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Abstract: Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese
flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses
in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-
seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified,
among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral
infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs
(DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus
infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of
immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with
their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and
DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes
(mRNAs) differentially expressed during megalocytivirus infection, and together they formed a
network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis
identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific
and significantly altered expressions during megalocytivirus infection. Integrated analysis of the
DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing
endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA
involved in antiviral immunity. Together these results indicate that complicated regulatory networks
of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
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1. Introduction

Megalocytivirus is an important viral pathogen to a wide range of aquaculture fish, in-
cluding Japanese flounder (Paralichthys olivaceus), a valued marine fish. Megalocytivirus is
a double-stranded DNA virus belonging to the family Iridoviridae. To date, several types of
megalocytivirus have been identified, including infectious spleen and kidney necrosis virus
(ISKNV), red seabream iridovirus (RSIV), rock bream iridovirus (RBIV), orange-spotted
grouper iridovirus (OSGIV), and turbot reddish body iridovirus (TRBIV) [1–5]. Following
infection of the host fish, megalocytivirus induces hemorrhage and the production of
hypertrophied cells in various organs, particularly the lymphoid tissues [6,7]. In Japanese
flounder, reports have shown that megalocytivirus infection elicits systematic changes in
the expression of small non-coding RNAs and mRNAs in the spleen [8].
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MicroRNAs (miRNAs) are a class of small endogenous RNAs ranging 21–24 nt in size
and play an important role in mRNA translation. MicroRNAs execute post-transcriptional
regulation of their target gene expression by binding to the 3′ untranslated region (3′-UTR)
of the target mRNAs, which leads to blockage of mRNA translation [9]. Accumulating
studies have indicated that miRNA-mediated regulation is involved in many biological pro-
cesses, including inflammation, disease, and immune response to pathogen infection [9,10].
MicroRNAs have an important role in modulating the replication and pathogenesis of
mammalian and fish viruses, such as dengue virus (DENV), West Nile virus (WNV), mega-
locytivirus, and red-spotted grouper nervous necrosis virus (RGNNV) [11–13]. MicroRNAs
can also mediate anti-viral immune responses by targeting specific host immune genes,
whereby activating or inhibiting the downstream signaling pathways [14,15].

Circular RNAs (circRNAs) are a novel type of endogenous noncoding RNAs that form
covalently closed continuous loops without 3′ and 5′ ends [16,17]. Exon-derived circRNAs
are generated by back-splicing, in which a 5′ splice donor attacks an upstream 3′ splice site,
leading to a 3′–5′ phosphodiester bond that generates a circular RNA molecule [18]. Circu-
lar RNAs are ubiquitously expressed in eukaryotic cells and critical in many physiological
and pathological conditions [19–22]. Circular RNAs can affect gene expression through
diverse mechanisms, such as transcription and splicing regulation, microRNA (miRNA)
sponges, mRNA traps, translational modulation, and post-translational modification [23].
In mammals, studies have provided emerging evidence that circRNAs play vital roles in
various innate immune responses, including that associated with viral infection [24–27]. In
fish, studies on the antiviral effect of circRNA is limited [28,29].

RNA sequencing (RNA-seq) is a recently developed method that uses deep-sequencing
technologies for RNA profiling [30]. RNA-seq has been used widely in the study of
pathogen associated immune response in fish [31,32]. In the present study, by employing
the high-throughput sequencing technique and integrative analysis approaches, we de-
picted the expression profiles and interactive networks of flounder miRNAs and circRNAs
at different stages of megalocytivirus infection. The differentially expressed miRNAs
(DEmiRs) and circRNAs (DEcircRs) were identified and analyzed with the methods of
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment.
On the basis of the previously reported mRNA transcriptome data [33], the differentially ex-
pressed target mRNAs of the miRNAs (DEmRs) were also identified. Interactive networks
of immune-related DEmiRs and their differentially expressed target mRNAs (DETmRs), as
well as interactive circRNAs-miRNAs-mRNAs, were constructed.

2. Results
2.1. High-Throughput Sequencing and Quality Assessment

In the micro-transcriptome analysis, 18 libraries were constructed with RNAs from
three groups (3 fish/group) of megalocytivirus-infected fish at 2, 6, and 8 dpi (named V2d,
V6d, and V8d, respectively) and three control groups (3 fish/group) of uninfected fish at
the corresponding time points (named C2d, C6d, and C8d, respectively). A mean number
of 11,855,921 filtered clean tags were obtained from each library (Table 1). On the basis
of the flounder genome, a total of 1327 miRNAs were identified, including 959 known
miRNAs and 368 novel miRNAs (Table 1). The lengths of the miRNAs in all six groups
were distributed in the range 20–23 nt, with a maximum of 22 nt, indicating a high degree
of consistency between groups (Figure 1a). The expression levels of the miRNAs in the
control and virus-infected groups are shown in a boxplot (Figure 1b).
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Table 1. Summary of miRNA sequencing of the 18 samples. V2d, V6d, and V8d represent
megalocytivirus-infected fish at 2, 6, or 8 days post infection (dpi), respectively. C2d, C6d, and
C8d represent control fish at 2, 6, or 8 dpi, respectively. For both virus-infected and control fish, at
each time point, three fish were used (indicated by the number of 1, 2, or 3, e.g., V2d-1, V2d-2, and
V2d-3).

Sample Name Clean Tags (%) Known miRNA Novel miRNA

V2d-1 11,837,245 (96.83%) 365 259
V2d-2 11,280,092 (96.22%) 374 239
V2d-3 9,924,270 (96.10%) 382 247
V6d-1 17,710,805 (96.20%) 518 296
V6d-2 10,365,825 (96.37%) 425 239
V6d-3 11,893,288 (96.59%) 451 272
V8d-1 12,212,869 (96.67%) 489 286
V8d-2 13,140,335 (95.92%) 365 288
V8d-3 13,010,734 (95.98%) 476 293
C2d-1 12,573,839 (96.38%) 432 248
C2d-2 8,926,038 (94.98%) 364 233
C2d-3 8,576,422 (94.70%) 368 225
C6d-1 11,653,795 (96.21%) 413 235
C6d-2 14,097,705 (97.33%) 367 260
C6d-3 12,708,286 (95.14%) 396 261
C8d-1 10,633,416 (95.26%) 351 260
C8d-2 11,449,436 (95.92%) 357 218
C8d-3 11,412,190 (94.55%) 394 228
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Figure 1. MicroRNA (miRNA) sequencing data analysis in the spleen of flounder. (a) The length distribution of the miR-
NAs in each group. “C2”, “C6”, and “C8” indicate control fish groups at 2, 6, or 8 days post infection (dpi), respectively; 
“V2”, “V6”, and “V8” indicate megalocytivirus-infected fish groups at 2, 6, or 8 dpi, respectively; (b) Boxplot profiling the 
expression levels of the miRNAs in each group at 2, 6, and 8 dpi. TPM, transcripts per million. 
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Figure 1. MicroRNA (miRNA) sequencing data analysis in the spleen of flounder. (a) The length distribution of the miRNAs
in each group. “C2”, “C6”, and “C8” indicate control fish groups at 2, 6, or 8 days post infection (dpi), respectively;
“V2”, “V6”, and “V8” indicate megalocytivirus-infected fish groups at 2, 6, or 8 dpi, respectively; (b) Boxplot profiling the
expression levels of the miRNAs in each group at 2, 6, and 8 dpi. TPM, transcripts per million.

2.2. Differentially Expressed miRNAs (DEmiRs) Induced by Megalocytivirus

Compared with the control fish, 171 miRNAs exhibiting significantly differential
expressions during viral infection were detected and named DEmiRs. Of these DEmiRs,
159 were upregulated and 44 were downregulated. The numbers of DEmiRs at 2, 6, and
8 dpi were 33, 77, and 93, respectively (Table 2). The Volcano plots of the DEmiRs at
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the three time points are shown in Figure 2a. There were more downregulated DEmiRs
than upregulated DEmiRs at 2 dpi, while the majority of DEmiRs at 6 dpi and 8 dpi were
upregulated. The time-dependent expression profiles and the numbers of DEmiRs are
shown in Figure 2b,c, respectively. In Figure 2c, 24, 50, and 65 DEmiRs were identified
exclusively at 2, 6, and 8 dpi, respectively; four DEmiRs were identified at both 2 and 6 dpi;
23 DEmiRs were identified at both 6 and 8 dpi; five DEmiRs were identified at both 2 and
8 dpi; no DEmiRs were identified at all three time points. To verify the DEmiRs obtained
by small RNA deep sequencing (sRNA-seq), the expressions of nine DEmiRs were tested
by qRT-PCR. The results of qRT-PCR were consistent with that of sRNA-seq at 2, 6, and
8 dpi, with correlation coefficients ranging from 0.76 to 1.00 (Figure 3).

Table 2. The number of up- and downregulated differential expressed miRNAs, at 2, 6, or 8 days
post infection (dpi).

Time Point Up Down Total

2 dpi 7 26 33
6 dpi 69 8 77
8 dpi 83 10 93
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Figure 2. Analysis of differentially expressed miRNAs (DEmiRs) at different time points of infection. (a) Volcano plots
of DEmiRs, at 2, 6, or 8 days post infection (dpi). The red and blue points represent up- and downregulated miRNAs,
respectively; gray points represent miRNAs without significant change. FC, fold change; (b) The heatmap of DEmiR
expression profiles in different groups at different time points. For convenience, “C2”, “C6”, and “C8” indicate the control
groups at 2, 6, and 8 dpi, respectively; “V2”, “V6”, and “V8” indicate megalocytivirus-infected groups at 2, 6, and 8 dpi,
respectively. (c) Venn diagram showing the overlap of DEmiRs at 2 dpi (blue), 6 dpi (green), and 8 dpi (pink).
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Figure 3. Validation of the small RNA-seq data by quantitative real-time PCR (qRT-PCR). The relative expression profiles of
9 DEmiRs, at 2, 6, or 8 days post infection, detected by qRT-PCR (bars) and compared with the results of RNA-seq (dotted
lines). Error bars represent standard deviations. For each DEmiR, the correlation coefficient (r) between the results of
qRT-PCR and sRNA-seq is shown.

2.3. Identification and Analysis of the Targets of DEmiRs

A total of 27,796 putative target mRNAs were predicted for the 171 DEmiRs. These
genes were further submitted to integrated analysis, by which the expressions of these genes
were compared with that of their paired DEmiRs. As a result, among the 27,796 putative
target mRNAs, 805 differentially expressed target mRNAs (DETmRs) were identified,
whose expression levels not only significantly changed after megalocytivirus infection but
also were negatively correlated with that of their paired DEmiRs. In addition to targeting
the host mRNAs, 148 DEmiRs were predicted to target the mRNAs of megalocytivirus
as well.

GO functional enrichment analysis categorized the DETmRs into three functional
groups, i.e., biological process, cellular component, and molecular function (Figure 4a). In
biological process, the DETmRs were enriched in “cellular process”, “metabolic process”,
“single-organism process”, “biological regulation”, “regulation of biological process”, and
other processes including “response to stimulus” and “immune system process”. In the
cellular component category, the DETmRs were mainly classified into the groups associated
with cell, organelle, and membrane. In the molecular function category, the DETmRs
belonged mainly to binding and catalytic activity process. KEGG analysis showed that the
top 20 enriched KEGG pathways included five immune-related pathways, i.e., RIG-I-like
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receptor signaling pathway, cytokine–cytokine receptor interaction, ubiquitin-mediated
proteolysis, p53 signaling pathway, and JAK-STAT signaling pathway (Figure 4b).
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2.4. The Interactive Network of Immune-Related DEmiRs-DETmRs

Forty-seven immune-related DETmRs were identified in the KEGG pathways and
subjected to integrative analysis with DEmiRs, resulting in the identification of 12 DEmiRs,
each of which interacted with more than five DETmRs (i.e., degree > 5). These DEmiRs were
defined as hub DEmiRs. As shown in Table 3, the 12 hub DEmiRs exhibited differential
expressions mostly at 8 dpi and interacted with 5 to 11 DETmRs. The hub DEmiRs and their
paired immune-related DETmRs formed a DEmiR-DETmR interaction network consisting
of 84 interacting DEmiR-DETmR pairs (Figure 5a). The DETmRs in the network were
involved in various immune pathways (Figure 5a).
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Table 3. The 12 DEmiRs that formed the interactive network. For each DEmiR, the fold difference in expression between
virus-infected and uninfected fish at 2, 6, and 8 dpi are indicated. Degree represents the number of differentially expressed
target mRNAs (DETmRs) interacting with the DEmiRs in the network.

Hub DEmiR
Fold Change (Log2)

Degree DETmR
2 dpi 6 dpi 8 dpi

novel-m0263-3p −5.95 −4.16 11 CDK1, CSF1R2, DNASE2, INHBB, IQSEC1, RAB35,
RILPL1, PAI1, SCOTIN, SHISA5, TRIM25

novel-m0233-3p −6.21 −6.09 10 CDK1, CLTC, CYC, DNASE2, GBF1, LIMP2, PML, BID,
TRIM25, HSP90α.1

miR-322-x 5.66 7.14 9 ADAR, DDX3X, TNFSF14, TPOR, PIP5K1α, TUBB,
TLR8, TNFRSF10, VAMP3

miR-144-y −2.20 8 ATPeVS1, DHX58, GIT2, IQSEC1, MRC1, PTPN11,
SOCS1, VPS4B

miR-409-y 6.39 7 ABCA2, DDX3X, MET, PDGFB, STAT1, TUBB, TLR8
miR-11987-x 2.50 2.64 7 ABCA2, CCL19, CYC, PDGFB, PDGFD, GCSF, LIF
miR-495-y 5.78 6 ABCA2, CAB39L, MET, PDGFB, STAT1, TNFRSF10

novel-m0108-3p 3.23 6 ABCA2, CAB39L, DDX3X, MET, TPOR, PDGFB
miR-29-x 2.15 2.12 5 ABCA2, ADAR, AP1G1, EHD2, MET

miR-194-x 4.51 5 ABCA2, DDX3X, IST1, TNFRSF10, VAMP3
miR-727-y −1.89 5 GBF1, GIT2, IQSEC1, IRF7, TRIM25

novel-m0007-5p 5.43 5 ABCA2, CAB39L, TPOR, PDGFB, TUBB

CDK1, cyclin-dependent kinase 1; CSF1R2, macrophage colony-stimulating factor 1 receptor 2; DNASE2, deoxyribonuclease-2-alpha;
INHBB, inhibin beta B chain; IQSEC1, IQ motif and SEC7 domain-containing protein 1; RAB35, Ras-related protein Rab-35; RILPL1, RILP-
like protein 1; PAI1, plasminogen activator inhibitor 1; SCOTIN, protein SCOTIN; SHISA5, protein shisa-5; TRIM25, E3 ubiquitin/ISG15
ligase TRIM25; ADAR, adenosine deaminase, RNA specific; DDX3X, ATP-dependent RNA helicase DDX3X; TNFSF14, tumor necrosis
factor ligand superfamily member 14; PIP5K1α, phosphatidylinositol 4-phosphate 5-kinase type-1 alpha; TUBB, tubulin beta chain; TLR8,
toll-like receptor 8; TNFRSF10, tumor necrosis factor receptor superfamily member 10B; VAMP3, vesicle-associated membrane protein
3; CLTC, clathrin heavy chain 1; CYC, cytochrome c; GBF1, Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1;
LIMP2, lysosome membrane protein 2; PML, probable transcription factor PML; BID, BH3 interacting domain death agonist; HSP90α.1,
heat shock protein HSP 90-alpha; ATPeVS1, V-type proton ATPase subunit S1; DHX58, probable ATP-dependent RNA helicase DHX58;
GIT2, ARF GTPase-activating protein GIT2; MRC1, macrophage mannose receptor 1; PTPN11, tyrosine-protein phosphatase non-receptor
type 11; SOCS1, suppressor of cytokine signaling 1; VPS4B, vacuolar protein sorting-associated protein 4B; ABCA2, ATP-binding cassette
sub-family A member 2; MET, MET proto-oncogene, receptor tyrosine kinase; PDGFB, platelet-derived growth factor subunit B; STAT1,
signal transducer and activator of transcription 1; CCL19, C-C motif chemokine 19; PDGFD, platelet-derived growth factor D; GCSF,
granulocyte colony-stimulating factor; LIF, leukemia inhibitory factor; CAB39L, calcium-binding protein 39; TPOR, thrombopoietin receptor;
AP1G1, AP-1 complex subunit gamma-1; EHD2, EH domain-containing protein 2; IST1, vacuolar protein sorting-associated protein IST1;
IRF7, interferon regulatory factor 7.

In a previous transcriptome analysis of the same samples used in this study, we
identified 16 key immune-related and differentially expressed genes (DEGs) significantly
induced by megalocytivirus [33]. In the present study, we found that six of these key
immune-related DEGs, i.e., STAT1 (signal transducer and activator of transcription 1),
TRIM25 (an E3 ubiquitin/ISG15 ligase), IRF7 (interferon regulatory factor 7), DHX58,
SCOTIN, and LIF (leukemia inhibitory factor), were targeted by 19 DEmiRs. As shown in
Figure 5b, the interaction network formed by the 19 DEmiRs and the six DEGs contained
21 interactive miRNA-mRNA pairs, and STAT1 is the DEG targeted by the largest number
of DEmiRs (degree = 13).
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2.5. Overview of the circRNA Sequencing Data

As abovementioned, the same megalocytivirus-infected and uninfected samples used
in this study had been subjected to transcriptome analysis in a previous study [33]. In
the current study, these transcriptome data were explored for circRNA information. After
a series of selection, 9434 circRNAs were identified. The length of the circRNAs ranged
from 53 to 96,180 bp, mostly within 200–400 bp (Figure 6a). The number of exons in the
circRNA transcripts mainly ranged from 1 to 6 (Figure 6b). Expression analysis showed that
169 circRNAs exhibited significantly different expressions after megalocytivirus infection
and were named DEcircRs. The expressions of the DEcircRs were time dependent, with
44, 77, and 74 DEcircRs occurring at 2, 6, and 8 dpi, respectively (Table 4). The expression
profiles of all DEcircRs are shown in a heat map in Figure 6c. Venn diagram showed that
seven DEcircRs occurred at 2 and 6 dpi, 53 DEcircRs occurred at 6 and 8 dpi, nine DEcircRs
occurred at 2 and 8 dpi, and only three DEcircRs (circ_007062, circ_009376, and circ_008173)
occurred at all three time points (Figure 6d).
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Table 4. The number of up- and downregulated DEcircRs, at 2, 6, and 8 days post infection (dpi).

Time Point Up Down Total

2 dpi 19 25 44
6 dpi 46 31 77
8 dpi 41 33 74

2.6. Competing Endogenous RNAs (ceRNAs)

It is known that circRNAs can act as ceRNAs to compete with mRNAs for miRNA
interaction, whereby regulating the expression of corresponding genes [23]. Three softwares
(Mireap, miRanda, and TargetScan) were used to predict the target relationship between
DEcircRs and DEmiRs. The negatively and significantly correlated DEcircRs and DEmiRs
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were identified as regulatory DEmiR-DEcircR pairs. Seventeen DEmiR-DEcircR pairs were
found, consisting of 14 DEcircRs and 14 DEmiRs. The integrated analysis of the interactions
of DETmRs-DEmiRs and DEcircRs-DEmiRs resulted in the identification of four interacting
triplets of circRNA, miRNA, and mRNA formed by three DEcircRs, three DEmiRs, and four
DETmRs (Figure 7). Of the four DETmRs, IKZF4 (zinc finger protein Eos) plays an essential
role in CD4+ regulatory T cells (Tregs) programming and affects multiple aspects of Treg
suppressor function [34,35], AGRN (agrin) is involved in cervical tumourigenesis and
sepsis-induced neuromuscular dysfunction [36,37], IFI44 (interferon-induced protein 44)
can restrict viral activity and replication [38,39], and XM_020112654.1 is a uncharacterized
protein with unknown function.
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3. Discussion

In this study, deep Illumina sequencing and integrative analysis were performed
to examine the expression of miRNAs and circRNAs in Japanese flounder infected by
megalocytivirus. We found that megalocytivirus affected the expression of 171 miRNAs,
which were predicted to target 805 DETmRs. The immune-related DETmRs were used for
the construction of differentially expressed miRNA-mRNA interaction network, which
contained 12 hub DEmiRs (degree > 5) and 47 DETmRs. A total of 169 DEcircRs were
identified, which were significantly induced by megalocytivirus. Furthermore, based on
integrative analysis, the differentially expressed ceRNAs regulatory units consisting of
circRNA/miRNA/mRNA triplets were identified. The important DEmiRs, DETmRs, and
DEcircRs involved in immune defense are discussed below.

3.1. Endocytosis and Lysosome

As shown in Figure 4a, the number of immune DETmRs enriched in the category of
endocytosis is the largest. Endocytosis is used by various viruses to enter host cells [40].
For example, caveola-dependent endocytosis was used for ISKNV and Singapore grouper
iridovirus (SGIV) to enter fish cells [41,42]. In our study, three hub DEmiRs, i.e., novel-
m0233-3p, novel-m0236-3p, and miR-322-x, were found to target clathrin heavy chain
(CLTC), Ras-related protein Rab35 (Rab35), and phosphatidylinositol 4-phosphate 5-kinase
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type-1 alpha (PIP5K1α), respectively. CLTC is an essential molecule in the process of
clathrin-mediated endocytosis and required for viral invasion into host cells [43–45]. Rab35
is a plasma membrane-localized protein and controls a fast endocytic recycling pathway
as well as autophagy [46,47]. PIP5K1α can influence the internalization and infection of
various viruses, such as influenza A virus, foot-and-mouth disease virus, and vesicular
stomatitis virus [48,49]. Similar to Rab35, PIP5K1α was also reported to participate in
the process of autophagy [50]. These results indicate that, through their DETmRs, the
hub DEmiRs likely modulate the endocytosis process to influence the internalization and
intracellular trafficking of megalocytivirus in flounder.

Lysosomes are the terminal compartments in the endocytic pathway, where the
pathogen internalized by endocytosis is eliminated [51,52]. In this study, we found that
one hub DEmiR, i.e., miR-29-x, was significantly upregulated at 6 and 8 dpi. MiRNAs
related to miRNA-29 are associated with resistance to HIV-1, hepatitis B virus, and hepatitis
C virus infection [53–55]. In our study, miR-29-x was predicted to target the DETmR
AP-1 complex subunit gamma-1 (AP1G1), which in mammals is known to affect HIV-1
infection by influencing the process of HIV-mediated CD4 internalization and targeting to
lysosomes [56]. Another hub DEmiR, novel-m0233-3p, was predicted to target LIMP2 (lyso-
some membrane protein 2), which is located primarily in lysosomes and late endosomes
and may participate in reorganizing the endosomal/lysosomal compartments [57]. A re-
cent study showed that LIMP2 of turbot is implicated in the immune response to bacterial
infection with unknown mechanism [58]. Another lysosome-associated membrane protein,
ATP-binding cassette sub-family A member 2 (ABCA2), was predicted to be targeted by
seven hub DEmiRs, including miR-194-x, which was shown to be associated with antiviral
immune activity [59–63]. These results indicate that lysosomes probably play a critical role
in megalocytivirus infection.

3.2. Toll- and RIG-I-Like Receptor Signaling Pathways

Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) are classical pattern recogni-
tion receptors (PRRs) involved in viral interaction. TLRs and RLRs can recognize viral RNA
and induce the expression of type I interferons (IFNs) and other inflammatory cytokines
to limit viral replication in mammals and fish [64–67]. In our study, the RLR DHX58 was
found to be targeted by the DEmiR miR-144-y, which was significantly downregulated
during megalocytivirus infection. MiR-144-y is known to reduce antiviral response by
attenuating the TRAF6-IRF7 pathway in influenza virus-infected mice [68]. The decreased
expression of miR-144-y observed in our study implies elevated activity of RLRs, which
may facilitate viral removal by enhancing IRF7 expression. Two DETmRs, i.e., TLR8 and
DDX3X (ATP-dependent RNA helicase), were targeted by two and four hub DEmiRs,
respectively. TLR8 has been shown to be associated with antiviral immunity in Zika virus-
infected patients [69,70]. DDX3X and its regulatory miRNA, miR-322-x, were essential to
promoting apoptosis in mouse spermatocyte GC-2 cells [71]. DDX3X could also regulate
antiviral response by stimulating the production of IFN-I and supplementing the function
of RIG-I and MDA-5 in the early phase of virus infection [72]. Together these results sug-
gest that, in flounder, TLRs and RLRs are likely involved in the recognition and clearance
of megalocytivirus.

3.3. Cytokine–Cytokine Receptor Interaction

Cytokines released by innate immune cells are the first line of defense against in-
fectious pathogens by promoting the movement of monocytes and activating immune
responses [73,74]. In fish, cytokines play an important role in anti-pathogen immunity by
regulating cell mobilization and promoting tissue remodeling [75–77]. In our study, the hub
DEmiR miR-11987-x was predicted to target two DETmRs, CCL19 (C-C motif chemokine
19) and GCSF (granulocyte colony-stimulating factor). CCL19 is a critical regulator of
T cell activation, immune tolerance, and inflammatory responses, and can influence the
outcome of HIV infection [78,79]. In a mouse model of RSV (respiratory syncytial virus)
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infection, GCSF was found to mediate antiviral activity by regulating neutrophils recruit-
ment and activation [79]. In flounder, overexpression of GCSF stimulated host defense
against pathogenic bacteria [80]. These results suggest a role for CCL19 and GCSF in
anti-megalocytivirus infection in flounder. Another cytokine receptor targeted by hub
DEmiR in our study is the DETmR tumor necrosis factor ligand superfamily member
14 (TNFSF14). TNFSF14 is known to restrict herpes simplex virus (HSV) entry into host
cells by competing with the HSV envelope glycoprotein D for binding to the vital entry
mediator [81]. It is possible that TNFSF14 contributes to the immune defense of flounder
against megalocytivirus infection.

3.4. JAK-STAT Signaling Pathway

The JAK-STAT pathway is located downstream of numerous cytokine receptors and
transfers cytokine signaling [82]. Studies have shown that some viruses escape host
immunity by interfering with cytokine-mediated JAK-STAT signaling [83,84]. In our study,
several DETmRs, including signal transducer and activator of transcription 1 (STAT1),
suppressor of cytokine signaling 1 (SOCS1), tyrosine-protein phosphatase non-receptor
type 11 (PTPN11, also called SHP2), and thrombopoietin receptor (TPOR), were enriched in
the JAK-STAT pathway. STAT1, which was identified previously as a key immune-related
gene regulated by megalocytivirus [33], was targeted by the hub DEmiR miR-409-y, which
was strongly upregulated by megalocytivirus. In mice, miR-409-y is known to modulate
the expression of SOCS3 and STAT3, as well as to induce the production of inflammatory
cytokines [85]. The upregulated expression of miR-409-y observed in our study suggests a
downregulated inflammatory response that may be advantageous to viral infection.

SOCS1 is an inhibitor of JAK-STAT signaling and the interferon gamma (IFNγ) path-
way [86]. Research has shown that transmissible gastroenteritis virus (TGEV) evaded from
the type I interferon response through the miR-30a-5p/SOCS1 axis, and TGEV infection
resulted in decreased miR-30a-5p level and elevated SOCS1 [87]. In our study, SOCS1 was
a target of the hub DEmiR miR-144-y, which was significantly inhibited by megalocytivirus,
suggesting that the virus might regulate SOCS1 through miR-144-y as an immune evasion
mechanism. In addition to SOCS1, miR-144-y also targeted PTPN11, a negative regulator of
JAK-STAT signaling that also participates in apoptotic activation [88–90]. Another DETmR
implicated in the JAK-STAT signaling pathway was TPOR, which was targeted by three
hub DEmiRs, suggesting a potentially important role of TPOR in megalocytivirus infection.

4. Materials and Methods
4.1. Sample Collection

In a previous study, we examined the mRNA transcription profiles of flounder infected
by megalocytivirus at different times by sequencing 18 libraries of spleen samples from
megalocytivirus-infected and uninfected fish, at 2, 6, or 8 days post infection (dpi) [33].
Briefly, clinically healthy Japanese flounder (~250 g) were divided randomly into two
groups (36 fishes/group) and injected intraperitoneally with megalocytivirus RBIV-C1 or
PBS (control). The fish were sampled at 2, 6, and 8 dpi (3 fish/time point), and spleen
from each of the fish was taken and used as an individual sample for RNA sequencing
described below.

4.2. Small RNA Sequencing

For small RNA sequencing, total RNA was extracted by Trizol reagent (Invitrogen,
Carlsbad, CA, USA) from the above 18 samples (9 samples of infected fish and 9 samples of
control fish). The quality of the isolated RNAs was evaluated using NanoDrop Spectrometer
ND-2000 (Thermo Fisher Scientific, Waltham, MA, USA) and Agilent 2100 bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). The RIN values of the 18 samples ranged from
8.6 to 10. The RNA molecules in a size range of 18–30 nt were enriched by polyacrylamide
gel electrophoresis (PAGE). Then, the 3′ adapters and 5′ adapters were ligated. The ligation
products were reverse transcribed and amplified by PCR. There are 12 Index Primers for
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producing barcoded libraries in the NEBNext® Multiplex Small RNA Library Prep Set
for Illumina® (Set 1) kit (NEB #E7300L, NEB, Ipswich, MA, USA). For each PCR reaction,
only one of the 12 Index Primers was used. The 140–160 bp PCR products were enriched
to generate a cDNA library, which was sequenced using Illumina HiSeqTM 2500 Gene
Denovo Biotechnology Co. (Guangzhou, China).

4.3. Data Processing

The raw reads were filtered to get clean tags by removing reads that contained more
than one low quality (Q value ≤ 20) base, unknown nucleotides, without 3′ adapters,
containing 5′ adapters, containing 3′ and 5′ adapters but no small RNA fragment between
them, containing ployA in small RNA fragment, and shorter than 18 nt. All the clean
tags were aligned with the small RNAs in GeneBank database (Release 209.0) and Rfam
database (11.0) (http://rfam.xfam.org (accessed on 24 December 2018)) to identify and
remove rRNA, scRNA, snoRNA, snRNA, and tRNA. The clean tags were also aligned
with the reference genome of flounder (GenBank project accession PRJNA369269) via
Bowtie (v1.1.2) [91]. The tags mapped to exons or introns might be fragments from mRNA
degradation, and therefore were removed. The tags mapped to repeat sequences were
also removed.

4.4. MiRNA Identification and Differential Expression Analysis

The remained clean tags were searched against miRBase database (Release 21) to
identify known miRNAs in Japanese flounder. Meanwhile, novel miRNAs were predicted
according to their genome positions and hairpin structures using the software MIREAP
(v0.2) [92]. Total miRNA expression level was calculated and normalized to transcripts per
million (TPM). The edgeR package (v3.12.1) (http://www.r-project.org/ (accessed on 11
January 2019)) was used to identify differentially expressed miRNAs (DEmiRs), with a fold
change (FC) > 2 (log2|FC| > 1) and p < 0.05, between the infected and uninfected groups
at 2, 6, and 8 dpi.

4.5. CircRNA Identification and Differential Expression Analysis

For circRNA identification, high quality clean reads were obtained by further filtering
the raw reads according to the following rules: removing reads containing adapters,
removing reads containing more than 10% of unknown nucleotides (N), and removing
low quality reads containing more than 50% of low quality (Q value ≤ 20) bases. Next,
Bowtie2 was used for mapping reads to ribosome RNA (rRNA) database, and the rRNA
mapped reads were removed. The remaining reads of each sample were mapped to
the reference genome of Japanese flounder by TopHat2 (version 2.0.3.12). After aligning
with the reference genome, the reads that were continuously mapped to the genomes
were discarded, and the unmapped reads were collected for circRNA identification; 20
mers from both ends of the unmapped reads were extracted and aligned to the reference
genome to find unique anchor positions within splice site. Anchor reads that aligned in
the reversed orientation (head to tail) indicated circRNA splicing and were subjected to
find_circ [19] to identify circRNAs. Then, the anchor alignments were extended such that
the completely read aligns and the breakpoints were flanked by GU/AG splice sites. A
candidate circRNA was identified if it was supported by at least two unique back spliced
reads in at least one sample. The identified circRNAs were subjected to statistical analysis
of type and length distribution. To identify differentially expressed circRNAs across groups,
the edgeR package (http://www.rproject.org/ (accessed on 11 January 2019)) was used.
The circRNAs with a fold change ≥ 2 and a p value < 0.05 between groups were defined as
significantly and differentially expressed circRNAs (DEcircRs).

4.6. Identification and Functional Enrichment Analysis of the DETmRs

The predicted target genes of DEmiRs were obtained based on the intersecting results
of the analyses using three softwares, i.e., RNAhybrid (v2.1.2) + svm_light (v6.01), Miranda

http://rfam.xfam.org
http://www.r-project.org/
http://www.rproject.org/
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(v3.3a), and TargetScan (v7.0), with default parameters. These predicted target genes were
subjected to integrated analysis of miRNA-mRNA expressions using the miRNA expres-
sion data in this study and the mRNA expression data reported previously for the same
samples [33]. The predicted target genes that were differentially expressed and negatively
correlated in expression with their paired DEmiRs were considered to be differential ex-
pressed target genes (DETmRs). The DETmRs were functionally annotated using the GO
database (http://geneontology.org (accessed on 28 December 2018)) and KEGG database
(http://www.genome.jp/kegg/ (accessed on 28 December 2018)). Through hypergeomet-
ric test, GO terms and KEGG pathways with p < 0.05 were considered significantly enriched.

4.7. Construction of Immune-Related DEmiR-DEmR Network

The DEmiRs and differentially expressed genes (DEGs) identified in a previous
study [33] were used for target relationship prediction in this study using three soft-
wares, i.e., RNAhybrid (v2.1.2) + svm_light (v6.01), Miranda (v3.3a), and TargetScan (v7.0),
and the overlapping results were used for subsequent analysis. The DEmiRs and their
predicted DETmRs, whose expressions were negatively correlated, were identified as
DEmiRs-DETmRs pairs. A DEmiR with a degree ≥ 5 (i.e., paired with more than five
DETmRs) were considered as a hub DEmiR. The hub DEmiRs and their targeted DETmRs
from the immune-related KEGG pathways were used to construct the immune-related
network with Cytoscape (v3.8.0) [92].

4.8. Identification of Interactive circRNA-miRNA and circRNA-miRNA-mRNA Regulatory Units

The target miRNAs of circRNAs were predicted based on the intersecting results
of the analyses using three softwares, i.e., RNAhybrid (v2.1.2) + svm_light (v6.01), Mi-
randa (v3.3a), and TargetScan (v7.0). The circRNAs and their paired miRNAs exhibiting
negatively correlated expressions were considered as miRNA-circRNA pairs. The cir-
cRNA/miRNA/mRNA regulatory triplexes were identified based on the ceRNA theory
as follows: (1) The correlation in expression between mRNA and miRNA or between
circRNA and miRNA was evaluated using the Spearman Rank correlation coefficient (SCC).
Pairs with SCC < −0.6 were selected as negatively co-expressed circRNA-miRNA pairs
or mRNA-miRNA pairs, in which both mRNA and circRNA were miRNA target genes,
and all RNAs were differentially expressed. (2) The correlation in expression between
a circRNA and its target mRNA was evaluated using the Pearson correlation coefficient
(PCC). Pairs with PCC > 0.8 were selected as co-expressed circRNA-mRNA pairs, in which
both the mRNA and the circRNA in each pair were targeted and co-expressed negatively
with a common miRNA. Only the gene pairs with a p value less than 0.05 were selected.

4.9. Experimental Validation of DEmiRs

Nine DEmiRs were selected and validated via qRT-PCR. Total RNA was isolated from
spleen tissue using Trizol (Invitrogen, Carlsbad, CA, USA) and used for cDNA synthesis
with a Mir-XTM miRNA First-Strand Synthesis Kit (TaKaRa Bio, Mountain View, CA 94043,
USA). qRT-PCR was performed with SYBR Premix Ex Taq II (TaKaRa, Dalian, China) using
QuantStudio 3 Real-Time PCR Systems (Thermo Fisher Scientific, Waltham, MA, USA) in a
20 µL reaction volume containing 2 µL cDNA, 10 µL SYBR Premix Ex TaqTMII (TaKaRa,
Dalian, China), 0.2 µL specific forward primer (10 µM), 0.2 µL reverse primer (10 µM), and
7.6 µL water. The reaction was performed at 95 ◦C for 30 s, followed by 45 cycles of 95 ◦C
for 5 s, 60 ◦C for 15 s, and 72 ◦C for 10 s. The abundance of miRNAs was normalized relative
to that of 5S rRNA with 2−∆∆Ct comparative Ct method, as reported previously [93]. The
primers used for PCR analysis are list in Table 5. Correlation analysis of the results of
qRT-PCR and sRNA-seq was performed using function formula CORREL in Excel.

http://geneontology.org
http://www.genome.jp/kegg/
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Table 5. List of primers used for qRT-PCR in this study.

MicroRNA Forward Primer Sequence (5′-3′) Reverse Primer Sequence (5′-3′)

novel-m0197-3p GACCACCCCCGAGCTTCTACGA GTATCAACGCAGAGTACTTT
novel-m0005-5p TACCACCCCCGAGCTTCTGCGA GTATCAACGCAGAGTACTTT

miR-731-x AATGACACGTTTTCTCCCGGATT GTATCAACGCAGAGTACTTT
miR-72-x AGGCAAGATGTTGGCATAGCT GTATCAACGCAGAGTACTTT

miR-7133-y TAGTTTGATACACAGCACAATG GTATCAACGCAGAGTACTTT
miR-7132-x GACTTGGTCAAAGCTCCTCAGC GTATCAACGCAGAGTACTTT

miR-31-x AGGCAAGATGTTGGCATAGCT GTATCAACGCAGAGTACTTT
miR-155-x TTAATGCTAATCGTGATAGGGGT GTATCAACGCAGAGTACTTT
miR-147-y GTGTGCGGAAAAGCTTCTGCTC GTATCAACGCAGAGTACTTT

5s CCATACCACCCTGAACAC CGGTCTCCCATCCAAGTA

4.10. Data Availability

The raw sequencing reads from this article have been deposited to NCBI Sequence
Read Archive (SRA) under the accession number of PRJNA691154 (miRNA data, https:
//www.ncbi.nlm.nih.gov/bioproject/PRJNA691154 (accessed on 11 January 2021)) and
PRJNA684425 (circRNA data, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA684425
(accessed on 12 December 2020)).

5. Conclusions

In this study, we provide a comprehensive and systematic picture of integrated RNA
responses to megalocytivirus infection in a time-dependent manner. We identified a
large amount of megalocytivirus-induced non-coding RNAs and their interactive targets,
which, together with coding RNAs, form complicated regulatory networks involving
various miRNA-mRNA, circRNA-miRNA, and circRNA-miRNA-mRNA regulatory units.
Our results indicate a profound involvement of non-coding RNAs in megalocytivirus
infection and host immune response, which add new insights into the regulation of antiviral
immunity in teleost fish.
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