostic criteria[32]. PHLF severity was
classified into three levels: Grade A, requiring no specific

treatment; Grade B, requiring essential noninvasive treatment;
and Grade C, requiring invasive treatment. In this study, a posi-
tive outcome (PHLF) was defined as PHLF grades B and C.
Otherwise, a negative outcome (non-PHLF) was defined as no
PHLF or PHLF grade A.

Data preprocessing

First, we interpolated the variables with missing values below the
threshold of 25% and then removed those with missing values
above the threshold. To interpolate the missing values, we
employed the K-nearest neighbor (KNN) method for the con-
tinuous variables and the mode interpolation method for the
categorical variables. Univariate analysis was conducted to select
the variables associated with PHLF (P< 0.1). Next, the least
absolute shrinkage and selection operator (LASSO) algorithm
was used to identify the independent factors of PHLF. The
LASSO algorithm, employing the hyperparameter lambda (λ),
shrinks the regression coefficients of the redundant variables close
to zero and finally selects those variables with nonzero regression
coefficients[33]. We performed collinear analysis to evaluate
multicollinearity among the selected variables using the variance
inflation factor (VIF, <2 indicating no significant multi-
collinearity). Finally, each continuous variable underwent pre-
processing for Z score normalization, while each categorical
variable was transformed by one-hot encoding.

Figure 1. Schematic of the study workflow.
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Model development and evaluation

In this study, we developed and validated five preoperative and
postoperative ML models for predicting PHLF, including LR,
random forest classifier (RFC), extreme gradient boosting (XGB),
light gradient boosting machine (LGBM), and artificial neural
network (ANN) models. A grid search with 10-fold CV was used
to determine the optimal hyperparameters for each model. The
hyperparameters of each model were selected to maximize the
AUC. All ML models were developed using the ‘sklearn 1.1.2’,
‘xgboost 1.6.1’, ‘lightgbm 3.3.2’, and ‘Keras 2.9.0’ packages in
Python 3.9.12.

The performance of the models was evaluated by discrimina-
tion and calibration metrics. The discrimination ability was
assessed by the AUC, the area under the precision-recall (PR)
curve (AUPRC), the precision and the F1-score. The AUPRC is
more valuable for evaluating binary classifiers on unbalanced
datasets than is the AUC. The F1-score is a comprehensive metric
combining precision and recall. These four discriminative indi-
cators were calculated as an average using fivefold CV. CV
method is the most practical and flexible method that can be used
for model evaluation and selection, and the basic idea is to divide
the data repetitively into training data and validation data for
estimating model parameters and performance evaluation[34–36].
The final performance evaluation metric results provided for each
model are average values using fivefold CV across the dataset.
Due to the conservative estimation of performance metrics, it
helps to accurately evaluate the performance of our established
ML models.

The calibration ability was measured by the Brier score, which
ranged from 0 to 1, with lower scores indicating better fitness of
the model. Therefore, the AUPRC, F1-score, and Brier score are
the main evaluation metrics for selecting the best-performing
model. The optimal threshold of each model was determined by
the Youden index (Youden index= sensitivity + specificity–1).

Temporal external validation

The generation of the final selected best-performing preoperative
and postoperative models was further temporally validated by the
later independently collected dataset from December 2023 to
January 2024 at the samemedical center. The AUC, AUPRC, and
Brier score were used to evaluate the performance of the
prediction model.

Model interpretation

SHapley Additive exPlanations (SHAP) analysis[37] was used to
interpret the output of the best-performing model in our study
based on the Shapley values. It provides interpretation to our
established model, and can contribute to apply the model in
clinical practice[38]. The SHAP value, which was calculated as an
average of a variable’s contributions through all possible com-
binations of variables, could be either positive or negative, indi-
cating an increased or decreased probability of the output. SHAP
plots were generated using the ‘shap 0.42.1’ package in Python
3.9.12. The best-performing models were further packaged into
an R Shiny-based application for use.

Statistical analysis

The Shapiro–Wilk test was used to assess the normality of con-
tinuous variables. Continuous variables are expressed as the

mean ± SD or median ± interquartile range (IQR) and were com-
pared using Student’s t-test or the Mann–Whitney U test.
Additionally, categorical variables are represented as counts
(frequencies) and were compared with Fisher's exact test or the χ2

test. All tests conducted in this study were two-tailed, and
P< 0.05 was considered to indicate statistical significance. R
software (version 4.2.1) was used to perform all the statistical
analyses.

Results

Patient population

A total of 226 patients who met the inclusion criteria were ulti-
mately enrolled in our study. The detailed patient characteristics
are described in Table 1. The median patient age was 57 years
(range 49–65 years), and 43.4% were female. The incidence of
positive outcome (PHLF) was 10.2% (23/226).

Variable selection

In our study, missing situation for the variables with missing
values in the original dataset were shown in Supplemental Table
S1 (Supplemental Digital Content 2, http://links.lww.com/JS9/
C789). Using univariate analysis, we selected seven variables
related to the outcome, namely, diabetes, ascites, preoperative
Child–Pugh grade, TBIL, DBIL, CREA, and extent of resection.
Through the LASSO algorithm, three variables significantly
related to the outcome, namely, the preoperative Child–Pugh
grade, TBIL, and CREA, were then included to construct the
preoperativeMLmodels. To construct postoperativeMLmodels,
we ultimately selected four variables significantly related to the
outcome, including preoperative Child–Pugh grade, TBIL,
CREA, and extent of resection, and there was no significant
collinearity among these four variables (see Supplemental
Table 2, Supplemental Digital Content 2, http://links.lww.com/
JS9/C789).

Model performance

The above variables were entered into our objective to develop
five different preoperative and postoperative ML models,
including the LR, RFC, XGB, LGBM, and ANNmodels. The best
hyperparameters of each preoperative and postoperative
model were detailed (see Supplemental Table S3, Supplemental
Digital Content 2, http://links.lww.com/JS9/C789 and Table S4,
Supplemental Digital Content 2, http://links.lww.com/JS9/C789).

Among the five preoperativeMLmodels, the ANNmodel with
fivefold CV had the highest AUPRC and F1-score, as well as the
second-best AUC of 0.766 (see Table 2, Fig. 2). Additionally, the
ANN model showed the second-best calibration ability, with a
Brier score of 0.072 (Fig. 3A).

Among the five postoperative ML models, the ANN model
with fivefold CV exhibited the highest AUPRC, F1-score, and
precision and achieved the second-best AUC of 0.851 (see
Table 2, Fig. 2). Furthermore, the ANN model demonstrated the
best calibration ability, with a Brier score of 0.034 (Fig. 3B).
Thus, we selected the ANNmodel as having the best performance
among the preoperative and postoperativemodels.Moreover, the
MELD, FIB-4, ALBI, and APRI reached AUCs of 0.714, 0.498,
0.536, and 0.551, respectively, and AUPRC values of 0.204,
0.111, 0.128, and 0.163, respectively (Fig. 4A-B).
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Table 1
Comparison of the demographics, comorbidities, preoperative laboratory tests, intraoperative, and postoperative variables between
patients with or without PHLF in the whole cohort

Overall (n= 226) Non-PHLF (n= 203) PHLF (n= 23) P

Demographics
Age, year 57 (49–65) 57 (47–65) 56 (52–65) 0.365
BMI, kg/m2 21.94 (20.56–23.70) 21.91 (20.61–23.69) 22.49 (18.09–23.65) 0.757
Female 98 (43.4) 92 (45.3) 6 (26.1) 0.123

Comorbidities
Diabetes 0.03*

No 208 (92.0) 190 (93.6) 18 (78.3)
Yes 18 (8.0) 13 (6.4) 5 (21.7)

Hypertension 0.235
No 199 (88.1) 181 (89.2) 18 (78.3)
Yes 27 (11.9) 22 (10.8) 5 (21.7)

Fatty liver 0.787
No 219 (96.9) 196 (96.6) 23 (100.0)
Yes 7 (3.1) 7 (3.4) 0 (0.0)

Cirrhosis 1
No 194 (85.8) 174 (85.7) 20 (87.0)
Yes 32 (14.2) 29 (14.3) 3 (13.0)

Viral hepatitis 0.158
None 156 (69) 139 (68.5) 17 (73.9)
Hepatitis B 63 (27.9) 59 (29.1) 4 (17.4)
Hepatitis C 7 (3.1) 5 (2.5) 2 (8.7)

Splenomegaly 0.863
None 202 (89.4) 182 (89.7) 20 (87)
I 21 (9.3) 18 (8.9) 3 (13)
II 1 (0.4) 1 (0.5) 0 (0)
III 2 (0.9) 2 (1.0) 0 (0)

Ascites 0.011*
None 217 (96.0) 196 (96.6) 21 (91.3)
Small mount 8 (3.5) 7 (3.4) 1 (4.3)
Large mount 1 (0.4) 0 (0.0) 1 (4.3)

EGV 1
No 220 (97.3) 198 (97.5) 22 (95.7)
Yes 6 (2.7) 5 (2.5) 1 (4.3)

Preoperative Child-Pugh grade 0.017*
Grade A 169 (74.8) 157 (77.3) 12 (52.2)
Grade B 57 (25.2) 46 (22.7) 11 (47.8)

Hepatoprotective agents 0.349
No 83 (36.7) 72 (35.5) 11 (47.8)
Yes 143 (63.3) 131 (64.5) 12 (52.2)

Preoperative laboratory tests
WBC, 109/l 5.60 (4.43–7.08) 5.51 (4.46–7.08) 6.58 (4.38–7.30) 0.37
PLT, 109/l 188.5 (127.25–239.75) 189.0 (130.5–239.5) 169.0 (125.50–227.0) 0.522
HCT 0.40 (0.36–0.43) 0.40 (0.36–0.43) 0.40 (0.36–0.44) 0.52
ALT, U/l 21.40 (13.25–38.38) 21.40 (13.05–37.90) 22.70 (14.70–50.35) 0.442
AST, U/l 25.00 (17.70–37.85) 25.00 (17.60–36.45) 23.90 (19.75–43.00) 0.493
TBIL, μmol/l 10.40 (8.00–15.55) 10.30 (7.80–14.52) 15.00 (11.95–26.55) 0.003*
DBIL, μmol/l 4.25 (3.40–6.18) 4.20 (3.35–6.10) 5.40 (4.10–11.50) 0.019*
Triglyceride, mmol/l 1.21 (0.95–1.63) 1.20 (0.94–1.63) 1.34 (1.12–1.53) 0.387
ALB, g/l 42.85 (39.40–46.68) 42.80 (39.50–46.55) 43.63 (39.15–47.10) 0.652
CREA, μmol/l 73.00 (62.00–85.75) 73.00 (60.50–85.00) 75.00 (69.00–98.00) 0.063*
PT, s 13.10 (12.20–14.00) 13.10 (12.20–14.00) 12.90 (11.75–13.60) 0.495
FIB, g/l 3.00 (2.50–3.65) 3.00 (2.50–3.68) 2.94 (2.69–3.17) 0.794
10× INR 10.3 (9.5–11.0) 10.30 (9.50–11.00) 10.60 (9.95–11.10) 0.415
CRP, mg/l 1.29 (0.40–5.42) 1.20 (0.41–5.39) 2.60 (0.42–5.75) 0.714

Intraoperative variables
Blood loss, ml 150.0 (50.0–200.0) 150.0 (50.0–200.0) 100.0 (50.00–175.0) 0.301
Operative time, min 270.0 (200.0–348.17) 275.0 (201.5–350.0) 240.0 (186.67–317.5) 0.358
Laparoscopy 0.518

No 35 (15.5) 33 (16.3) 2 (8.7)
Yes 191 (84.5) 170 (83.7) 21 (91.3)

Extrahepatic bile duct resection 1
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Model interpretation

To determine the best performing model among the preoperative
and postoperative models, SHAP analysis was performed to
assess the contribution of each variable. The top three variables
for the preoperative model and the top four variables for the
postoperative model are depicted in Figure 5A-B. An overview of
the positive or negative contributions of variables to the ANN
model is shown in Figure 5C-D.

Temporal external validation

The data of 31 patients were included in the temporal external
validation cohort. The trained preoperative ANNmodel achieved
an AUCof 0.720, an AUPRCof 0.380, and a Brier score of 0.382.
The trained postoperative ANNmodel reached an AUC of 0.732,
an AUPRC of 0.408, and a Brier score of 0.362 (Fig. 6A-C).

Model deployment

In order to enhance the clinical utility of the developed predictive
models, the preoperative and postoperative ANN models were
deployed to the cloud (see URLs, https://cheason.shinyapps.io/
ANN_pre/; https://cheason.shinyapps.io/ANN_post/). The screen-
shots of the web-based tools are shown in Supplemental Figure S1
(Supplemental Digital Content 2, http://links.lww.com/JS9/C789).

Discussion

To predict the risk of clinically significant PHLF, we developed
preoperative and postoperative prediction models based on
comprehensive perioperative factors and multiple ML algorithms
with good accuracy and ease of use. After evaluating multiple
model metrics, we determined that the ANN model performed
the best and selected it as the final risk prediction model for
PHLF. Additionally, the predictive performance of the ANN
model far exceeded that of commonly used clinical scores. To our
knowledge, this is the first study that provides preoperative and
postoperative dynamic risk prediction models for clinically sig-
nificant PHLF, combiningML algorithms with multidimensional
clinical features.

First, one advantage of our study is that the risk prediction
model we constructed can predict PHLF accurately and effi-
ciently. Through the comparison of multiple ML algorithms
using various evaluation metrics, we found that the ANN
model showed the best overall prediction performance and
outperformed clinical models such as the MELD, FIB-4, ALBI,
and APRI. The ANN algorithm is capable of effectively
handling complex nonlinear relationships between variables
by simulating the structure of biological neural networks.
Notably, the ANN model, which has been shown to be more
effective than traditional discriminant analysis, has become an
alternative or even a new standard for the prediction of disease
risk[39–41]. Recently, Lu et al.[15] developed an ANN-based
model to predict the risk of PHLF in patients with hepatocel-
lular carcinoma, and this model demonstrated good predictive
performance. These findings are consistent with our study and
further support our conclusions.

Table 1

(Continued)

Overall (n= 226) Non-PHLF (n= 203) PHLF (n= 23) P

No 224 (99.1) 201 (99.0) 23 (100.0)
Yes 2 (0.9) 2 (1.0) 0 (0)

Extent of resection 0.044*
Minor 179 (79.2) 165 (61.3) 14 (60.9)
Major 47 (20.8) 38 (18.7) 9 (39.1)

Postoperative variables
FLR, ml 799.98 (736.42–875.47) 798.15 (739.56–870.52) 803.62 (709.08–920.63) 0.881
sFLR 0.79 (0.73–0.85) 0.79 (0.73–0.85) 0.80 (0.74–0.88) 0.58
Biliary obstruction 1
No 225 (99.6) 202 (99.5) 23 (100.0)
Yes 1 (0.4) 1 ( 0.5) 0 (0.0)

Data are presented as n (%), mean (SD), or median (IQR). Variables with normal distribution are presented as mean (SD); Variables without normal distribution are presented as median (interquartile range, IQR).
ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CREA, creatinine; CRP, C-reactive protein; DBIL, direct bilirubin; EGV, esophageal and gastric varices; FIB, fibrinofen; FLR, future
liver remnant; HCT, hematocrit; INR, international normalized ratio; PHLF, posthepatectomy liver failure; PLT, platelet count; PT, prothrombin time; sFLR, standardized future liver remnant; TBIL, total bilirubin;
WBC, white blood cell count.

Table 2
The average performance of discrimination metrics of the five
different preoperative and postoperative ML models by fivefold
cross-validation

Optimal cut-off AUC AUPRC Precision F1-score

LR
Preoperative 0.165 0.714 0.335 0.221 0.280
Postoperative 0.103 0.718 0.325 0.194 0.286

RFC
Preoperative 0.144 0.673 0.247 0.193 0.279
Postoperative 0.149 0.702 0.256 0.215 0.308

XGB
Preoperative 0.166 0.693 0.271 0.189 0.243
Postoperative 0.151 0.693 0.268 0.172 0.226

LGBM
Preoperative 0.166 0.841 0.407 0.102 0.185
Postoperative 0.151 0.877 0.516 0.102 0.185

ANN
Preoperative 0.111 0.766 0.441 0.194 0.297
Postoperative 0.160 0.851 0.645 0.444 0.521

ANN, artificial neural network; AUC, the area under the receiver operating characteristic curve; AUPRC,
the area under the precision-recall (PR) curve; LGBM, light gradient boosting machines; LR, logistic
regression; ML, machine learning; RFC, random forest classifier; XGB, extreme gradient boosting.
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Second, our prediction model can achieve multitime point
risk stratification. Our risk prediction models for PHLF
showed comparable predictive performance between the pre-
operative and postoperative periods. Considering the life-
threatening potential and severity of PHLF, it is necessary to
develop an accurate preoperative model to identify patients at
high risk at an early stage. Unfortunately, most ML-based
studies have focused exclusively on developing postoperative
models to predict PHLF. Remarkably, only one model built by
Mai et al.[14] was available for use in the preoperative period,

but it was still unclear whether the model had satisfactory
performance in predicting clinically significant PHLF post-
operatively. Therefore, our prediction model, which is capable
of multitime point risk stratification, can potentially be used in
clinical practice to facilitate optimized clinical decision-making
and early personalized interventions.

In addition, our risk prediction models are simple and easy to
use. In this study, we constructed a preoperative model based on
three variables, namely, the preoperative CREA, TBIL, and
Child–Pugh score, while the postoperative model further

Figure 2. ROC curves and PRCs of the machine learning models for predicting PHLF. ROC curve with fivefold cross-validation (A, C) and PRC curve (B, D) of the
preoperative and postoperative models for the whole cohort. PHLF, posthepatectomy liver failure.
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included the extent of resection. Despite the relatively small
number of variables, their predictive effects are comparable to
those of other predictive models[14–16]. Hence, the variables
included in our model are simple, easy to obtain, and do not rely
on expensive or difficult-to-obtain data such as radiomic features.
More importantly, to enhance the interaction between the model

and the user, we provided a graphical user interface for pre-
operative and postoperative ANN models on a web page. By
accessing the web page online, clinicians are capable of achieving
dynamic and instant assessment of the preoperative and post-
operative PHLF risk for a specific patient, respectively. The web-
based tool we developed can also be used on portable devices

Figure 3. Calibration curve for PHLF. Calibration curves (A, B) of the preoperative and postoperative PHLF models. PHLF, posthepatectomy liver failure.

Figure 4. ROC and AUPRC curves of the four clinical scores for predicting PHLF. ROC curve for the four scores (A), AUPRC curve for the four scores (B). PHLF,
posthepatectomy liver failure.
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such as mobile phones and tablets, or even be integrated into
electronic medical record systems to fulfill automatic valuation at
any location and time. Therefore, our predictive models can not
only reduce user workload and improve prediction efficiency but
also reduce prediction costs and increase patient adherence. Even
for hospitals in rural and remote areas, our models can also be
effectively applied without specialized equipment and personnel.
In summary, the models we developed are suitable for routine use
in clinical practice.

Our study is the first to address the importance of the man-
agement of preoperative CREA, TBIL, and Child–Pugh grade to
reduce PHLF risk. In this study, the SHAP algorithm showed that
the preoperative CREA, TBIL, and preoperative Child–Pugh
grade were significant in both the preoperative and postoperative
models. Although previous studies have reported correlations

between these factors and PHLF, they have not emphasized the
importance of their preoperative management[42]. Our study
indicated that the preoperative management of these three factors
is crucial for predicting PHLF. Therefore, physicians should focus
on these factors and provide relevant preventive or interventional
treatments during the preoperative period, especially for patients
with high preoperative CREA levels, TBIL levels, or high Child–
Pugh grades.

Our study has several limitations. First, this was a retrospective
study conducted at a single center, which may introduce selection
bias. Second, the independent datasets utilized for external vali-
dation were too small to further test the extrapolation and gen-
eralizability of our constructed models. Therefore, larger,
prospective, multicenter studies are needed to validate our ML
model in the future.

Figure 5. SHAP summary plots of the interpretations of the significant predictors contributing to the preoperative and postoperative ANN models. Bar chart of the
average absolute SHAP value for each significant predictor of the preoperative and postoperative ANN models (A, B). Dot chart of each significant predictor
contributing to the preoperative and postoperative ANN models (C, D). SHAP, SHapley Additive explanation; ANN, artificial neural network.

Figure 6.ROC curves, PRC curves and calibration curves of the pre- and postoperative ANNmodels for predicting PHLF in the temporal external validation cohort.
The ROC curves (A) of the preoperative ANN model (blue line) and the postoperative ANN model (orange line). The PRC curves (B) of the preoperative ANN model
(blue line) and the postoperative ANNmodel (orange line). The calibration curves plot (C) of the preoperative ANNmodel (blue line) and the postoperative ANNmodel
(orange line).
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Conclusion

Using ML algorithms and a few simple and easily accessible
variables, we successfully developed online interpretable and
clinically applicable preoperative and postoperative ANNmodels
that can accurately predict the risk of PHLF. Our models show
potential utility for identifying patients at high risk of clinically
significant PHLF before and after surgery, which will help clin-
icians perform better personalized clinical decision-making and
determine early individualized interventions for patients under-
going hepatectomy.
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