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Abstract 

Microsatellites instability (MSI) is a risk factor for multiple primary cancers (MPCs). However, a 
variety of studies focused on the risk in the hereditary non-polyposis colorectal cancer (HNPCC) 
not the sporadic colorectal cancer (CRC) patients. The aim of this meta-analysis was to 
comprehensive overview and quantitative summary the association between MSI and risk of MPCs. 
A comprehensive literature search in MEDLINE, EMBASE, Web of science, ScienceDirect, Weily 
and OVID was conducted. Up to May 2016, we identified 22 observational studies. We calculated 
the summary relative risk (RR) for the risk of MPCs in MSI patients compared with microsatellites 
stability (MSS) patients using fixed- or random-effects models. The RR of the association between 
mismatch-repair gene (MMR) genotype and MPCs was 2.59 (95% confidence interval [CI], 2.06 to 
3.27); the RR was 2.14 (95% CI, 1.78 to 2.57) for sporadic CRC and 5.59 (95% CI, 2.69 to 11.59) 
for HNPCC for the MSI versus MSS category. The subgroup analyses showed different mutant 
gene, mutant locus, and mutant level of MMR with different influence on the patients susceptible to 
MPCs. In addition, MSI genotype increase the risk of MPC was not associated with an apparently 
specific in regard to site, timing, age and detection method. In conclusion, this meta-analysis 
indicates that MSI is associated with an increased risk of MPCs both in the HNPCC and sporadic 
CRC patients. Our findings will form the backbone of the treatment for MSI genotype may be an 
important valuable strategy for MPCs prevention. 

Key words: microsatellites instability, multiple Primary Cancers, risk factor, meta-analysis. 

Introduction 
DNA duplication is an accurate process and 

often generates incorrect base-pairing (base-base 
mismatches) or unmatched DNA loops 
(insertion-deletion loops), which needs a DNA repair 
system to provides a mechanism for removing these 
changes and maintaining genomic stability [1]. One of 
the repair system is the mismatch-repair gene (MMR), 

which is composed of a series of MMR proteins 
including mutL homolog 1 (MLH1), mutL homolog 3 
(MLH3), mutS homolog 2 (MSH2), mutS homolog 3 
(MSH3), mutS homolog 6 (MSH6), postmeiotic 
segregation increased 1 (PMS1), and postmeiotic 
segregation increased 2 (PMS2) [2, 3]. Microsatellites, 
short (1–6 base pairs) and tandem repeated sequences 
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that are scattered throughout the genome, are 
extremely sensitive to the replication errors [4]. 
Commonly, the alterations in the length of these 
tandem nucleotide repeats results from 
deficient-MMR (dMMR) known as microsatellites 
instability (MSI) [5].As deficiencies occur in these 
MMR genes, the mistakes generated during the 
process of DNA synthesis cannot be timely corrected, 
and will eventually trigger genetic or epigenetic 
events [6, 7].  

Consistent with the current thinking, cancer can 
be defined as a gene disease, and therefore MSI might 
be one of the potential mechanism responsible for 
particularly gene mutation and subsequently cancer 
development [8]. One of the most famous example is 
hereditary non-polyposis colorectal cancer 
(HNPCC),which is collectively known as germ line 
mutation in mismatch-repair(MMR) gene and 
preferentially induces early onset of colorectal cancer 
(CRC) as well as cancer of the endometrium, pancreas 
stomach, ovary and urogenital synchronously or 
metachronously [9]. It has generally been reported 
that MSI is detected in 90% of cancers from patients 
with HNPCC [10], which accounts for 1~2% of all 
CRC [11]. Besides, it should be also noted that MSI 
were account for 12% ~17% of sporadic colorectal 
cancer [12, 13] as well as in a subset of several other 
types of sporadic cancer with quite high frequencies, 
like gastric cancer (22%) [14], ovarian cancer (10%) 
[15], endometrial cancer (22%-33%) [16, 17], 
esophageal adenocarcinoma (7%) [18], head and neck 
(3%) [19], renal cell carcinoma (2%) [20]. 

Since 2000s, advances in cancer diagnosis and 
treatment and consequently improved CRC overall 
five-year survival rate, about 10% of cancer patients, 
even if completely cured. We noted, however, that 
approximately 20% or more CRC patients are at high 
risk of developing a secondary cancer, and the 
prognostic outcome of multiple primary cancers 
(MPCs) patients remains ominous [21-23], 
highlighting intensively prevention and quick 
diagnosis of secondary cancers are urgently needed. 
In addition, to date, very little is known about a 
reliable marker to identify these patients. With these 
considerations in mind, we systematically 
synthesized data from all existing studies to evaluate 
the role of MSI as a marker for CRC patient 
developing multiple primary cancers, especially for 
sporadic CRC.  

In this meta-analysis, we reviewed 47898 
researches from the systematic literature search, 
analyzed a total of 11399 cancer patients with MSI 
status. Overall, our study clearly indicates that CRC 
patients with MSI have an increased risk of MPCs 
compared with the patients with microsatellites 

stability (MSS), and this effect is independent of the 
HNPCC or sporadic CRC. Here, our findings also 
provide the first evidence that the detailed association 
between mutant gene, mutant locus, and level of MSI 
on MMR status and MPCs risk. Further, we explicitly 
demonstrated that no significance site and timing 
specific in MPCs resulted from MSI. 

Materials and Methods 
Identification of studies  

Related studies before May 31, 2016 were 
extensively searched using following data bases: 
Medline (PubMed), Web of science, ScienceDirect, 
Weily, OVID, and Embase databases. Using following 
key words: (“gastric cancer” or “stomach cancer” or 
“colorectal cancer” or “ovarian cancer”) combined 
with (“MSI” or “microsatellite instability” or 
“mismatch repair” or “MMR” or “MLH1” or “MSH2” 
or “MSH6” or “PMS2”) (for detail search terms see 
Supplementary Table S1 and Supplementary Table 
S2). In addition, reference lists of all retrieved articles 
were searched manually for additional potentially 
relevant studies. No restriction was applied except for 
the language in English. Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines was performed in the process of this study. 

Eligibility criteria  
Our inclusion criteria for article were as follows: 

(1) report the occurrence of MSI (mutant of gene 
MLH1, MSH2, MSH6, PMS2); (2) measured the 
occurrence of double/MPCs (exclude metastasis); (3) 
randomized clinical trials (RCTs), cohort studies, or 
case-control studies. The exclusion criteria included 
the following: (1) animal studies, review articles, case 
reports, editorials, commentaries, and duplicate 
studies; (2) articles without solitary primary cancer as 
control groups; and (3) if the study utilized the same 
population or overlapping database. If necessary, we 
contacted the authors for the detail or additional 
unpublished data. The entire process of study of 
study identification is summarized in Figure 1. 

Data extraction and assessment 
Two reviewers independently scanned each 

eligible article to obtain and confirm data using a 
standardized form. Any inconsistencies between two 
reviewers were settled by a third investigator. The 
following information were extracted: first author, 
publication year, country, study period, number of 
patients, tumor site, MSI detection method, incidence 
rate of MSI, incidence rate of double/MPCs, MSS in 
patients with multiple and solitary cancer, RRs with 
corresponding 95% CIs for the risk of MPCs MSI 
group compared with MSS group, and adjusted or 
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matched variables. The Newcastle-Ottawa scale was 
performed to assess the quality of the included study 
(Supplementary Table S3) [24]. 

Statistical analysis 
Relative risk (RR) and corresponding 95% 

confidence interval (CIs) from each study were 
calculated, and heterogeneity between individual 
studies was assessed by χ2 test and I2 test; p<0.05 
and/or I2>50% indicated significant heterogeneity. 
The choice of effects model depended on the 
significant of heterogeneity: the fixed-effect model 
with Mantel–Haenszel method for insignificant 
heterogeneity while the random one was applied 
when the heterogeneity was significant. To identify 
sources of between-studies heterogeneity, subgroup 
analyses were further conducted according age, 
gender, sites of cancer, MSI status (MSI-H and MSI-L), 
MSI detection method (PCR and IHC), mutant gene 
(MLH1, MSH2, MSH6 and PMS2), mutant locus 
(BAT25, BAT26, BAT40, D2S123, D2S136, D3S1067, 
D5S346, D11S922 and D17S250) and adjustments for 
covariates. Additionally, sensitivity analysis was also 
performed to dissect the heterogeneity. As our 
previous study described, to explore the publication 

bias risk, funnel plots and Egger’s test method were 
used.[25, 26] Two-sided p values were calculated, 
with a p value <0.05 defined significant. All statistical 
analyses were conducted using the Stata software 
(V.19.0; Stata Corp, College Station, Texas, USA). 

Result 
Search results and study characteristics 

Our search process for eligible studies was 
shown in Figure 1. We obtained initial 47898 article 
candidates from the systematic literature search. Of 
those, 38,097 were duplicates, 9,693 were excluded 
based on the title and abstract: 7,181 not relevant, 523 
animal studies; 1217 reviews; 527 case reports or 
editorials; and 245 commentaries. The retained 108 
articles were further evaluated by reading the 
full-text, from which 89 were excluded: 62 not focus 
on our topic; 26 no detail data; and 1 same population. 
At the end, 19 eligible studies qualified the criterion in 
the present meta-analysis. In addition, 3 other studies 
met the inclusion criterion were identified by manual 
searching the reference lists of articles. Finally, 22 
studies including 11,399 cancer patients with MSI 
status were included in our meta-analysis.  

 

 
Figure 1. Flow diagram summarizing study identification and selection. 
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The general characteristics of the enrolled 
studies are presented in Table 1 and Supplementary 
Table S4. Twenty of the included studies were 
hospital case-control studies [21, 22, 27-45] and the 
rest were cohort studies [23, 46]. Most articles 
reported the method of MSI detection except two [38, 
46], and the percentage of MSI ranging from 7.4% to 
36.8% [29, 33]. PCR assay were the major way to 
detect MSI status, only one study used IHC alone for 
hMSH2/hMLH1 [34]. In addition, the enrolled studies 
also reported the percentage of MPCs, ranging from 
2.7% to 60.0% [23, 33]. In the whole enrolled studies, 
except 2 studies only can obtained in abstract form 
[27, 28] and three other studies [29, 31, 45], all 
included studies were mostly regarded as high 
quality (Supplementary Table S3).  

 

Table 1. Characteristics of included studies. 

Author/Year MSI detection method MSI% Multiple primary cancers% 
Horri/1994 PCR 25.0 17.9 
Brown/1998 PCR 16.2 44.5 
Kiriu/1998 PCR 7.4 29.6 
Abe/2000 PCR 28.2 39.1 
Kim HS/2001 PCR 12.5 14.2 
Mark/2002 PCR 11.3 8.7 
Kim YH/2005 PCR 16.0 9.2 
Lawes/2005 PCR 

IHC 
36.8 60.0 

Yamamoto/2006 IHC 23.2 44.8 
Hayashi/2006 PCR 20.3 49.5 
Yun HR/2009 PCR 15.2 4.0 
Nosho/2009 PCR 14.5 2.7 
Kim SH/2010 PCR 10.9 3.1 
Yoon/2010 Unconfirmed 9.8 3.3 
Bae JM/2012 PCR 

IHC 
13.2 30.5 

Hu H/2013 PCR 
IHC 

20.4 34.7 

Huang/2014 PCR 19.5 21.8 
Lee JW/2014 Unconfirmed 12.5 4.6 
Malesci/2014 PCR 10.7 5.7 
Cho I/2014 PCR 8.1 5.9 
Meng/2015 PCR 12.8 3.9 
Kim YB/2016 PCR 

IHC 
14.4 8.4 

Abbreviations: MSI: microsatellites instability, PCR: Polymerase chain reaction, 
IHC: immunohistochemistry. 

 

MSI status and MPC risk 
Twenty-two studies investigated the association 

between MSI status and MPCs risk. The 
multivariable-adjusted RRs for each study and the 
combined RR for MSI status and the risk of MPCs are 
delineated in Figure 2A and Supplementary Figure 
S1. Among all included studies, 19 showed a 
statistically significant direct association between MSI 
status and MPCs risk [21-23, 27-31, 33-40, 43, 45, 46]. 
Above all, the pooled analysis represented a summary 
RR of 2.59 (95% CI 2.06 to 3.27) with significant 
heterogeneity (I2=75.2%, p<0.0001) (Figure 2A). In 

addition, there were five studies in a relative low 
quality when using the Newcastle–Ottawa scale 
system to evaluate or the outcomes lack of effective 
adjust [27-29, 31, 45]. After excluding the study with 
relative low quality and unreliable results, the 
heterogeneity decreased across all studies (I2=70.9%, 
p<0.0001) and the adjusted RRs were 2.37 (95% CI 1.85 
to 3.04) (Supplement Figure S1). Among all high 
quality study, eleven studies reported the data 
explore the association between MSI status and MPCs 
risk in non-HNPCC [21, 22, 30, 32, 34, 36-40, 44]. 
Meta-analysis of all non-HNPCC related studies 
elucidated that, among non-HNPCC patients, the MSI 
status was associated with a statistically significant 
more than two-fold increment in MPCs incidence 
(adjusted RR 2.14, 95 % CI 1.78 to 2.57) (Figure 2B). 
Accordingly, MSI status can significantly augment the 
risk of MPCs in CRC and non-HNPCC (adjusted RR 
5.59, 95 % CI 2.69 to 11.59) (Supplementary Figure S2). 

Mutant gene, mutant locus, and level of MSI on 
MSI status and MPC risk  

As displayed in Table 2, the details of mutant 
gene, mutant locus, and level of MSI was divided into 
4, 9, and 2 subgroups, respectively. Firstly, among 
subgroup analyses stratified by mutant gene types, 
studies on MLH1 (adjusted RR 1.97, 95 % CI 1.69 to 
2.30) [32-35, 38, 39, 41, 43, 44], studies on MSH2 
(adjusted RR 2.02, 95 % CI 1.49 to 2.75) [33-35, 38, 39, 
41, 43, 44], studies on MSH6 (adjusted RR 1.78, 95 % 
CI 1.33 to 2.38) [30, 33, 39, 41, 44], and studies on 
PMS2 (adjusted RR 2.41, 95 % CI 1.40 to 4.17) [39, 41, 
44]. Secondly, in mutant locus subgroup, adjusted 
RR= 3.81 (95% CI 2.20 to 6.62) for BAT25 mutant [21, 
29, 36], adjusted RR= 2.63 (95% CI 1.71 to 4.06) for 
BAT26 mutant [21, 30, 36], adjusted RR= 2.44 (95% CI 
1.67 to 3.56) for BAT40 mutant [29, 30], adjusted RR= 
3.96 (95% CI 1.00 to 15.73) for D2S123 mutant [21, 27, 
30, 36], adjusted RR= 5.29 (95% CI 0.32 to 86.67) for 
D2S136 mutant [27, 30], adjusted RR= 7.34 (95% CI 
0.46 to 116.62) for D3S1067 mutant [27, 30], adjusted 
RR= 2.42 (95% CI 1.38 to 4.23) for D5S346 mutant [21, 
30, 36], adjusted RR= 6.73 (95% CI 0.44 to 103.62) for 
D11S922 mutant [27, 30], and adjusted RR= 2.57 (95% 
CI 1.71 to 3.87) for D17S250 mutant [21, 30, 36]. Lastly, 
we also divided the level of MSI status into MSI-L and 
MSI-H group. Notably, we observed a clearly trend of 
increasing risk of MPCs highly correlated with MMR 
status. For the detail, in the MSI-H group [21, 23, 27, 
29, 30, 33, 35, 44], adjusted RR= 2.19 (95% CI 1.36 to 
3.52). Similarly, in the MSI-L group [21, 27, 29, 35, 44], 
adjusted RR= 2.91 (95% CI 1.06 to 7.98). Furthermore, 
we summarized the above-mentioned results and 
presented with intact forest plots in Figure 3 A, Figure 
3B, and Supplementary Figure S3. In our study, 
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because of significant heterogeneity in several 
subgroup, we all used the random-effect model in the 
total landscape figure. Together, it was unraveled a 

different MPCs risk increment for different mutant 
gene, mutant locus, and MSI scale. 

 

 
Figure 2. Forest plot of MMR status and risk of MPCs (MSI vs MSS). (A) Overall and (B) Non-HNPCC. MMR: mismatch-repair, MPCs: multiple primary cancers, MSI, 
microsatellites instability, MSS: microsatellite stable, HNPCC: hereditary non-polyposis colorectal cancer, CI, confidence interval. 
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Site and timing specific and MPC risk 
In twenty studies, 1,070 site specific MPCs were 

identified, which were classified as multiple colorectal 
[22, 23, 27, 28, 30, 32, 33, 39, 40, 43], colorectal/Other 
[21, 27, 28, 31, 34-36, 38, 44, 46], esophagus/Other [27, 
29], and stomach/Other [27, 45] group. On pooled 
analysis, it was found MSI genotype was associated 
with a statistically significant increase in the risk of 
multiple colorectal cancer (adjusted RR 2.08, 95 % CI 
1.82 to 2.39), colorectal-based MPCs (adjusted RR 3.93, 
95 % CI 2.44 to 6.31), and esophagus-based MPCs 
(adjusted RR 7.06, 95 % CI 3.06 to 16.31), though the 
results with considerable heterogeneity among 
studies in two subgroup (p heterogeneity < 0.01, I2 
>50%) (Table 3) (Figure 4A). Additionally, fifteen 
studies reporting on the timing type of MPCs were 
included in the analysis. When all the estimates were 
pooled, the summary RR in timing type of synchronic 
[21-23, 29, 32, 35, 37, 39-41, 43, 44] and metachronous 
[21, 28, 29, 35, 36, 45] from the fix-effects models were 
2.29 (95% CI 1.89 to 2.76) and 2.11 (95% CI 1.68 to 
2.65), respectively. Significant heterogeneity was not 

present across studies (p heterogeneity > 0.05, I2 
<50%) in two groups (Table 3). 

Table 2. Mutant gene, mutant locus, and level of MSI on MSI 
status and multiple primary cancer risk 

Group NO. of 
reports 

RR (95%) Heterogeneity test 
χ2 p I2(%) 

Mutant gene      
MLH1 9 1.97 (1.69, 2.30) 11.78 0.161 32.10 
MSH2 8 2.02 (1.49, 2.75) 15.23 0.033 54.00 
MSH6 5 1.78 (1.33, 2.38) 1.75 0.782 0.00 
PMS2 3 2.41 (1.40, 4.17) 4.34 0.114 53.90 
Mutant locus      
BAT25 3 3.81 (2.20, 6.62) 0.22 0.898 0.00 
BAT26 3 2.63 (1.71, 4.06) 0.17 0.917 0.00 
BAT40 2 2.44 (1.67, 3.56) 0.31 0.577 0.00 
D2S123 4 3.96 (1.00, 15.73) 20.90 <0.0001 85.60 
D2S136 2 5.29 (0.32, 86.67) 22.10 <0.0001 95.50 
D3S1067 2 7.34 (0.46, 116.62) 26.29 <0.0001 96.20 
D5S346 3 2.42 (1.38, 4.23) 0.02 0.991 0.00 
D11S922 2 6.73 (0.44, 103.62) 24.09 <0.0001 95.80 
D17S250 3 2.57 (1.71, 3.87) 3.20 0.201 37.60 
MSI level      
MSI-H  8 2.19 (1.36, 3.52)  27.75 <0.0001 74.80 
MSI-L  5 2.91 (1.06, 7.98) 22.93 <0.0001 82.60 
Abbreviations: NO: number, RR: relative risk, MSI: microsatellites instability, 
MSI-H: microsatellites instability high, MSI-L: microsatellites instability low. 
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Figure 3. Forest plot of MMR detailed status and risk of MPCs (MSI vs MSS). (A) Mutant gene and (B) Mutant locus. MMR: mismatch-repair, MPCs: multiple primary 
cancers, MSI, microsatellites instability, MSS: microsatellite stable, CI, confidence interval. 

 

Subgroup analysis 

Age 
We performed preplanned stratified analyses of 

studies based on patient’s age (Table 4). In eight 
studies reported data of relative young age group 
(<65 years) [21, 29, 31, 32, 34, 35, 39, 41], MSI was 
associated with a significant risk increment in 
incidence of MPCs (adjusted RR 2.15, 95 % CI 1.26 to 
3.68), although there was obvious heterogeneity 
within the group. In addition, pooled analysis of 

relative old age (≥65 years) subgroup also showed a 
significant increase in MPCs to be associated with MSI 
status (adjusted RR 2.06, 95 % CI 1.52 to 2.79) and the 
outcomes without heterogeneity.  

Gender 
Studies were stratified by gender, The RRs were 

2.70 (95% CI 1.36 to 5.34) for studies conducted in 
male cohorts [21, 29, 31, 32, 34, 37, 39, 40], 3.80 (95% CI 
2.11 to 6.84) for studies in female cohorts [21, 31, 32, 
34, 37, 39, 40]. These results indicate, in contrast to 
male, female had a more apparent affinity between 
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MSI and MPCs risk. 

Detection method 
The possible association between the detection 

method was reported by twenty studies, five in IHC 
[33, 34, 39, 40, 44], and nineteen in PCR [21-23, 27-33, 
35-37, 39-41, 43-45]. In this subgroup pooled analyses, 
IHC and PCR group both were yielded statistically 
significant RRs. The method of IHC for MSI detection, 
with a pooled RR of 2.19 (95% CI 1.88 to 2.55), was 
concordance with that for PCR method, with a 
summary RR of 2.36 (95% CI 1.93 to 2.89). 

Sensitivity Analyses and Evaluation of 
Heterogeneity 

Sensitivity analyses were performed to explore 
possible causes of heterogeneity and the effect of 
various exclusion criteria on the overall result were 
examined. Four studies that were not adjusted for age, 
gender, and location of tumor were omitted [27, 28, 
35, 41]. The remaining studies produced an RR of 2.60 
(95% CI, 2.11 to3.20), with substantial evidence of 
decreasing heterogeneity (P=0.001, I2= 59.4%). 

Restricting analysis to the five studies that were 
adjusted for family history produced similar results 
(RR: 1.78, 95% CI: 1.45 to 2.19), and the heterogeneity 
was significantly decreasing (I2= 28.1%). Further 
exclusion of any single study did not change the 
overall outcomes, which ranged from 2.32 (95% CI: 
1.94 to 2.77) to 2.70 (95% CI: 2.11-3.46). 

 

Table 3. Site and timing specific and multiple primary cancer risk. 

Group NO. of 
reports 

RR (95%) Heterogeneity test 
χ2 p I2 (%) 

Site of cancer      
Multiple 
colorectal  

10 2.08 (1.82, 2.39) 8.77 0.458 0.00 

Colorectal/Other 10 3.93 (2.44, 6.31) 68.01 <0.0001 86.80 
Esophagus/Other 2 7.06 (3.06, 16.31) 1.84 0.175 45.80 
Stomach/Other 2 5.32 (0.65, 43.53) 3.71 0.054 73.10 
Timing of MPC       
Synchronic 12 2.29 (1.89, 2.76) 8.79 0.641 0.00 
Metachronous 6 2.11 (1.68, 2.65) 2.22 0.817 0.00 
Hereditary        
HNPCC 4 5.54 (2.42, 12.64) 5.77 0.056 65.40 
Non-HNPCC 13 2.13 (1.81, 2.51) 8.17 0.772 0.00 
Abbreviations: NO: number, RR: relative risk, MPC: multiple primary cancer, 
HNPCC: hereditary non-polyposis colorectal cancer. 
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Figure 4. Forest plot of site and timing specific and risk of MPCs (MSI vs MSS). (A) Site specific and (B) Timing specific. MPCs: multiple primary cancers, MSI, 
microsatellites instability, MSS: microsatellite stable, CI, confidence interval. 

 
Meta-regression analysis demonstrated that 

study design (P=0.025) and study quality (P=0.005) 
were significant sources of heterogeneity, but the 
outcomes indicate that MSI detection method, 
publication year, and country area were not the main 
origin of heterogeneity. Study design alone explained 
50.16% of the τ2 in the meta-regression analyses and 
study quality explained 26.94% of the τ2 
(Supplementary Table S5). 

 

Table 4. Subgroup analyses of MSI status and multiple primary 
cancer risk 

Group NO. of 
reports 

RR (95%) Heterogeneity test 
χ2 p I2(%) 

Total 22 2.59 (2.06, 3.27) 81.70 <0.0001 75.20 
Adjusted  17 2.37 (1.85, 3.04) 54.96 <0.0001 70.90 
Age       
<65 8 2.15 (1.26, 3.68) 24.87 0.001 71.90 
≥65 7 2.06 (1.52, 2.79) 6.60 0.360 9.10 
Gender       
Male 8 2.70 (1.36, 5.34) 34.30 <0.0001 79.60 
Female 7 3.80 (2.11, 6.84) 14.17 0.028 57.70 
Detection 
method 

      

PCR  19 2.36 (1.93, 2.89) 46.19 <0.0001 61.00 
IHC  5 2.19 (1.88, 2.55) 3.22 0.521 0.00 
Abbreviations: MSI: microsatellites instability, NO: number, RR: relative risk, PCR: 
Polymerase chain reaction, IHC: immunohistochemistry. 

Publication Bias 
The funnel plot showed a detectable asymmetry 

(Supplementary Figure S4). Additionally, publication 
bias was detected using the Begg’s test (P = 0.037) and 
Egger’s test (P = 0.015) for the overall studies. 

Discussion 
This meta-analysis is the first to evaluate the 

association between MMR genotype and the risk of 
MPCs in CRC patients and in different clinical 
scenarios. Our results support the concept that 
patients with MSI have an increased risk of MPCs 
compared with the patients with MSS, and this effect 
is independent of the HNPCC or sporadic CRC. 

First, our work firstly provides convincing 
evidence that, compared to the patients with MSS, 
patients with MSI have an increased risk of MPCs in 
the sporadic CRC. So far, an increasing body of 
research has revealed that a diverse tumor types have 
MSI, and it is estimated that 15% of CRC, which in 
turn accounts for 180,000 new CRC cases each year 
worldwide, are closely correlated to MSI [47, 48]. 
Additionally, MSI is significantly associated with an 
increased incidence of MPCs. In proven CRC, MMR 
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status is a very important risk and prognostic 
measurement [49-52]. Despite MSI is a crucial risk 
factor for MPCs in the sporadic CRC [30, 32], the 
majority of studies were to determine the association 
between MSI and MPCs in HNPCC [53-57]. Thus, no 
reliable systematic data to unravel the mystery that 
whether MSI can predicts the risk of MPC in sporadic 
CRC patient. Surprisingly, in our study, we clearly 
proved MSI can increase the risk of MPCs both in 
sporadic CRC and HNPCC. Collectively, contrary to 
the previous studies, our work is unique and have 
several overt advantages. Firstly, we comprehensively 
summarized the existing twenty two high quality 
published studies and rigorously analysed the data 
with validated robust and powerful performance 
methods. Therefore, the evidence base in our 
meta-analysis is relatively credible. Secondly, since 
the HNPCC patients contribute only a minority of 
CRC patients, we focused on sporadic CRC, which 
may offer the greatest potential benefit for cancer 
prevention. The risk of MPCs in sporadic CRC 
patients with MSI (2.14-fold) is higher than that of 
patients with MSS. As a consequence, our results first 
reveal the need for special screening and surveillance 
strategies for these patients. Thirdly, our finding 
suggested immunotherapeutic interventions 
involving checkpoint blockade might be selectively 
effective in CRC related MPCs. Recently, pioneering 
studies by D.T. etal demonstrated that tumors with a 
large number of somatic mutations due to 
mismatch-repair defects may be susceptible to 
immune checkpoint blockade [58, 59]. For CRC, 
anti-PD-1 therapies revealed an interesting objective 
response rates results that 40% in dMMR cohorts and 
0% in pMMR cohorts. Thus, as the close association 
between MSI and MPCs was found in our study, the 
checkpoint blockade immunotherapy might be a 
useful therapeutic strategy for advanced MPC. 
Additionally, a previous work have identified 
advanced MPCs with MSI-H may be associated with 
better chemo-sensitivity [60]. 

Second, our data pointed out that different 
mutant gene, mutant locus, and mutant level of MMR 
with different influence on the patients susceptible to 
MPC. Firstly, our pooled analysis result clearly 
showed that, contrast with other mutant genes, the 
PMS2 gene mutant more prone to increase risk 
(2.41-fold) of MPC, and the result with a low 
heterogeneity (I2=26.8%, p heterogeneity=0.109; 
Figure 3A). PMS2 mutation, due to its structure and 
repetitive nature, is difficult to sequence and clinical 
testing for PMS2 mutations was not available until 
very recently [61]. In one side, because of uncertainty 
of previous testing approach, our result may be 
missed or miscalled due to the presence of 

pseudogenes. In the other side, currently, several 
studies showed PMS2 inactive may be more common 
than the other MMR genes [62, 63]. In addition, 
McKinsey L and coworkers reported that 
PMS2 germline mutations were tightly associated 
with the early-onset of CRC [64]. Combined with our 
novel findings, suggesting that PMS2 might be a more 
powerful marker compared with other MMR 
markers. Secondly, in the mutant locus analysis, 
mono-nucleotide microsatellite locus BAT25 and 
BAT26 showed an obviously low adjusted RR 
compared with other locus (Figure 3B). It has been 
reported that the rate of spontaneous mutation in 
microsatellites with multiple-nucleotide repeat units 
is more frequent than microsatellites with 
mono-nucleotide repeat units [12, 65]. Taken together, 
it implies that microsatellite markers have di-, tri-and 
tetra-nucleotide repeat units may be more effective for 
indicating MPC. Thirdly, to our surprise, MSI-L group 
are more sensitive to develop MPC than MSI-H group 
(adjusted RR: 2.91 vs 2.19). To our knowledge, MSI-L 
was associated with lower risk of cancer compare 
with MSI-H. The discrepancy may be result from the 
significant heterogeneity and system error (I2=78.2%, 
p heterogeneity<0.001; Figure S2).  

Third, in this study, we found that MSI genotype 
increase the risk of MPC was not associated with an 
apparently specific in regard to site, timing, age and 
detection method (Figure 4). For example, in the 
subgroup analysis of timing specific, we found similar 
RRs among synchronic and metachronous patients 
(adjusted RR: 2.29 vs 2.11). Consistently, limited 
indications for a potential role of site, age and 
detection method on MPCs were also provided from 
our subgroup analysis. Given the modest, borderline 
significant, association and the still limited data, the 
issue remains therefore open to explore. 

Lastly, several limitations of this meta-analysis 
need to be addressed. First, an obvious publication 
bias was detected for the overall studies (Begg’s test: P 
= 0.037), which led to inaccuracy of results to some 
extent. Nevertheless, there was no evidence of 
publication bias for non-HNPCC studies, which 
enrolled most of relative new studies (Begg’s test: P = 
0.100) (Supplementary Figure S5). Moreover, there 
was also no evidence of publication bias for 
non-HNPCC studies (Begg’s test: P = 0.150) 
(Supplementary Figure S6). Hence, publication bias 
may be at least in part explained by publication year 
and study quality. Second, the overall summary RR 
with some heterogeneity (I2=75.2%, p 
heterogeneity<0.001; Figure 2A). To minimize 
heterogeneity, we kicked out five studies with relative 
low quality instead of incorporating all studies into 
meta-analysis. Interestingly, the heterogeneity of our 
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subset analysis declined to 70.9% (p 
heterogeneity<0.001; Figure S1). Consequently, 
heterogeneity may partially due to the relative low 
quality studies enrolled in the meta-analysis. In 
addition, the included studies varied with different 
study design, patients and other confounding factors, 
seemed to provide one explanation for the main 
source of heterogeneity between studies. Finally, this 
meta-analysis was conducted only using published 
data rather than individual data. Therefore, there 
might be some covariates that could influence the 
incidence of MPCs or the status of MMR, but were not 
reported and thus could not be adjusted. 

Conclusions 
In conclusion, unlike early studies, this 

meta-analysis is a more comprehensive and better 
designed study mainly focused on MMR genotype of 
sporadic CRC patients rather than HNPCC patients. 
There is clear evidence that MSI is associated with an 
increased risk of MPCs in the sporadic CRC patients. 
Further, our study highlighted that different mutant 
gene, mutant locus, and mutant level of MMR with 
different influence on the patients susceptible to 
MPCs. The treatment for MSI genotype may be an 
important valuable strategy for MPCs prevention. 

Supplementary Material  
Supplementary figures and tables. 
http://www.jcancer.org/v08p3296s1.pdf  
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