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Epigenetic gene regulation is a major control mechanism of gene expression. Most

existing methods for modeling control mechanisms of gene expression use only a

single epigenetic marker and very few methods are successful in modeling complex

mechanisms of gene regulations using multiple epigenetic markers on transcriptional

regulation. In this paper, we propose a multi-attention based deep learning model that

integrates multiple markers to characterize complex gene regulation mechanisms. In

experiments with 18 cell line multi-omics data, our proposed model predicted the gene

expression level more accurately than the state-of-the-art model. Moreover, the model

successfully revealed cell-type-specific gene expression control mechanisms. Finally, the

model was used to identify genes enriched for specific cell types in terms of their functions

and epigenetic regulation.

Keywords: gene regulation mechanism, gene regulatory network, multi-omics, deep learning, cell-type-specific

1. INTRODUCTION

Epigenetic gene regulation is a major control mechanism of gene expression. Histonemodifications
one of the most versatile modes of chromatin regulation among diverse epigenetic regulatory
mechanisms are defined as covalent modifications of a set of specific amino acids at N-terminal
tails of histone proteins. Combinations of the type of amino acids and their modifications
constitute “histone codes” that are distributed across the genome and are known to regulate
overall chromatin states. On the other hand, DNA methylation occurs directly at the cytosine
bases of DNA and regulates gene expression in part by altering the binding affinity of most
of the transcription factors. Besides the individual effect of each epigenetic modification, the
complexity of epigenetic gene regulation mostly arises from the crosstalk between the different
types of epigenetic modifications. For example, positive interplay between histone marks (1)
H2BK120u1 and H3K4me3, and (2) H3K4me3 and H3/H4 acetylation (Zhang et al., 2015) is
an example of the complex epigenetic regulation. Furthermore, some histone modifications are
known to be associated with DNA methylation (Cedar and Bergman, 2009). De novo DNA
methyltransferases, DNMT3A andDNMT3B, are known to physically interact with specific histone
marks, H3K36me3 and H3K4me0, through their internal PWWP and ADD domain, respectively.
Methyl-CpG-binding domain (MBD) proteins have been reported to “read” methylated CpG,
and recruit chromatin-modifying complexes such as SWI/SNF components (Fatemi and Wade,
2006). Subtle epigenetic interactions between different types of histone modifications and DNA
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methylation can therefore be regarded as a major determinant
of the general chromatin structure of cells that govern the
accessibility of transcription factors to the chromatin.

Given the essential role of epigenetic alterations in regulating
gene expression, a number of studies on modeling the regulatory
effects of these epigenetic markers have been performed.
However, existing modeling methods utilize only a single
epigenetic marker. Some studies have investigated the role of
histone marks in the context of gene regulation. DeepChrome
(Singh et al., 2016) used a Convolutional Neural Network
based model to model gene regulation. It was the first deep
learning approach to predict the gene expression level, and it
captured local characteristics of histone marks. Another study,
AttentiveChrome (Singh et al., 2017), proposed a hierarchy of
multiple Long Short-Term Memory modules with an attention
mechanism to predict gene expression levels. AttentiveChrome
predicted gene expression more accurately than DeepChrome,
and it showed which histone marks or which gene loci were
used, using an attentionmechanism. Both studies used individual
deep learning approaches to understand gene regulation but
utilized histone marks only. There have also been studies to
identify relationships between genome-wide DNA methylation
and gene expression. Wagner et al. (2014) investigated the
relationships between DNAmethylation and the gene expression
profile of primary fibroblast samples from 62 individuals. More
recently, Zhong et al. (2019) predicted gene expression using
DNAmethylation in human populations, using linear regression-
based methods. Recent studies investigated the relationships
between mutation and gene expression. Zeng et al. (2017) used
a linear regression-based model to predict gene expression with
cis-SNPs. Xie et al. (2017) examined the effectiveness of a deep
auto-encoder to predict the gene expression profile measured in
yeast with SNP. These prior studies on gene expression prediction
revealed relationships between gene expression and a single
epigenetic marker of histone marks, DNA methylation, or SNP.
However, these studies were not designed to model complex
transcriptional control mechanisms involving the interplay of
various epigenetic regulatory modules.

We therefore introduce an explainable deep learning model
with a multi-attention network for epigenetic regulation
mechanisms. Our model integrates multiple markers such as
histone marks, DNA methylation, and transcription factors
and explains the complex interactions between the molecular
regulators. The attention network modules of our model
allow human experts to understand the gene regulation
mechanisms. Moreover, the model characterizes cell-type-
specific gene regulation mechanisms for 18 cell lines, based on
the weights of the Multi-Attention network. In summary, the
proposed model provides a better understanding of cell-type-
specific gene regulation.

2. MATERIALS AND METHODS

We propose a two-step ensemble deep learning model for
gene expression prediction and the architecture is illustrated in
Figure 1. At the first layer of the model, separate neural networks

vectorize epigenetic and transcriptional markers with different
strategies, and then at the second layer, output vectors from
the first layer are integrated by a Multi-Attention network. To
predict gene expression, we used the same outputs previously
used in DeepChrome (Singh et al., 2016) and AttentiveChrome
(Singh et al., 2017). All genes are divided into highly expressed
genes (HEG) and lowly expressed genes (LEG) according to
their expression levels, which formulates the problem as a binary
classification task.

To begin, separate models embed histone marks, DNA
methylation, and transcription factors into a regulatory latent
space. First, histone marks are embedded into the latent
space by a Convolutional Neural Network (CNN) followed by
a Bi-directional Long Short-Term Memory (LSTM) network
with attention. Second, DNA methylation is vectorized by a
Dynamic Bi-directional LSTM with attention. Lastly, a Self-
AttentionNetwork (SAN) embeds the transcription factors. After
embedding features in three vectors, a Multi-Attention network
combines these vectors to predict whether a gene would be
highly expressed or lowly expressed.While the end-to-endmodel
predicts the gene expression level as a whole, the Multi-Attention
network determines which types of epigenetic markers are most
influential for controlling gene expression and how epigenetic
features interact with each other in each cell type.

We used datasets from the Roadmap Epigenomics Projects
(Kundaje et al., 2015) to predict the gene expression level of 18
cell lines, for which data measuring levels of histone marks, DNA
methylation, and transcription factors are available (Table 1,
Supplementary Figure 1). The epigenetic and transcriptional
markers near the transcription start site (TSS) mainly involve
in gene expression. We therefore focused on the gene region of
4,000 base-pair (bp) around the TSS for histone markers or DNA
methylation and 200 bp around the TSS for transcription factors.
To implement the model, we used Pytorch, an open-source
machine learning library based on Python. Implementation of
our model can be found at Github (https://github.com/pptnz/
deeply-learning-regulatory-latent-space).

In the following sections, deep learning models for each of the
epigenetic and transcriptional markers are explained.

2.1. Embedding Histone Marks
We used seven core histone marks: H3K4me1, H3K4me3,
H3K9me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac.
Among 31 histone marks in the Roadmap Epigenomics Projects,
the seven core histone marks had been profiled and investigated
the most. Each of the seven histone marks were profiled for more
than 62 cell lines, whereas other histone marks were profiled for
less than 24 cell lines (Supplementary Figure 2). To investigate
cell-type-specific gene regulation mechanisms, we used the seven
histone marks with abundant cell line data.

To vectorize the histone marks, we used CNN, followed by Bi-
directional LSTM with an attention mechanism. CNN is a deep
learning architecture proposed for extracting local features of
various sizes in two-dimensional images (Min et al., 2016). In this
model, CNN captures local patterns of the seven histone marks.
RNN is a deep learning architecture with a cyclic structure,
which has caught the limelight in natural language processing
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FIGURE 1 | An overview of the proposed model. To predict gene expression level and to model the regulation mechanism, a Multi-Attention based deep learning

model with regulatory latent space is designed. It consists of two steps: (1) embedding multi-omics features into a regulatory latent space, and (2) integrating latent

vectors with a Multi-Attention network. In the first step, different deep learning architectures are utilized to reflect the characteristics of each omics feature. By

omics-specific layers, multi-omics features are transformed into latent vectors in the regulatory latent space. In the second step, the latent vectors are integrated by a

Multi-Attention network. The attention weights of multi-omics features represent their effects on the gene regulation.
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TABLE 1 | Cell line data used in this study.

Cell line Group Standardized

epigenome name

E003 ESC H1 Cells

E004 ES-deriv H1 BMP4 derived mesendoderm cultured cells

E005 ES-deriv H1 BMP4 derived trophoblast cultured cells

E006 ES-deriv H1 derived mesenchymal stem cells

E007 ES-deriv H1 derived neuronal progenitor cultured cells

E011 ES-deriv hESC derived CD184+ endoderm cultured cells

E016 ESC HUES64 cells

E038 Blood & T-cell Primary T helper naive cells from peripheral blood

E047 Blood & T-cell Primary T CD8+ naive cells from peripheral blood

E066 Tissue & Primary cell Liver

E087 Tissue & Primary cell Pancreatic islets

E114 Cancer cell line A549 EtOH 0.02pct lung carcinoma cell line

E116 Cancer cell line GM12878 lymphoblastoid cells

E117 Cancer cell line HeLa-S3 cervical carcinoma cell line

E118 Cancer cell line HepG2 hepatocellular carcinoma cell line

E119 Tissue & Primary cell HMEC mammary epithelial primary cells

E120 Tissue & Primary cell HSMM skeletal muscle myoblasts cells

E123 Cancer cell line K562 leukemia cells

fields (Min et al., 2016). LSTM is one of the architectures of the
Recurrent Neural Network, proposed for considering long-term
dependencies (Gers et al., 2000). Unlike other RNN architectures,
LSTM has a forget gate, which allows the model to forget
irrelevant parts of a sequence and deal with a long sequence.
In our model, LSTM captures sequential patterns. The attention
mechanism reveals important gene loci.

The histone marks in a gene region of 4,000 bp around TSS
are divided into 40 bins with a bin size of 100 bp. On each bin,
log read counts are calculated for each histone mark, respectively.
The preprocessed histone mark matrix of size 7× 40 is fed into a
CNN that consists of a convolutional layer, a batch normalization
layer, and a 1Dmax-pooling layer. In the convolutional layer, 100
kernels of size 7 × 7 are used, so that a vector of size 1 × 34
is produced. In the max-pooling layer, a kernel with size 3 and
stride 3 is used with left and right padding. Afterward, the output
vector of the CNN is fed into the Bi-directional Long Short-Term
Memory (LSTM) with attention, producing a hHM of size 80.

2.2. Embedding DNA Methylation
We used methylation values at all CpG sites within up/down-
stream of 2,000 bp from TSS. DNA methylation is vectorized
by a Dynamic Bi-directional LSTM with attention. The number
of CpG sites vary for different genes. Thus, the “Dynamic”
LSTM deals with the variable number of CpGs, and the “Bi-
directional” LSTM considers both directions of the DNA strands.
Dynamic Bi-directional LSTM produces the output vector hME of
a fixed size 20.

2.3. Embedding Transcription Factors
We first selected candidate binding transcription factors (TFs)
for each gene, based on prior knowledge of human transcription

factors in Lambert et al. (2018), and the motif detection tool,
HOMER (Heinz et al., 2010). We utilized TFs that have their
binding sites within the region of 200 bp around the TSS. Based
on this configuration, an input matrix for TFs is processed
as a matrix of size 3 x 1016. Three rows of an input matrix
represent TF expression values, the number of binding sites,
and the binding scores of TFs by HOMER. One-thousand-and-
sixteen columns of the matrix represent human transcription
factors. Except for the candidate binding transcription factors, all
columns are masked to zero.

Since the data of transcription factors are discrete rather than
sequential, CNN or LSTM cannot be employed. Thus, a Self-
Attention Network (SAN) is used to embed the input matrix
in vector a hTF of size 5. As a result of SAN, the attention
weight matrix is produced, providing vital information about
relationships and interactions between transcription factors.

2.4. Integrating Latent Vectors
To integrate latent vectors, we used the Multi-Attention Block
from the Multi-Attention Recurrent Network (MARN) (Zadeh
et al., 2018). MARN was proposed for the comprehension
of human communication with multi-modal data (language
modality, vision modality, and acoustic modality). As it was
designed to deal with data with different characteristics, MARN
is suitable for dealing with three latent vectors from different
multi-omics data.

First, all three latent vectors hHM , hME, and hTF are
concatenated. The concatenated vector h is fed into a fully
connected layer A. Multiple attention weights a1, a2, ..., ak are
then produced, where k is the number of attentions. The k
attention weights are multiplied to the concatenated vector, the

vectors h̃1, h̃2, ..., h̃k are produced by element-wise multiplication

of the concatenation and the k attention weights as h̃i = h⊗ ai.
Finally, a fully connected layer produces the predicted labels,

which represents whether a gene is highly expressed (HEG, +1)
or lowly expressed (LEG, -1).

3. RESULTS

To evaluate our proposed model, we split 18,070 genes into four-
folds for each cell line. The first and second folds were used as a
test and validation set, respectively, and the remaining two folds
were used as a training set. Every result is averaged from a 4-fold
cross-validation.

3.1. Performance Evaluation of Models
With Histone Modification Only
We set a baseline with the state-of-the-art method for gene
expression level prediction, AttentiveChrome (Singh et al., 2017).
As AttentiveChrome was designed for histone marks only,
instead ofmultiple epigenetic features, we trained both ourmodel
and AttentiveChrome using only seven histone marks for a fair
comparison. We evaluated them with two metrics. (1) First, we
performed a classification task on whether a gene is highly or
lowly expressed in that cell line. (2) Second, gene expression
value prediction was performed in terms of rank concordance
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FIGURE 2 | Performance evaluation of models in predicting the gene expression levels. The performance of our model surpassed that of a baseline model,

AttentiveChrome, in both criteria of (A) AUC and (B) Rank Concordance for two models for every cell line.

between the gene expression values and the final output values
of the model.

In terms of AUC, rank concordance, and AUPR, our model
outperformed AttentiveChrome for every cell line (Figure 2,
Supplementary Figure 3). On average, the proposed model
achieved 91.05% of AUC, while AttentiveChrome achieved
89.72%. Moreover, the model demonstrated its robustness by
showing higher rank concordances between the gene expression
value and the final output of the model. Our model showed
56.83% of rank concordance on average, while AttentiveChrome
showed only 53.85%. We conjecture that the performance
difference is due to the difference in model architectures.
AttentiveChrome first uses an individual LSTM structure for
each histone mark, and then integrates histone marks with
an additional LSTM. On account of the individual LSTM, the
interactions of numerous types of histone marks are likely to be
neglected. Consequently, AttentiveChrome was not successful in
capturing the local characteristics of seven histone marks. On the
other hand, our model used both CNN and LSTM to capture
local and sequential features of histone marks in a single model.
Our model is therefore suitable for modeling not only the roles of
histone marks but also interactions among them.

3.2. Performance Evaluation of Models
With Multi-Omics Markers
Since our model is designed to utilize multi-omics biomarkers,
we measured performance in terms of the average AUC
and AUPR of our models that were trained on all
possible combinations of multi-omics features (Figure 3,
Supplementary Figure 4). The average AUC of the model
improved when adding and integrating multi-omics features.
In particular, the model with histone marks (HM, TF+HM,
ME+HM, and TF+ME+HM) showed remarkable levels of
AUC, exceeding the AUC of AttentiveChrome. This result is
attributed to the fact that genes can be expressed if chromatins

FIGURE 3 | Average AUC of 18 cell lines for different subsets of multi-omics

features. TF, ME, and HM stand for transcription factors, DNA methylation,

and histone marks, respectively. The model showed improvement in AUC,

adding multiple epigenetic markers.

are opened, and thus histone marks are a major determinant of
chromatin regulation.

3.3. Modeling Gene Regulation
Mechanisms Using Multi-Omics Markers
Multi-omics markers are required to model gene regulation
mechanisms. We focused on HeLa cell since its accuracy
has been improved significantly by adding multiple markers
(Supplementary Figure 5). In the HeLa cell, genes exist that
cannot be predicted correctly using histone modification marks
alone. Figure 4 shows the average ChIP-seq reads of histone
modification marks of genes with the same labels and predictions
of the HM model. The model prediction is consistent: genes
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FIGURE 4 | The average ChIP-seq reads of seven histone modification marks of (A) highly expressed genes (HEG) predicted as HEG. (B) lowly expressed genes

(LEG) predicted as HEG. (C) HEG predicted as LEG. (D) LEG predicted as LEG.

with the same prediction curves have common characteristics
regardless of their true labels.

There were three differences between genes predicted as
highly expressed genes (HEG) (Figures 4A,B) and genes
predicted as lowly expressed genes (LEG) (Figures 4C,D). First,
ChIP-seq reads of the genes predicted as HEG had a larger scale
than the genes predicted as LEG. Second, the genes predicted as
HEG had a noticeable peak around TSS for each histone mark
associated with the activation of genes (H3K27ac, H3K4me3, and
H3K9ac). Third, the genes predicted as HEG had a higher value
of H3K4me1 around TSS, which is related to enhancers.

There are LEG even with an open chromatin state (Figure 4B)
and HEG with weak signals of activation histone marks
(Figure 4C). A model that only uses histone marks is
limited in both predicting the gene expression level and
characterizing the gene regulation mechanisms. In other words,
multiple epigenetic markers such as DNA methylation and
transcription factors are required to understand the complex
gene regulation mechanisms.

RNF212, one of the enriched genes in theHeLa cell, epitomizes
a gene that can be fully understood only by the multi-omics
model, especially the TF+ME+HM model. The gene is a highly
expressed gene but the model with histone marks alone failed
to predict the gene expression level. This is due to the weak
activation of histone marks. The intensities of histone marks

associated with the activation of genes (H3K27ac, H3K4me3,
and H3K9ac) were much smaller than those of other HEGs (i.e.,
SLF1) (Figure 5A). However, the gene was predicted correctly by
the model with three epigenetic markers (TF+ME+HM). This
is because the model could learn the regulation mechanisms of
DNAmethylation and transcription factors. Figure 5B illustrates
the DNAmethylation levels of RNF212 and the attention weights
of Dynamic LSTM. Surprisingly, the attention weight near TSS
was high, and the region was unmethylated. The unmethylated
promoter region enabled transcription factors to bind to the gene.
Figure 5C shows all the possible binding transcription factors
of the promoter region. These transcription factors were up-
regulated especially in the HeLa cell compared to the other 17
cell lines (Figure 5D). Therefore, we can infer that RNF212 could
be highly expressed, despite weak signals of activation marks,
thanks to the help of the “highly expressed” transcription factors,
which bound to the unmethylated promoter region. As shown in
the example, our multi-omics model reflected the multiple gene
regulation mechanisms of histone marks, DNA methylation, and
transcription factors.

3.4. Characterizing Cell-Type-Specific
Gene Regulation Mechanisms
Figure 6 demonstrates the weights of the Multi-Attention Block
in 18 cell lines. Every weight is normalized by the average weight
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FIGURE 5 | Modeling the epigenetic regulation mechanism of RNF212 in HeLa cell line. (A) The ChIP-seq reads of histone modification marks of RNF212 and SLF1.

(B) The DNA methylation levels and attention weights of RNF212. (C) The candidate binding transcription factors of the promoter region of RNF212. (D) The average

expression value of the binding transcription factors of RNF212 in HeLa cell line and other cell lines.

of 18 cell-lines in order to compare the importance of markers
in each cell line. The attention weight of each feature shows
how the model attends to the feature to predict gene expression
level. The attention weight of each epigenetic marker therefore
represents the importance of the markers in gene regulation.
We compared the attention weights to reveal the important
regulatory mechanisms in 18 cell lines and 5 cell types: ESC,
ES-deriv, Blood & T-cell, Tissue & Primary Cell, and Cancer
Cell Line.

There was no big difference in the weights of histone marks
between the 18 cell lines. This is because histone modification
plays a key role in the activation of genes, irrespective of cell type.
Only after the chromatin structure of the gene is opened, can the
gene be expressed. The higher AUC of the HM model (91.05)
compare to that of the TFmodel (73.54) or theMEmodel (79.54),
supports the importance of histone marks.

In contrast, weights of DNA methylation or transcription
factors vary among cell types. In other words, DNA methylation
and transcription factors determine the cell-type-specific gene
regulatory mechanism. In general, cancer cell lines showed
high attention weights of DNA methylation. The result
is intuitive because DNA methylation is important in the
development of cancer (Wajed et al., 2001; Kulis and Esteller,
2010). The abnormal patterns of methylation can inhibit
gene expression and increase the probability of mutation

(Wajed et al., 2001; Kulis and Esteller, 2010). It is commonly
known that the hypermethylation of CpG islands inactivates
tumor suppressor genes. Moreover, global hypomethylation
significantly contributes to genome instability and aberrant
gene expression.

In addition, embryonic stem cells showed the high attention
weights of transcription factors. This reflects the crucial role
of transcription factors in determining the fate of stem
cells between self-renewal and differentiation. Transcriptional
circuitry involving transcription factors like OCT4, SOX2, and
NANOG is well-known to be a core regulatory mechanism of
stem cells to maintain their stemness (Pan et al., 2002; Li, 2010).
Furthermore, the significance of transcriptional regulation in
embryonic stem cells has been highlighted since the prominent
discovery, showing that ectopic overexpression of four essential
transcription factors (OCT4, SOX2, KLF4, MYC), which are often
referred to as “Yamanaka factors,” are sufficient to induce the
pluripotency of somatic cells.

Furthermore, we evaluated the cell-type-specificity and
compatibility of our model, by training on one cell line and
testing on other cell lines. For each cell line, the greatest AUC
of the model was achieved when the model was trained on the
cell line, demonstrating the cell-type-specificity. Moreover, it is
notable that cell lines in the same group showed similar AUC
patterns (Figure 7). By performing hierarchical clustering with
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FIGURE 6 | The weights of the Multi-Attention Block in 18 cell lines. Based on relative attention weights, the importance of histone marks was not significantly

different among cell lines. Moreover, methylation and transcription factors showed quite different weights among each cell line. In case of methylation, cancer cell lines

were more focused on methylation compared to other cell lines. In case of transcription factor, ESC type cell lines had higher attention weights than those of others.

the Euclidean distance, cell lines in the same group were clustered
together. The result highlights the transferability between the
models in the same group, i.e., transfer learning. In other words,
each cell line can be explained well by the model of the other cell
lines if they are in the same group. For instance, the blood and T-
cell group, E038 and E047, showed the best AUC for each other’s
model. This is probably because the cell lines in the same group
tend to have similar gene regulation mechanisms.

3.5. Identification of Enriched Genes: Case
Studies on HeLa and K562
Performances of the multi-omics model on the HeLa cell
line and K562 cell line were quite improved compared to
AttentiveChrome (Supplementary Figure 5). In addition,
the multi-omics model better captured cell line enriched
genes that were obtained from the Human Protein Atlas
(http://www.proteinatlas.org; Uhlen et al., 2017). In the
case of the HeLa cell line, the multi-omics model predicted
12 genes correctly among 20 enriched genes, while 9-10
genes were predicted correctly by the HM, TF+HM, and
ME+HM models (Supplementary Table 1). On the other hand,
in the case of the K562 cell line, 38 out of 62 genes were
predicted correctly with the multi-omics model. Similar to the
HeLa cell case, other models showed poor performances
(34-37 genes, Supplementary Table 2). The number of

correctly predicted HEG by each model is summarized in
Supplementary Figures 6, 7 for HeLa and K562, respectively.

We further investigated functions and epigenetic regulation
mechanisms of cell-type enriched genes on the HeLa and K562
cell lines (Figure 8). RNF212 was one of the HeLa cell enriched
genes and was predicted correctly with the multi-omics only
model. RNF212 creates a cellular memory of DNA damage by
tagging the lingering breaks (Qiao et al., 2018) and is known as
a prognostic marker in cervical cancer in The Human Protein
Atlas http://www.proteinatlas.org. The TF+HM and ME+HM
model failed to predict the expression level of RNF212, while
the TF+ME+HM model predicted it as an expressed gene. This
result therefore implies that the expression of RNF212 may
be modulated by DNA methylation and transcription factors.
It is also shown in the weights of the Multi-Attention Block
in Figure 8.

PPARGC1A was also predicted correctly by the multi-
omics model of the HeLa cell line. PPARGC1A belongs to
the PCG-1 family that is associated with the regulation of
mitochondrial biogenesis, promoting cell growth, proliferation,
and evasion of the apoptosis signal (Lin et al., 2005; Jones
et al., 2012). In particular, PPARGC1A modulates telomere
function and the DNA damage mechanism in diabetes and
cardiovascular disease (Lai et al., 2008; Xiong et al., 2015).
Interestingly, the TF+ME+HM and ME+HM model, but not the
TF+HM model, correctly predicted expression of the gene. In
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FIGURE 7 | The compatibility test results between cell lines. The AUC values of each test cell line were normalized with the AUC value of the model trained on that cell

line. As a result of hierarchical clustering, cell lines in the same group showed similar AUC patterns. This result highlights the transferability between the models in the

same group.

Figure 8, methylation was relatively more highlighted than other
omics data. According to this observation, we speculated that
methylation is one of the main regulators of PPARGC1A. This
epigenetic regulation was already reported in other tissues such
as brown adipose tissue or skeletal muscle tissue (Gillberg et al.,
2013, 2014; Gill and La Merrill, 2017).

In the case of the K562 cell line, the TRIM6 gene was captured
by the multi-omics model. It belongs to the Tripartite motif
(TRIM) family which is related to the cancer stem cell self-
renewal process. TRIM6, more specifically, directly interacts with
the MYC gene to modulate stem cell differentiation (Jaworska
et al., 2019). Attention weights of TF were relatively higher than
the weights of ME. Besides the TF+ME+HMmodel, the TF+HM
only model predicted the activation of genes correctly. Therefore,
it is thought that HM and TF co-regulate the expression
of TRIM6.

Lastly, CDKN1A, also known as p21, is a kind of tumor
suppressor gene. CDKN1A plays a crucial role in regulating
cell cycles to prevent cancer progression. In Figure 8, histone
and methylation were relatively highlighted. Based on this
observation, we thought that methylation might be a key
factor in epigenetic regulation of CDKN1A. In addition to
the TF+ME+HM model, the ME+HM model also predicted
correctly. From previous studies, expression of DNMT1 and

FIGURE 8 | The epigenetic mechanisms of highly expressed genes in the

HeLa and K562 cell lines. Among correctly predicted highly expressed genes

by the TF+ME+HM model, four genes are selected for a further case study of

epigenetic gene regulation mechanism: RNF212 and PPARGC1A for HeLa,

and TRIM6 and CDKN1A for the K562 cell line. To elucidate the importance of

each omics on the gene regulation, the relative attention weights of the

Multi-Attention Block were used.

CDKN1A showed a negative regulation mechanism on chronic
myelogenous leukemia (Kaufman-Szymczyk et al., 2019). It was
also reported that DNMT3B knock-down induced up-regulation
of a number of tumor suppressor genes including CDKN1A
(Poole et al., 2017).
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Based on the case study of enriched genes of the HeLa
and K562 cell line, we could investigate the epigenetic
regulatory mechanisms of gene expressions by the weights
of the Multi-Attention Blocks. Although it was possible to
infer the involvement of histone marks, DNA methylation,
and transcription factor for each gene, and to analyze their
importance, there are other epigenetic and transcriptional factors
that regulate gene expression. MicroRNA (miRNA) is one of the
famous epigenetic factors that was not included in the model.
MiRNAs are actually genes that are controlled by epigenetic
mechanisms and TFs. For example, EWS is known to regulate
Drosha, which controls biogenesis of miRNA (Kim et al., 2014).
miRNA can then affect the transcription and translation of genes.
To study the effects of miRNAs, we collected the genes that
were correctly predicted by the TF+ME+HM model, not by the
HM model in the HeLa cell line and 275 genes were selected as
candidate genes. Using a biomedical literature search platform,
BEST (Lee et al., 2016), 14 genes were related to miRNA in
the context of the HeLa cell line, cervical cancer, or ovarian
cancer (Supplementary Table 3). For example, the expression
of LPAR2 was repressed by miR-377, and oncogenic processes
such as cell proliferation or migration are known to be repressed
by that inhibition mechanism (Zhang et al., 2020). As another
example, ITGB1 was targeted by miR-183. It is known that
miR-183 may play a role in tumor suppressors, such as the
inhibition of cell invasion or the decrease of migration capacities
of HeLa cells (Li et al., 2010). Incorporation of miRNA in our
deep learning model can certainly be helpful in understanding
complex gene regulation mechanisms. We plan to investigate
how roles of miRNA can be seamlessly integrated into our deep
learning model.

4. CONCLUSION

In summary, the proposed model learned cell-type-specific
gene regulation mechanisms through Multi-Attention based
deep learning strategies. To the best of our knowledge, the
model is the first of its kind to use multiple epigenetic and
transcriptional markers for predicting gene expressions. Our
model achieved higher prediction accuracy than the state-of-
the-art model. Additionally, the proposed method provided
useful insight into cell-type-specific gene regulationmechanisms.
Specifically, the weights of theMulti-Attention Block revealed the
relative importance of each marker in the specific cell line. Lastly,
we identified themechanism of enriched genes in HeLa and K562
cell lines.

Our model investigated the roles of three markers: histone
marks, DNA methylation, and transcription factors. However,
the gene regulatory network may also involve additional
epigenetic and transcriptional markers such as microRNA,
competing endogenous RNA, or long non-coding RNA.
Thus, future studies on other epigenetic markers need to
be conducted.
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