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Look-ahead fixations during visuomotor behavior: Evidence
from assembling a camping tent
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Eye movements can support ongoing manipulative
actions, but a class of so-called look ahead fixations
(LAFs) are related to future tasks. We examined LAFs in a
complex natural task—assembling a camping tent. Tent
assembly is a relatively uncommon task and requires the
completion of multiple subtasks in sequence over a 5- to
20-minute duration. Participants wore a head-mounted
camera and eye tracker. Subtasks and LAFs were
annotated. We document four novel aspects of LAFs.
First, LAFs were not random and their frequency was
biased to certain objects and subtasks. Second, latencies
are larger than previously noted, with 35% of LAFs
occurring within 10 seconds before motor manipulation
and 75% within 100 seconds. Third, LAF behavior
extends far into future subtasks, because only 47% of
LAFs are made to objects relevant to the current
subtask. Seventy-five percent of LAFs are to objects used
within five upcoming steps. Last, LAFs are often directed
repeatedly to the target before manipulation, suggesting
memory volatility. LAFs with short fixation–action
latencies have been hypothesized to benefit future
visual search and/or motor manipulation. However, the
diversity of LAFs suggest they may also reflect scene
exploration and task relevance, as well as longer term
problem solving and task planning.

Introduction

There are a wide array of activities in daily life
and studies of naturalistic visuomotor behavior have

reflected this variety, including tasks like making tea
or a sandwich, driving, games, and sports (Chase &
Simon, 1973; Land & Lee, 1994; Land, Mennie, Rusted,
1999; Land & McLeod, 2000; Land & Hayhoe, 2001;
Kato & Fukuda, 2002; Kim & Lee, 2006; Foerster
et al., 2011; Tatler, Hayhoe, Land, & Ballard, 2011;
Timmis, Turner, & Van Paridon, 2014). These natural
activities are distinct from most laboratory-based
vision studies, which tend to use briefly presented
static two-dimensional stimuli, presented in a discrete
and repetitive trial structure, and viewed with the
participant’s head fixed. First, natural activities tend to
be longer, taking several minutes to complete behavior.
Second, they typically require several actions in a
sequence. Third, the objects and stimuli required
for natural tasks are distributed about the world
and require large head movements or whole-body
movements to acquire them visually and for manual
manipulation. Look ahead fixations (LAFs), that is,
preview fixations of an upcoming task-relevant object
before direct manipulation, have been shown to occur
in these scenarios. In the current study, we detail the
look ahead behavior while participants assembled a
camping tent. This dataset was collected as a part of
a larger project on real-world problem solving. LAFs
have not been widely studied but seem to have a role
in planning and are a visual behavior unaddressed in
current models of visuomotor control. In this article,
we describe LAF behavior in a task that consists of
several subtasks extended over longer timescales than
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previous studies. We document several novel features of
LAF behavior.

Look ahead fixations

As defined by Pelz and Canosa (2001), LAFs are
“fixations on objects not relevant to the immediate
subtask, but relevant for a future subtask.” Importantly,
this preview should be separated by at least one fixation
elsewhere before an action starts, so that it is not simply
a guiding fixation that lands on a target moments
before the hand arrives. For example, during a complex
task such as assembling a tent, a participant might
look at the corner of the tent while putting together a
support, then look elsewhere and then look back to
the corner as they approach to insert the support. The
information present in such a fixation could be used for
planning, decreasing visuospatial uncertainty, getting
object information to help with interaction, or it could
be coincidental.

LAFs have been documented in natural tasks such as
tea and sandwich making (Land et al., 1999; Hayhoe et
al., 2003). Similar anticipatory behavior, where the eye
regularly looks ahead of actions to gather information
for the upcoming actions, has also been shown in
musical sight reading, driving, and walking where the
eye leads behavior (Land & Furneaux, 1997; Furneaux
& Land, 1999; Lehtonen et al., 2013; Marigold & Patla,
2007; Wilkie, Wann, & Allison, 2008; Lehtonen et al.,
2013).

Most relevant to our task, Pelz and Canosa
(2001) described aspects of looking ahead when
entering a bathroom and washing hands or filling a
cup. They demonstrated that LAFs occur seconds
before manipulation and can be considered distinct
from guiding fixations. Further, they showed that
task demands influenced LAF frequency, because
participants who washed hands exhibited near three
times as many LAFs. Mennie et al. (2007) extended
these findings by examining LAF behavior in the
context of a model building task that generated
hundreds of LAFs. They replicated the finding that task
demands influence LAF frequency and documented
the distribution of LAF intervals and the rate of LAF
versus look back fixations. They found that LAFs were
about 20% of fixations made, were about 10 times
more frequent than looking back, and the LAF latency
distribution peaked at 2.5 seconds before the action
occurred. Owing to experimental limitations, LAF
intervals could only be considered up to 10 seconds
because participants reused component areas in that
task. Anecdotal evidence from Land et al. (1999) noted
that a participant made a long latency look ahead
(68 seconds), and when the eye returned later to fixate
the object, saccade accuracy was poor. Further, they
noted a short latency LAF (5 seconds) had a return

saccade with high accuracy, suggesting that the quality
of information gathered from a LAF decays over
time or is subject to interference. Aside from this
observation, there is no documentation of long latency
LAFs, although preview fixations with long latencies
have been studied in other domains as described
elsewhere in this article.

The nature of the information conveyed by LAFs is
not well-understood. Mennie et al. (2007) demonstrated
in their task that LAFs influence future saccade
accuracy and latencies, but not accuracy of hand
movements. Aivar et al. (2005) showed in a virtual model
copying task that altering the visual display covertly to
swap model piece locations sometimes led to fixations
on old preswap locations, suggesting that saccades
were guided by spatial memory. Related experiments
where participants navigated three-dimensional virtual
environments have also shown memory for location
and object identity. Although these experiments did
not consider behavior in the context of LAFs, they
did examine the effect of fixation preview on objects
during visual search and change detection. Their results
demonstrate the capacity for visuospatial memory to be
built up over time in some contexts and suggest that
LAFs might similarly influence behavior (Võ & Wolfe,
2012, 2015; Li et al., 2016, 2018; Kit et al., 2014). In
complex sequential behavior, LAFs may indicate the
degree of planning participants engage in, for example,
looking at task-relevant items one, two, or more steps
ahead. Interestingly, Forde et al.’s (2010) case study of
an action disorganization syndrome patient found a
complete deficit in LAFs, suggesting a role in planning.
However, ultimately, we currently do not have a full
picture of LAF behavior in extended tasks and how
LAFs may relate to planning and coordination.

Models of sequential action control

Although LAFs are of interest as a fundamental
aspect of natural eye movement behavior, it is also
worth briefly reviewing their relationship with models
of sequential behavior. Human gaze is tightly linked to
task demands and this has made generic computational
models of real-world visual attention and behavior
difficult to implement realistically, requiring a
visuomotor agent with domain knowledge and means
to achieve goal-oriented behavior. As a result, models
of sequential behavior have tended to abstract away
complexities and focus on generating plausible lists
of action sequences, avoiding the simulation of a
perceptual agent that acquires visual information to
guide decision making and motor behavior.

The contention scheduling model (Cooper, Shallice,
& Farringdon, 1995; Cooper & Shallice, 2000, 2006)
is a hybrid symbolic–connectionist approach used to
explain automated behavior as part of a hierarchal
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action sequencing system. Although the authors do not
address fixation behavior, the model captures several
elements of complex behavior relevant to our task.
The model incorporates hierarchical action schemas
(sets of action and subgoals sequenced to achieve an
overall goal) that are in competition with one another
and vie for activation. For example, in the task of
making a cup of tea, an “add sugar” schema competes
(at least in the UK) with the “add milk” schema,
after the “add water: schema has run to completion.
The evolution of these states of activation over time
can be read out as an action sequence. Their work
was based on interactive activation and competition
connectionist networks (Grossberg, 1978; McClelland
& Rumelhart, 1981; Rumelhart & McClelland, 1982)
with elements of symbolic networks added to constrain
how schemas and objects interact in physically
plausible ways. The model’s symbolic production
system uses action primitives, state knowledge of the
world (e.g., location of an object, is it open or closed,
full or empty) and logical contingencies between
schemas, objects and resources. Once parameters
are tuned, the model can generate realistic motor
sequences.

Botvinick and Plaut (2004; 2006) demonstrated an
alternative approach using recurrent neural networks to
produce plausible visuomotor sequences. This strategy
has the advantage of using a network that learns
from sequence data instead of hand tuning, and does
not use assumptions of task constraints, schemas,
or hierarchical representation. Their model predicts
the steps of the tea and coffee making behavior as
activations of a concatenated binary vector representing
the current fixated object, current object held, and
next action. The authors assume actions are directed
toward objects that are selected by gaze and there is an
obligatory coupling between fixation and manipulative
actions. In this way, the model excludes LAFs, and are
presumed absent in the training data. The authors later
add noise to the network to simulate dysfunction and in
principle this process could generate fixations to objects
related to future task steps, but they would disrupt
performance and lead to actions improperly timed in
the task’s progression.

Both models generate realistic sequences of labels of
routine visuomotor behavior and can mimic elements
of action disorganization syndrome. Both models are
instructive but have limitations; contention scheduling
requires hand coding of symbolic knowledge, whereas
the recurrent network seems to primarily capture
sequence statistics. Both models are abstracted to focus
on action and goal sequences, but do not address the
underlying visuomotor control problem.

An alternative approach considers sequential
visuomotor behavior as a control problem that is
solved via learning. For example, using a reinforcement
learning approach (Sutton & Barto, 2018), Sprague

and Ballard (2003) proposed a framework using visual
routines, task-oriented image processing (Ullman, 1987;
Hayhoe, 2000), where an agent learned three concurrent
behaviors to follow a sidewalk, and approach and avoid
objects in a virtual three-dimensional environment.

The agent has a set of task modules represented by
independent Q-value functions that share the same
action space. To select an action, the agent sums
across Q-functions and chooses the action with the
highest expected value. However, as in real life, there is
uncertainty, and each task module has an independent
estimate of the agent’s location in the state space
(represented as a Gaussian via a Kalman filter). In
this context, foveating is operationalized as providing
information to reduce uncertainty in this state space
estimate. When a “fixated”module is selected to receive
new information, all other modules propagate their
Kalman filter state-space estimates forward without
new data. The module to receive new visual information
is chosen by estimating the difference in expected
reward if a fixation were made versus not. The module
that has the most expected loss is chosen to receive new
visual information.

In this model, LAFs may arise when a module
is selected to be fixated but the agent’s navigation
actions are determined by another subtask. Because the
Q-functions are summed, typically the action chosen
is a composite of task priorities, but in principle one
module could dominate. Johnson et al. (2014) expanded
on this approach without learning, instead using
diffusion decision models to model task relevance and
uncertainty in a driving simulation. Both architectures
allow for LAFs to occur in the context of ongoing
behavior, but the structure of the task (which involves
a constant, limited set of continuous subtasks that are
completed repeatedly) ensures that the lag between
fixation and subsequent action will be relatively short.
This behavior more closely resembles LAFs to feed the
visual buffer (Land & Lee, 1994; Land & Furneaux,
1997; Furneaux & Land, 1999) than the long latency
LAFs we describe elsewhere in this article.

Although the approaches as discussed could
generate LAFs, none as originally proposed are
well-suited to generating the variety we document
in the current study. Recent advancements in deep
learning and hierarchical reinforcement learning have
demonstrated possible computational architectures
that allow agents to learn complex behavior (Barto
& Mahadevan, 2003; Botvinick, 2012; Botvinick &
Weinstein, 2014). Advances in engineered systems using
deep reinforcement learning have shown dramatic
results for the control of simulated robotics and
better than human performance in video games
(Merel et al., 2018; Hessel et al., 2019; Vinyals et al.,
2019). Although such models were not originally
intended to model human behavior, they show
that computational agents can solve complex tasks
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with human-level performance. These models
provide an inspiration for psychological models
and a candidate architecture for solving complex
visuomotor coordination problems. We believe this
avenue of research will be fruitful, but comparison
to human behavior will require biological constraints
and real-world generalization (Dulac-Arnold,
Mankowitz, & Hester, 2019). Models that can simulate
complex visuomotor behavioral sequences will allow
investigations to document if they exhibit LAF
behavior and under what conditions. If they do not,
new theories will be needed with possible constraints or
architecture changes to generate them.

Current study

This work is part of a wider project examining real-
world problem solving and developing assistive systems
(UK Engineering and Physical Science Research
Council GLANCE Project). During analysis of this
dataset, novel LAF behavior was observed, prompting
its use as a convenience sample. Although an unusual
choice for an experimental task, assembling a tent
provides a unique opportunity to study LAF behavior.
It is a complex, nonroutine, real-world task where
visuomotor behavior can be recorded while participants
solve a complex problem in three-dimensional space. It
taps into many aspects of cognition and perception,
requiring the sequential assembly of several parts, and
incorporates visual search, visuomotor guidance, and
gross and fine motor skills.

LAFs may occur for several reasons during
tent assembly. Some subtasks may not require
foveal guidance, and task transitions may provide
opportunities for LAFs to gather upcoming
information. Setting up a tent is unique compared
with prior experiments because the layout of the
tent is unfamiliar and deformable. In hand washing
or tea making, participants likely have considerable
prior knowledge on scene layouts, and most items
are static and in preset locations. While building a
tent, the participant actively unpackages many items
from a single bag and they regularly move around the
environment. This means that there is likely a greater
amount of spatial uncertainty in our task, which might
be decreased by looking ahead. If LAFs reflect problem
solving, one might expect a complex and uncommon
task to encourage LAF behavior. If LAFs reflect
action planning, the large number of steps involved
in assembly and extended duration of the task should
encourage their occurrence as participants may store
upcoming task-relevant information in a “behavioral
pipeline.” Some LAFs may be incidental owing to the
physical salience of an object’s image features, resulting
in the eyes being drawn to that object regardless of its
current or future task relevance. Incidental LAFs may

also occur because the object has a future relevance
(Fecteau & Munoz, 2006) that biases attention, but
are not associated with planning or problem solving;
this process is similar to elevated schema activation
within Cooper and Shallice’s (2000) framework where
an action might occur prematurely.

We document several novel findings suggestive of
LAFs being purposeful, targeting a variety of objects
and occurring in a variety of subtasks. Additionally,
we detail how LAF latencies (the time between a look
ahead and related action) may be related to these
purposes. Given the observational nature of our study,
we cannot definitively distinguish LAFs supporting
problem solving and motor planning from incidental
LAFs owing to salience or task relevance, but we
present numerous examples of LAFs in tent assembly
that are likely to be purposeful.

In addition to LAF behavior, task complexity and the
range of participant expertise provide an opportunity
to describe visuomotor strategies and the variety of
action sequences that occur. Capturing eye gaze and
egocentric video data allow these elements of sequential
visuomotor behavior to be catalogued and inform the
future development of models of complex, sequential
visual–motor behavior.

Methods

Participants

Twenty-three participants (12 female; mean age 23,
years; range, 18–32 years) were recruited from Bristol,
UK, and gave informed consent, including anonymized
open data sharing. An additional participant initially
gave consent and performed the study, but retracted
later owing to privacy concerns.

Materials

Participants completed a survey asking five questions
on their experience with tents and camping: (1)
How often do you camp each year? (2) Are you an
experienced camper? (low/medium/high), (3) Do you
own a tent? (yes/no) (4) How many times a year do you
setup a tent? (5) How many times have you ever setup a
tent?

To track eye movements, participants wore a pair
of SMI Eye Tracking Glasses, v1.8, 30hz binocular,
scene camera resolution 1280 × 960 (field of view
60° × 46°), (SMI Gmbh, Berlin, Germany), as shown
in Figure 1. We used the manufacturer’s sunglasses
insert to decrease infrared interference with eye
images. Additionally, the tracker was fitted with
black cloth on the top and bottom of the frame to
further block out infrared interference. To capture
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Figure 1. Participant standing next to a completed tent. Insets on left show example images from SMI Eye Tracker and GoPro. The
participant wears a tracker with sunglass inserts and black fabric to block out infrared interference from the sun.

high-resolution first-person video, participants also
wore a head-mounted GoPro Hero 5, resolution 1920
× 1080 (field of view 123° × 94°). The eye tracker was
calibrated initially indoors and then once again when
the participant went outside. The experimenter viewed
the track on a mobile recorder (Samsung Galaxy S3
with SMI ETG software) and judged by eye if tracking
quality was sufficient. Quantitative measures of eye
tracker accuracy were calculated post hoc.

Once calibrated, the participant proceeded to setup
a two-person tent (Wilko 2-person dome tent; Wilko
Retail Ltd. Workshop, UK) outdoors in a grassy area
on the University of Bristol Campus. The participants
could take as much time as they required and use the
instructions as much or as little as desired.

The dataset can be found at https://sites.google.com/
view/epic-tent (Jang et al., 2019); see the Appendix
Shared Dataset for more information on the videos,
datafiles, and annotations shared. Note, the dataset
from Jang et al. (2019) differs from this study because
it was amended with the withdrawal of one participant
(noted elsewhere in this article) and the addition of six
new participants’ data. The additional data were not
part of our analysis.

Analysis: Questionnaire

Real numbers were assigned to non-numeric
responses on the questionnaire as follows: For the

question “Are you experienced outdoors?”, a “0” was
used to signify low experience, “0.5” as medium, and
“1” as high. The question “Do you own a tent?” was
turned into a binary value of “1” if “yes” and “0” if
“no.” These were combined with numeric responses
into a unified score as detailed in the Results.

Analysis: Subtask labelling

The behavior can be described as a hierarchy of
goals, tasks, and subtasks. Although all participants had
the goal of successfully setting up the tent, the path of
tasks and subtasks to achieve this is somewhat flexible;
not all steps rely on one another. For simplicity, we refer
to all annotated actions as subtasks. Subtasks were
operationally defined as the set of common events in
tent assembly whose beginning and end could be clearly
annotated by an observer. A beginning was marked
when a finger contacted an object to pick up, and
endings marked when fingers released an object to put
down. Other events were marked by the beginning and
ending of manipulating an object for one task before
being used for another. Note, instruction reading in
participants without acceptable eye tracking was coded
by periods when the participants held the instructions
in front of them. See Table 1 for a list of subtasks and a
diagram of the typical workflow in building a tent.

Subtask definitions are ambiguous; some subtasks
could be combined into a compound task, or

https://sites.google.com/view/epic-tent
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Steps Subtask label Written instructions

1 Read instructions (1) Read instructions Self-explanatory
2 Pick up main bag (2) Pick up/open/empty tent bag (1) Layout the tent
3 Open main bag
4 Empty main bag out
5 Pick up tent (3) Pick up/spread tent
6 Spread tent out
7 Pick up support pole bag (4) Pick up/open/empty support pole bag (2) Install the poles
8 Open support pole bag
9 Empty support pole bag
10 Pick up support pole #1 (5) Assemble support pole
11 Assemble support pole #1
12 Pick up support pole #2 (5) Assemble support pole
13 Assemble support pole #2
14 Insert support pole #1 (6) Insert Support Poles
15 Insert support pole #2 (6) Insert Support Poles
16 Insert support pole #1 into plastic tab 1 (7) Insert support pole into tabs
17 Insert support pole #1 into plastic tab 2 (7) Insert support pole into tabs
18 Insert support pole #2 into plastic tab 1 (7) Insert support pole into tabs
19 Insert support pole #2 into plastic tab 2 (7) Insert support pole into tabs
20 Pick up stake bag (8) Pick up/open/empty stake bag (3) Pegging the tent
21 Open Stake Bag
22 Take Stakes
23 Stake Corner 1 (9) Stake Corner
24 Stake Corner 2 (9) Stake Corner
25 Stake Corner 3 (9) Stake Corner
26 Stake Corner 4 (9) Stake Corner
27 Pick Up Guyline 1 (10) Place Guyline (4) Place Guylines
28 Stake Guyline 1
29 Pick Up Guyline 2 (10) Place Guyline
30 Stake Guyline 2
31 Pick Up Guyline 3 (10) Place Guyline
32 Stake Guyline 3
33 Pick Up Guyline 4 (10) Place Guyline
34 Stake Guyline 4
35 Tie Support Poles Above Vent (11) Tie Support Poles Above Vent Not Mentioned
36 Pick Up Vent Cover (12) Pick Up/Attach Vent Cover (6) Attach Vent Cover
37 Attach Vent Cover

Table 1. Outline of steps in setting up a camping tent. (Left) Mid-level description of steps, local goals but no explicit description of
perceptual-motor sequences required. (Center) High-level labels that concatenate several mid-level labels. These labels were used by
human annotators (Right) Instruction headings given by the tent manufacturer; each included a short paragraph of text (not shown).

alternatively further subdivided. For example, in
“assemble support,” the tent comes with two supports
that are each disassembled into seven detached
segments (approximately 50 cm long) with an elastic
cord threaded between each segment. The participant
must pick up the disassembled support and slide
each of the segments together to form a whole
(approximately 350 cm long). We consider picking up
the support and assembling each segment to define
the “assemble support” subtask. It would be possible
to divide picking up and assembly, or even further
divide the assembly of each segment of the support.
Ultimately, for ease of annotation, we chose to define

subtasks as object interactions that had a reasonably
clear beginning and end of manipulation. Thus,
“assemble support” was defined as from the moment
of picking up the support, attaching all segments
together, and then either putting the completed support
on the ground or placing the support into the tent
fabric.

We identified 37 steps required to build a tent
(Table 1). One observer watched all videos marking the
beginning and ending of each event, using the CinePlay
annotation tool (Digital Rebellion, Los Angeles, CA).
These annotations were turned into a frame-by-frame
list of subtask labels.
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Once all videos were labelled, the list was simplified
down to 12 subtasks. This was possible because some
subtasks use steps that could be grouped together; for
example, the three steps of picking up, opening, and
emptying the main bag out (main bag being the bag
of bags containing all of the parts required), can be
labelled as one act. Additionally, some subtasks are
equivalent; for instance, the staking any of the tent
corners of the tent was initially coded as a unique event,
but it can also be considered as a repetition of a generic
staking the corner subtask. Because there are several
steps that required repetition, these were compressed
into 12 generic labels (Table 1, center column). along
with an “approach” label used when the participant was
transitioning between subtasks, for example, walking
around the tent to pick up an item.

Analysis: Eye movements

Eye movement calibrations were evaluated for
accuracy at the beginning and end of the task.
A median of 10 points were tested both before
and after the task: owing to problems with the
calibration/validation target sometimes being outside
the scene camera field of view, the number of points
available ranged from 3 to 15. For each validation point,
an annotator paused the video when the eye fixated
and marked the horizontal and vertical coordinates
of both the eye gaze cursor and the validation point.
The median accuracy (Euclidean distance between the
target and point of gaze cursor) was calculated across
the points per individual. The pretrial average median
error across included subjects (see inclusion discussion
elsewhere in this article) was M = 1.8° (SD = 1.1°;
range, 0.3°–4.3°). The post-trial average median error
was M = 2.9° (SD = 1.9°; range, 0.6°–6.3°). Three
participants had post-trial errors of greater than 5°,
but our inclusion threshold used the pre- and posterror
average, which was less than 5°.

LAFs were annotated using CinePlay software by
marking the begin and end time of the fixation(s), the
current ongoing task and the target of the fixation(s).
Note, a participant may make several consecutive
fixations on the same object, interspersed with small eye
movements. Such consecutive fixations were grouped
together and treated as a single LAF. In other words, an
LAF is recorded as any set of one or more consecutive
fixations on an object. In the event of multiple fixations,
the begin time marks the beginning of the first fixation
and the end time marks the end of the last fixation.
When the participant returned later to interact with
that object, the time when the participant touched the
object was recorded and the time when the guiding
fixation began. Note, if an LAF is made and the object
is subsequently touched multiple times, the latency is
computed from the end of the fixation to only the most

immediate future timepoint when the object is touched;
that is, one LAF can be associated with one future
touch event.

The annotation for the ongoing task followed the
labelling convention for subtasks. Possible LAF targets
included the vent cover, tent top, tent corner, tent bag,
tent, support tab, support bag, support, stake bag, stake,
instruction, and guyline. Instructions are special in that
reading can take place with or without picking up the
instructions, but participants may also look ahead to
them to get position or orientation information. To
exclude moments of obvious reading, we only coded
single fixation instances to the instructions; series
of fixations were excluded owing the confound with
reading. Fixations on the tent categories were judged
liberally, that is, fixations generally near the tent corner
(within approximately 3°) were labelled “corner,” and
fixations near the tent top were labelled “tent top.”
Any other fixations on the tent were simply labelled
“tent.” During initial phases of assembly, the guylines
are usually on top of the tent in a rather messy fashion,
sometimes leading to ambiguity on whether a fixation
was on the guyline or tent itself. Similarly, we used a
liberal criterion where fixations with approximately 3°
were marked as on the guyline as well as taking into
account recent history, that is, a series of fixations on
the guyline with one slightly off the guyline would be
marked together as one look ahead segment. Similarly,
a liberal classification approach was taken to when a
LAF interval was complete; for instance, a LAF to
the tent corner was ended by any touch made near
the corner, regardless of whether the participant then
inserted the support, staked the corner, or simply
moved the tent. We annotated LAF data as objectively
as possible by relating fixated objects to the tasks where
they were manipulated manually. However, we cannot
exclude the possibility that some LAFs were associated
with the wrong task (e.g., some LAFs could have been
gathering information for immediate use in navigation
or another behavior we had not considered).

Analysis: Participant inclusion

Participant inclusion varied across analyses owing
to varying data quality. All 23 participants answered
the experience questionnaire and had their videos
annotated for subtasks (using the SMI scene video
with point-of-gaze overlay supported with GoPro
video as needed; discussed elsewhere in this article).
However, for eye tracking analysis, three participants’
eye tracking data were too poor to be included in any
relevant analyses (>5° averaged pre- and post-trial
error). Additionally, with two participants the eye
tracker stopped during recording, leaving only a partial
record. This left 18 participants with good quality data
to be included in the eye movement analyses.



Journal of Vision (2021) 21(3):13, 1–17 Sullivan et al. 8

Figure 2. Timeline of events for a single participant. Screen shots display examples of a subset of the subtask categories. The orange
circle represents the eye tracker point of gaze estimate.

Results

The results are organized as follows. First, we present
a summary of our participants’ prior experience with
assembling camping tents. We then describe general
strategies and behaviors used by our participants with
further analysis spent on subtasks. Last, we describe eye
movement behavior focused on LAFs.

Behavioral performance

Participants generally had a low to medium amount
of prior experience setting up the tent. Nine of the 23
participants owned a tent, with a median frequency
of 0.5 camping trips per year. Fourteen participants
described their camping experience as low, six medium,
and three high. Last, the estimated number of tents
setup in a lifetime was a positively skewed distribution
varying from 0 to 30, with a median of 4.5.

We made a composite experience score by
normalizing by maximum response for each question
and then averaging across questions (equal weighting
across), resulting in a single value between 0 to 1 that
quantifies experience. This results in a right-skewed
distribution (M = 0.27; SD = 0.27; median = 0.16;
range = 0–0.81).

Participants took between 5.3 and 24.1 minutes
to complete the task (M = 12.3 minutes; median =
11.4; SD = 4.6). All participants were able to erect
the tent, albeit sometimes with slight problems, such

as forgetting the vent cover, not tying the support
beams to the top of the tent, or staking the guylines
incorrectly. Note that self-rated experience did not
significantly predict duration, R2 = 0.11, F(1,21) =
2.59, p = 0.12. Additionally, the experience score
did not significantly predict total time spent reading
instructions (see 4.1.2), R2 = 0.06, F(1,21) = 1.3,
p = 0.27.

Subtask sequences

Although our primary aim is to understand visual
behavior, given the complexity of the visuomotor
sequences required for this task it is useful to first
consider participants’ actions while assembling the tent,
after which we detail eye movement behavior. Figure 2
illustrates the time series of subtasks for a single
participant with example screenshots from selected
subtasks. We take this type of time series representation
and plot the sequence of subtasks sorted by trial
duration for all participants in Figure 3. Using rainbow
coloring, this graphic demonstrates how similar the
subtask sequences are across participants, but also
reveals common differences in sequencing (e.g., some
participants assemble both supports in a row and then
insert them, whereas others assemble one and insert
and then assemble the second and insert). Similarly,
common omissions like not tying the top or placing
vent cover are visible.

Subtask durations have a wide range (see Appendix
Table A1). Reading instructions, insert support, insert
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Figure 3. Subtask sequences for all participants. Color bands indicate period when a participant was engaged in a particular subtask.
Participants are organized from left to right according to trial duration. Note most whitespace gaps indicate moments of approach
transitioning between tasks, extended gaps indicate times of experimenter intervention to answer questions or adjust cameras or
equipment. Note that participants 1, 3, 13, 18, and 20 were not included in the eye movement analyses owing to poor data.

tab, and place guyline exemplify high variance subtasks
(SD ≥ 67 seconds), whereas picking up/opening the
tent bag, spreading the tent, and picking up/opening
the support bag exemplify low variance (SD ≤ 14
seconds). To examine if any particular subtask acted as
a performance bottleneck, a linear regression analysis
was conducted per subtask using each participants’
subtask durations as the predictor of overall trial
durations, with the particular subtask’s contribution
subtracted from overall duration. Bonferroni corrected
tests (α = 0.004) show that the spread tent task, F(22,1)
= 16, p = 0.001, R2 = 0.43, β = 12.4 seconds, and the
read instruction task, F(22,1) = 11.7, p = 0.003, R2 =
0.36, β = 1.5 seconds, both predicted increased trial
duration. The insert tab task was marginally significant
in predicting trial duration, F(22,1) = 10.2, p = 0.004,
R2 = 0.33, β = 2 seconds. Therefore, it seems that it is
not simply the case that slower participants are slower
in all components of the task.

Although all participants were eventually successful
in setting up the tent, the ordering of their behavior
varied. To capture the sequence of behaviors, subtask
event labels can be treated as states in a Markov
transition matrix, as shown in Figure 4. A transition
matrix was calculated per participant by counting each
time they shifted from one task state to another and
then averaged across participants. These probability
transitions are useful as a descriptor of behavior,
because they delineate likely and unlikely behavior
sequences. As one might expect, the transitions largely
follow the order of the instructions in Table 1, but there
are several deviations.

The bulk of the high probabilities are along the
diagonal shifted over by 1, as the task labels are ordered
in an idealized chronological sequence and show the
strong tendency for this sequence. Note, there is no
single correct way to build the tent and there are many
lower probability transitions showing the diversity
of assembly sequences. The exceptions to the shifted
diagonal are insert tab, insert stake, and place guyline,
all tasks that typically are done in sequence with four
repetitions. Across all subtasks, the only end state
with all nonzero probabilities is reading instructions,
indicating participants may consult the instructions at
any time during the task.

The transition matrix allows the calculation of
the probability of a participant’s particular subtask
sequence against a reference transition matrix.
Assembly sequences closer to the reference will have a
higher probability compared with unusual sequences,
possibly identifying participants having trouble. We
examined the relationship between log probability of a
participant’s path compared with an idealized perfect
path (aMarkov matrix constructed around the sequence
in Table 1 with small values of 1–6 inserted in place
of zero probability transitions). A linear regression
was conducted using log probability as a predictor of
trial duration, and showed that a lower log probability
predicts increasing duration, that is, unlikely paths also
take longer, F(22,1) = 9.8, p = 0.005, R2 = 0.32, β =
−1.2 seconds. However, a linear regression using log
probability as a predictor of composite experience level
did not have a significant relationship, F(22,1) = 0.01,
p = 0.91, R2 = 0.001, nor did any individual component
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Figure 4. Mean transition probabilities between subtasks. For each subtask, the transition probability of moving from the subtask on
the vertical column to the ending subtask along the horizontal is represented by the color. Transition matrices were calculated for all
23 participants and averaged.

of the experience questionnaire. This finding suggests
that our self-declared novices were relatively competent
and that our “experienced” participants may have
overestimated, or their expertise was disrupted by using
an unfamiliar tent. It could also be that tent assembly is
so infrequent that even experienced participants’ past
knowledge does not generalize to a novel tent.

Eye movements and LAFs

During tent assembly, visual behavior is largely
occupied with guidance as participants monitor the
state of various parts as they move them into place.
Participants also read the instructions and search
for items (usually briefly) as needed. Qualitatively, as
observed during annotation, few fixations were on
task irrelevant objects and search toward task-relevant
objects was brief, usually done in 1 to 3 saccades.

LAFs were marked for the 18 participants with valid
eye tracking data, detailing the object of the LAF,
the ongoing task and the time when the participant

returned to manipulate the object. Overall, 739 LAFs
were annotated. On average, participants made M =
41 LAFs (SD = 29.9; range = 5–105 LAFs). The LAF
duration distribution is right skewed (M = 583 ms,
SD = 206 ms; Appendix Figure A4). Recall that our
definition of a LAF can consist of consecutive fixations,
so the LAF duration should be thought of as a summed
dwell time on an object that is later interacted with.
The number of LAFs increased with longer assembly
durations, R2 = 0.58, F(17,1) = 8.5, p = 0.01. However,
the LAF rate is stable across participants, LAF rate
per minute across participants (M = 2.7; SD = 1.4),
has no significant relationship to trial duration, R2 =
0.02, F(17,1) = 0.28, p = 0.6. The number of LAFs also
does not have a significant predictive relationship with
self-rated experience, R2 = 0.04, F(17,1) = 0.8, p = 0.4.

LAF latency interval

The LAF interval distribution, that is, the time
between the end of the LAF to the beginning of
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Figure 5. Frequency distribution and cumulative probability of LAF intervals. (Top left) Frequency of LAF intervals in absolute time
(seconds), bin size of 10 seconds. (Top right) Cumulative probability of LAF intervals with log x-axis. (Bottom left) Probability of LAF
intervals in subtask steps. (Bottom right), bin size 1 step. Cumulative probability of LAF intervals in subtask steps.

the guiding look associated with manipulation, is
shown in Figure 5 (top) along with the cumulative
probability across intervals. The peak LAF latencies
are less than 5 seconds, but the tail of the distribution
is long. We find that about 35% LAFs occur within
10 seconds (the typical range of prior findings), about
40% occur between 10 and 100 seconds, and the
remaining 25% at more than 100 seconds (maximum of
880 seconds). When a participant begins the assembly
and removes all items from the tent bag, this action
creates many opportunities for early lookaheads, as
assembly progresses opportunities arise but decrease as
assembly nears completion. Importantly, as shown by
the cumulative distributions for individual participants
(in grey), we observed this wide range of variation in
LAF latencies for every single participant. That is,
even the participant with the shortest LAF latencies
still had several more than 10 seconds and the same
holds true for the one participant with only five LAFs.
Appendix Figure A1 plots the aggregate distributions

of LAF latencies, separately for each subtask during
which the LAFs were made, and shows that latencies
vary dependent on the ongoing task and almost all
have long latencies or more than 10 seconds and most
of more than 100 seconds. This finding suggests that
some ongoing tasks may favor shorter latency LAFs
than others, but long latencies are not exclusive to a
particular subtask, such as reading instructions, where
participants might briefly pause reading to make LAFs
to relevant objects.

The LAF latencies as discussed are much greater
than previously reported, and one might argue that
many long LAF latencies are incidental. We addressed
this issue in two ways. First, it could simply be that
objects with longer time to use (the amount of time
from the trial start to the time that a LAF target was
used) have longer latencies because there are more
opportunities to fixate the object incidentally before its
use. Given that we have a much longer task, it would
therefore not be surprising that we observed longer
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LAF latencies. To examine this possibility, we ran a
linear regression using time to use to predict LAF
latencies. Indeed, we found a significant increase in LAF
latency predicted by increasing time to use, R2 = 0.13,
F(738,1) = 107, p = 1.6–23, β = 0.2 seconds. However,
the variance explained is relatively small, suggesting
that although some long LAF latencies may be due
to some objects having a long time to use, it is not
dominant.

Second, we reasoned that LAFs made to objects
relevant to the current ongoing task (see LAF task
and target dependence) are less likely to be incidental
compared with LAFs directed to upcoming tasks. This
assumption may be overly conservative, because it
excludes the many LAFs related to upcoming tasks that
are necessarily further ahead in the future (Figure 5
and LAF task and target dependence), but may be a
more reliable estimate. We compared on- versus off-task
LAF latency distributions, and found that while both
contain longer latencies than prior studies, on-task
latencies are significantly shorter (M = 37.6 seconds;
median = 6.5 seconds, SD = 83.7 seconds) than off-task
(M = 136.1 seconds; median = 54.2 seconds; SD =
197.6 seconds), t(445) = 6.7, p = 7.4–11). Importantly,
the mean latency of 37.6 seconds for on-task LAFs is
much greater than the mean of 2.5 seconds reported by
Mennie et al. (2007), likely owing to the vastly different
tasks performed.

We also analyzed this distribution considering task
steps instead of absolute time as this may be more
directly related to the planning process. Figure 5
(bottom) shows that approximately 75% of LAFs are
made to objects within five task steps, 90% within
15 steps, with the remainder to objects up to 50 tasks
steps ahead. Like absolute time, LAF latency as a
function of subtask steps is right skewed and similarly
distributed across participants. Appendix Figure A2
plots the aggregate subtask step distribution per LAF
target object, and, given the tight relation between
objects and subtasks, shows again that latencies are
task dependent.

In summary, we observe much longer and more
variable LAF latencies compared with previous studies.
Although some LAFs are no doubt incidental, it seems
likely that some long-latency LAFs are purposeful,
given the limited predictive power of time to use and
the long latencies observed even when we restrict our
analysis to on-task LAFs.

LAF task and target dependence

Prior research has demonstrated LAFs are sensitive
to task demands, and Figure 6 shows LAFs frequencies
aggregated across participants per subtask and per
object. The summed raw frequencies in the margins are
per subtask (right) and per target (top).

If we only consider ongoing subtasks (right margin),
some were more likely to have a LAF occur, with
the most common being during approach (30%),
insert stake (11%), and pickup/place vent cover (10%).
Averaged across participants, we find the number of
LAFs made during each subtask ranged from near zero
(pickup/open tent bag, insert support tab, tie top) to
between two and five LAFs (instruction, spread tent,
assemble support, insert support, pickup/open stake
bag, and insert stake), with most occurring during
approach (M = 12; Appendix Table A2).

If we only consider LAF targets (top margin), we
find LAFs were biased toward some objects, with LAFs
most commonly being made to the guyline (37%), tent
corner (22%), and tent top (14%). Averaged across
participants, the number of LAFs varied per target
ranging from 0 to 15 LAFs (Appendix Table A3).
Some targets get less than one (support bag, support,
support tab, and stake) and others one to two LAFs
(instruction, tent bag, tent, stake bag, vent cover), with
a few getting frequent LAFs: tent corners (M = 8.9),
guylines (M = 15.2), and tent top (M = 5.6).

The individual cells of Figure 6 depict the frequency
of LAFs to each target for each ongoing task. LAFs
may be directed to targets relevant to the ongoing task
or an upcoming task. For example, when inserting
a stake to secure the tent corner, two common LAF
targets are the tent corner (relevant to the current
subtask) and the guyline (relevant to an upcoming
subtask). We examined if LAFs tended to be made to
objects related to the current task or to a future task.
Appendix Table A4 explains how on- versus off-task
LAFs were determined. Note, approach and instruction
subtasks are excluded from this calculation because all
LAFs in these subtasks are by default concerned with
upcoming tasks.

Averaged across participants, a mean of 47%
(SD = 17%) of LAFs are made to the objects within
the current task. Furthermore, certain tasks are more
likely to generate within task LAFs; for instance, more
than 60% of LAFs made during the pickup/open tent
bag, pickup/place vent cover, place guyline, and spread
tent tasks are made to objects relevant for that task
(Appendix Figure A3).

Repeat LAFs

Do participants make just one LAF to a target before
interacting with it, or do they sometimes make repeat
LAFs revisiting the same target multiple times? Repeat
LAFs could suggest information obtained from a LAF
is volatile owing to decay or dynamics in the world. Of
the 739 LAFs we identified, 183 were single, isolated
fixations by an observer to those 183 targets. The
remaining 556 LAFS consisted of two or more LAFs
each to 161 other targets. Averaged across participants,
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Figure 6. Frequency of LAF targets and ongoing tasks. Rows depict subtasks and each column entry indicates the frequency of LAFs to
a target object during that task. The solitary row above indicates the sum of LAFs per target. The solitary row to the right indicates the
sum of LAFs per subtask.

45% of LAF targets were revisited (SD = 16%). The
mean time difference between repeat LAFs was a mean
of 44.5 seconds (SD = 77.5 seconds); the median was
14.1 seconds.

The most common repeat LAF sequences were
two (53%), three (23%), and four (10%). Multi-LAF
sequences were target dependent, occurring primarily
for the guyline (25%), tent corner (27%), and tent top
(13%); all other targets were at or below 6%.

Discussion

We present behavioral data from a group of
participants assembling a camping tent. Participants
had a wide range of prior experience, but all were able
to successfully complete it. At least in this sample,
self-reported experience did not seem to predict
behavior; rather, the time taken to complete the
task was predicted by the time spent on particular
subtasks. Using an annotation of actions, we show that,
although participants exhibit variety in their behavioral
sequence, there are core common elements shaped

by task demands. The likelihood of a participant’s
trajectory through the state space, as captured by a
Markov transition matrix (Figure 4), is predictive of the
duration of assembly, but not the composite experience
score.

Eye movement behavior largely consisted of
sequences of brief search for an item, followed by
guidance to manipulate the item. An extended search of
longer than 1 second was infrequent, and participants
largely made fixations only on task-relevant objects.

We document four novel aspects of LAF behaviors:
(1) diversity across objects and tasks, (2) variance in
latencies much greater than previously noted, (3) LAFs
can be framed in terms of task steps and 53% are to
targets off the current task, and (4) LAFs often have
one or more revisiting fixations to the target before
manipulation.

LAFs can have long latencies, with 80% being
made within 100 seconds and the remainder having
even longer latencies. Reframed in terms of subtask
steps, one-third of LAFs are relevant to the current
task and most of the remainder are to subtasks up
to 15 steps away. Setting up a tent has several unique
features that may explain these results: the spatial
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layout is highly varied, starting with all items in a
single bag until ultimately spread out over about
a 2 × 2 m area. Setting up a tent takes at least 37
idealized steps, requires frequent walking around the
environment and the moving of multiple items. This
process creates a situation where participants may
frequently be uncertain about the appearance and
location of multiple objects as the task evolves, and
LAFs could reflect one way to decrease this uncertainty
in anticipation of upcoming actions.

The frequency of LAFs varies across participants
and is predicted by trial duration. LAFs are also more
common in certain subtasks (independent of duration)
and certain items are far more likely to be the target of a
LAF. Tasks likely to generate a LAF include approach,
where the hands are unoccupied and the participant
is moving around the tent giving opportunity to view
many objects, and insert stake, where participants’
hands are busy pushing down. The most common items
to be target by a LAF are the tent corner, which is
relevant during insert stake, insert support, and insert
support tab, and the guylines as described elsewhere in
this article. Finally, LAFs were often made in a series,
with 47% of LAFs having two or more fixations before
object interaction, suggesting memory volatility either
owing to internal decay or world dynamics.

Latencies similarly vary according to the LAF target
object and the ongoing task. For example, during
instruction reading, participants sometimes pause
reading and look around, leading to a large variety
of latencies. However, during pickup/place vent cover,
most LAFs are directed to the corners of the tent top
that will secure the cover and yield a distribution biased
toward short latencies. However, the ultimate purpose
of long latency LAFs are difficult to identify from an
observational study because the LAF and the action it
may serve are so distant in time.

Why do we measure LAFs with longer latencies than
prior studies? First, LAFs have not been frequently
addressed leading to a sparse research history.
Additionally, owing to the flexible nature of vision,
LAF research in walking, driving, and playing music
has focused on short LAFs that seem to be dedicated
to gathering information in the visual buffer for actions
within the next few seconds. The longest LAF noted
before this study (68 seconds) was an anecdotal mention
by Land et al. (1999) while making tea. Other studies
like Pelz and Canosa (2001) and Mennie et al. (2007)
had tasks intentionally structured to last only 1 to 2
minutes; further, the amount of information available
for future interaction was limited, whereas in our
task there are at least 37 steps with 12 task-relevant
objects. Making tea is the most similar in terms of task
complexity and one might speculate there were other
long latency LAFs that were undocumented. We also
analyzed LAFs targeting on-task versus off-task objects
under the assumption that on-task LAFs may contain

fewer incidental fixations. On-task LAF latencies were,
naturally, much shorter on average than off-task.
However, they were still much longer than prior studies,
suggesting that the range of latencies is larger than
previously known, even when we only consider more
reliable on-task LAFs.

The role that LAFs play in natural tasks is unclear,
and it is difficult to know which are purposeful and
which are incidental. Prior studies have found mixed
evidence for the quality of information taken from
preview fixations and that incidental fixations do not
help performance (Võ & Wolfe, 2012; Kit et al., 2014).
However, there is some evidence that LAFs can improve
saccadic accuracy (Land et al., 1999; Mennie et al.,
2007).

We can only speculate on the usefulness of LAFs
made by our participants, but watching their eye
tracking videos provides many clues. For example, when
attaching the vent cover, which has four individual
hooks that need to be attached, participants routinely
look to the next attachment location on the tent top
while fixing the hook in place at the prior one, a very
clear on-task LAF. Similarly, when inserting the stake
in the tent corner, a participant may make an on-task
LAF to the next corner they will stake. This finding
may suggest that LAFs are biased toward gathering
information for tasks that require more precision or
manual dexterity. However, not all examples are easy
to interpret. For example, while walking around the
tent during approach, participants often look at the
guylines or tent corners. These LAFs may be relevant
for upcoming tasks because the participants must
interact with guylines and corners at least four times,
but they could have other explanations. The guylines
are long bright yellow ropes and may be a salient target
in contrast with an otherwise uniformly colored tent.
Tent corner LAFs may serve navigation around the
tent or help in evaluating if the supports or stakes are
secured.

Despite being outdoors in a garden, nearly all of
participants’ fixations were on task-relevant objects;
if some LAFs are incidental, they may be due to
attentional biases owing to future relevance. Although
they did not model visual attention, using Cooper
and Shallice’s (2000) framework, one might imagine
incidental LAFs arising owing to schema activations
sufficient to shift visual attention but insufficient to
initiate action. However, given the task dependence and
object dependence of LAFs and the tendency to be on
task or a few steps ahead, it seems unlikely that most
LAFs are incidental noise. Future experimental studies
of this topic should either account for, or control, the
visibility of objects and the angle subtended, because
larger objects may be more likely to be fixated simply
by virtue of their size.

Land and Furneaux’s (1997) study of look ahead
behavior highlighted the idea of a visuomotor buffer
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capturing information about 1 second ahead as part of
a visuomotor control loop for tasks like driving and
sight reading music. Mennie et al. (2007) documented
a model assembly task with peak LAF latencies of
2.5 seconds. Land et al. (1999) anecdotally described
longer latencies in tea making like our observations.
Given the variance observed in LAF latencies during
tent assembly, it seems unlikely that long latency LAFs
(>100 seconds) have the same purpose as those with
short latencies (<10 seconds). Considered in terms of
task steps, LAF latencies suggest a mix of short-term
and longer term planning, with about one-third of
LAFs made to objects related to the current task, and
the remainder to one or more steps beyond the current
subtask.

The frequency of repeat LAF sequences, that
is, more than one LAF to the same object before
interacting with it, occurred 47% of the time. This
finding suggests that, if most LAFs are purposeful,
the quality of information extracted is coarse or not
well-maintained in memory and may reflect the flexible
trade-off between memory and saccades seen in other
tasks (Ballard, Hayhoe, & Pelz, 1995).

We hypothesize that LAFs are generated by three
processes: (1) action driven (short latency <10 seconds):
Coinciding with most of the previous study of LAFs,
these LAFs extract visuospatial information and
mainly influence motor behavior (hand motions, eye
movements, and moving the body in space) and would
contain fixations related to Land’s visuomotor buffer.
This category might be further divided to distinguish
control loop LAFs (<1 second). (2) Cognition driven
(long latency >10 seconds): Purposeful strategic LAFs
that may be part of planning the next steps or checking
a mental inventory of task-relevant objects. Owing to
long latencies, visuospatial information acquired is
poor but sufficient for planning, for example, “the parts
needed for the task step a minute from now are over to
my left.” (3) Task relevance and salience: “Incidental”
LAFs of any latency made to objects owing to task
relevance, or a task-relevant object having salient image
features, but not otherwise purposeful.

These hypotheses need to be vetted experimentally
because LAFs presumably are a probabilistic mix
of the above LAF types, other processes, or could
be further subdivided (e.g., short latency LAFs for
motor information vs. short latency LAFs for problem
solving). Gaze-contingent virtual reality setups are
well-suited for testing the knowledge gained from
LAFs. It should be possible to monitor when LAFs are
made to items and alter visual aspects or location and
observe any behavioral changes as a function of the
LAF latency.

Are LAFs necessary? Are they a default strategy of
a visual system used for planning and interacting with
a dynamic world while balancing a variety of memory
loads? In relation to models of sequential visuomotor

behavior, these questions could be approached by
modeling the underlying information processing steps
in tasks where LAFs are known to occur. One approach
would be to consider LAFs in relation to memory and
motor coordination using abstract decision models,
such as diffusion to bound (Johnson et al., 2014).
By considering memory decay and costs for eye and
body movements, it should be possible to identify
conditions where the information from LAFs improve
future behavior. More elaborate approaches using deep
reinforcement learning (Vinyals et al., 2019) could
simulate a visuomotor agent in an environment where
a mapping of visual features to choices for motor
selection are learned, and could also vary memory
fidelity and motor costs. Such models could identify
possible roles for LAFs regarding visuospatial memory,
but it is not clear if they can explain more abstract
roles for LAFs like problem solving. If the LAFs are a
composite of multiple visual computations over varying
timescales, simple models might kickstart ideas for
experiments that can then informmore complex models.
One could adjust systematically the degree of planning,
memory load, task and stimulus uncertainty, and on-
and off-task salience of in models and experiments to
refine our understanding of LAFs.

Conclusions

In an outdoor tent assembly task, we show that
LAFs occur in a wide variety of contexts. LAFs
selectively occur more often during certain tasks and
to certain objects. Look ahead latencies span short to
long timescales and appear to show a mix of on-task
and long-term information gathering. Gaze contingent
experiments and modelling are needed to delineate how
LAFs relate to planning and memory.

Keywords: look ahead fixations, visuomotor
coordination, natural tasks, eye movements, visual
attention
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