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Abstract

Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As
progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to
guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can
also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative
review of MSC function in CVD based on a systematic search. A total of 4| studies examining CVD-related MSC (dys)-
function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD.
However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative
medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely
assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not
associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in

MSCs and parameters that relate to clinical success.
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Introduction

Cardiovascular disease (CVD) is one of the leading causes of
mortality in the Western world'. Genetic makeup, exposure
to risk factors, and lifestyle factors all play a role in the
pathogenesis of CVD. Aging is a main driver of CVD pro-
gression?, inducing nonreversible changes in the vasculature
and the heart. These changes range from remodeling of the
vessel wall to tissue damage at places of turbulent blood flow
and predispose previously healthy individuals to the devel-
opment of CVD>*. Aging also affects the regenerative
potential of the cardiovascular system. Aged individuals
have fewer circulating endothelial progenitor cells (EPCs),
which has been implicated in the development and accumu-
lation of vascular damage™°. Direct effects of aging on tissue
repair capabilities of resident tissue cells have also been
shown; for instance, aged endothelial cells are less effective
at migration, more prone to become senescent, and they
have an altered secretion profile that contributes to the
development of hypertension and atherosclerosis’ . In turn,
CVD also affects the progenitor cell compartment and
regenerative potential of tissue cells. In many CVDs, an

age-independent decrease in EPCs has been reported'®'2.
Decreased migratory potential and increased senescence are
also present in endothelial cells of CVD patients.

Eventually, end organ damage develops through a final
common pathway of chronic tissue hypoxia, impaired or
disturbed angiogenesis, inflammation, and eventually
fibrosis.

Though progress has been made, therapies for CVD with
the potential to reverse disease-induced damage are still
lacking. Cellular therapy approaches that aim to promote
angiogenesis and enhance organ function in CVD are
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currently being investigated. Preclinical and clinical
research, while promising at first, demonstrated no clear
benefits of autologous bone marrow mononuclear cells
(BM-MNCs) in various CVDs'*!'*, Interestingly, advanced
age is one of the strongest predictors of a lack of clinical
response to autologous BM-MNC therapy'®. EPCs are still
being evaluated clinically, but technical difficulties in
acquiring and expanding cells to the numbers required for
cellular therapy hamper efforts'®. Mesenchymal stromal
cells (MSCs), first discovered as nonhematopoietic BM
precursor cells, gained interest given their regenerative
properties in a wide variety of disease contexts and the
relative ease of procurement and expansion. In preclinical
and clinical studies, MSCs were shown to promote angio-
genesis, reduce fibrosis, have immunomodulatory proper-
ties, and ultimately restore tissue function. MSCs exert
their regenerative effects through close cross talk with local
tissue cells and immune effector cells by both direct cell-
cell contact and release of paracrine factors'’. Transdiffer-
entiation remains controversial and is unlikely to account
for the observed regenerative effects'®.

During the past decades, MSCs gradually transitioned
from the bench to the bedside in CVD; phase 111 clinical trials
examining potential application of MSCs as a therapeutic
agent in CVD are ongoing. For instance, MSCs have been
shown to be effective at improving left ventricle ejection
fraction, reduction in scar size, and neoangiogenesis when
administered to patients with ischemic cardiomyopathy'®.
In patients with critical limb ischemia (CLI), MSCs were
shown to improve perfusion and wound healing®>?'. As sys-
temic anti-inflammatory effects are thought to contribute to
clinical effects of MSCs in CVD?%, novel applications also
include diseases that have both ischemic and autoinflamma-
tory features such as systemic sclerosis (SSc)*>.

Generally, MSCs for clinical applications are isolated
from BM, adipose tissue (AT), or the umbilical cord, but
MSC-like cells that fulfill the International Society for Cel-
lular Therapy’s (ISCT) minimal criteria for MSCs** have
also been identified in other tissues including organ tissue.

Variability in therapeutic efficacy between donors
prompts careful consideration of the cell source to maximize
clinical benefits. Currently, in MSC-based therapy, both
autologous and allogeneic cells are clinically used. Investi-
gating regenerative potential of MSCs prior to clinical
administration is vital to aid identifying donors whose MSCs
will yield the largest clinical effect. Donor characteristics
such as gender and age have been reported to affect MSC
efficacy. MSCs derived from older donors proliferate
slower, have reduced differentiation capacity, and display
more features of cellular senescence when compared with
cells derived from younger individuals®>-%¢.

Several studies suggest that autologous MSCs may also
be functionally affected by disease. In unselected BM-
derived cells, CVD dysfunction has been shown'*?’, and
dysfunction of MSCs has also been reported in CVD. If MSC
dysfunction occurs in certain disease states, then this could

reduce clinical efficacy of autologous MSC treatment and
render administration of allogeneic cells more favorable.
However, where MSCs were once considered completely
immunoprivileged, studies have shown that immune
responses directed against MSC may develop under certain
circumstances®®?’. For instance, senescence induced by pro-
longed culturing leads to loss of immunosuppressive ability.
Additionally, donor characteristics such as gender and age
might affect MSC efficacy, further complicating the search
for a suitable cell source. Accordingly, in assessing CVD-
related MSC dysfunction, age and features of cellular senes-
cence are important factors to consider.

Here we review the currently available literature on
CVD-mediated dysfunction in MSCs to assess the presence
and extent of CVD-mediated dysfunction in MSCs harvested
from clinically relevant sources. Additionally, the role of
aging in CVD-mediated dysfunction will be explored, using
the available evidence. We will discuss the implications of
our findings for clinical MSC-based cell therapy.

Materials and Methods
Search Strategy

To identify studies that examined the effect of CVD on MSC
(dys)function, a search was conducted in Medline/PubMed
and Embase. The search strategy contained the following
components: (1) MSCs and (2) disease and/or dysfunction.
The search was performed on December 18, 2016. Studies
were selected by 2 reviewers. The references of included
studies and the studies citing them were hand searched.

We included primary studies that examined cells obtained
from individuals with CVD that (partially) fulfill the minimal
criteria for multipotent MSCs set by the International Society
for Cell and Gene Therapy (ISCT)*’. The MSCs had to be
obtained from clinically relevant sites, that is, BM, AT, and
umbilical cord tissue or cord blood (UCB).

We excluded studies that examined MSCs derived from
animal sources. We also excluded nonprimary studies (reviews
were used to snowball and enhance the keyword search).

A total of 45 studies were identified. Four studies were
excluded. Two studies were excluded because they exam-
ined the effect of patient serum on healthy MSCs and the
other 2 studies were excluded because the full text was
not available.

Study Characteristics and Data Extraction

The following study characteristics were recorded: subject
characteristics such as age and gender, MSC source, type of
disease, NV, passage number, growth medium, protein source
(fetal bovine serum [FBS] vs. platelet lysate or alternatives),
whether the cells had been freshly used or postthaw, details
of the various assessments conducted, and their results. Data
from reported assays were extracted to enable quantitative
summaries. Raw data were gathered from the paper text or
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derived from digitally traced figures, using Plot Digitizer
Version 2.6.8.

For analyses, “MSC dysfunction” was defined as “a dif-
ference between healthy and CVD MSCs” in one of the
prespecified categories that focused on general MSC char-
acteristics and/or regeneration: flowcytometric (FACS) mar-
ker expression of the ISCT minimal set, trilineage
differentiation, proliferation, cytokine secretion, immuno-
modulation, angiogenesis/tissue repair, and senescence. In
studies that did not report dysfunction in one of these cate-
gories but did find alterations or impairment in another area,
an additional category (“any other dysfunction) was created
and scored.

Assessment of Risk of Bias

No validated “risk of bias” instrument exists for in vitro
studies that utilize cells. For this purpose, findings were
coded as 0 (no dysfunction) or 1 (dysfunction present).
Reporting was similarly coded as 0 (not reported) and 1
(reported).

We assessed the correlation between the reporting of the
study characteristics listed above and positive study results
with Fisher’s exact test. The correlation between continuous
variables (age of CVD or control participants, delta age) and
reporting was assessed with logistical regression.

Studies containing in vivo animal experiments were
assessed using the Hooijmans risk of bias tool*!. Funnel
plots were constructed using ratio of means (meancyp/
mean,yno)- Lhe inverse of the square root N was used to

estimate the standard error>>.

Other Statistical Analyses

Quantitative analyses are reported as ratio of means
(meancyp/meangonior). As reliable estimates of variance
were not available for a large portion of the included studies,
no meta-analysis was performed. Distribution of study
results was, however, reported by weighted mean on the
square root of the sample size (V). To assess the correlation
between delta age or passage number and effect ratio, data
were analyzed by using mixed effects models using
restricted maximum likelihood estimation.

All statistical analyses were conducted using IBM SPSS
Statistics Version 24.0 or in “R” software (Version 2.15.3).
A P value of <0.05 was considered statistically significant.

Results

The scope and quality of the studies widely differed. Some
studies only examined the ISCT MSC minimal criteria—the
presence of extracellular MSC markers and the absence of
hematopoietic markers, and sometimes fewer than all 3
lineages of differentiation. Others conducted a thorough
assessment of multiple MSC parameters, including senes-
cence, immunomodulation, and tissue repair capabilities,

sometimes including animal models as well. Table 1 lists the
characteristics of the studies. A summary of the effect of
disease on MSC function is provided in Table 2 for in vitro
studies, and Table 3 details studies with an in vivo component.
Below, we will discuss the studies conducted per CVD entity.

Effect of Disease on MSC Characteristics
and Regenerative Potential

General CVD. Three studies examined MSCs procured from
patients undergoing elective cardiovascular surgery; no con-
trol group was present. Since the findings are presented in
light of a correlation with specific patient factors, and not as
a difference between individuals with cardiac disease and
healthy controls, we discuss these studies separately.

Mancini et al. determined CVD risk/atherosclerosis status
based on the planned procedure; 41 patients who underwent
coronary bypass grafting (CABG) were considered to have
atherosclerosis, whereas the 9 patients scheduled for a valve
replacement were “nonatherosclerotic.” Mancini et al. sub-
sequently related CVD risk to the ability of AT-MSCs to
suppress anti-CD3/CD28-bead activated CD4" T cell prolif-
eration. Diabetes mellitus type 2 (DM2) and atherosclerosis
were independently associated with a reduction in the
immune suppressive capacity of AT-MSCs. ISCT minimal
criteria were also determined but not compared between
groups™>.

Neef et al. found in their study examining BM-MSCs
derived from 51 patients that colony forming unit (CFU)
numbers were increased in DM2, steroid treatment, chronic
obstructive pulmonary disease (COPD), impaired renal func-
tion, high euroSCORE (a measure for comorbidity), impaired
left ventricle function, and a high number of MNCs in the
BM. However, in multivariate analysis, only a high MNC
number in the BM and steroid treatment were predictive of
a high CFU. There was no correlation between MNC numbers
and age, myocardial infarction (MI) or cardiovascular risk
status, so confounding by MNC number was not present.
ISCT minimal criteria were not found to be altered®”.

Brunt et al. performed gene expression analysis in BM-
MSCS from 22 patients who underwent undefined cardio-
vascular surgery. The array contained 84 genes that are
linked to the WNT/B-catenin signaling pathway that is
involved in embryonic development and tissue repair. They
found that 34 differentially expressed genes were associated
with cardiovascular risk factors®”.

Coronary artery disease. Coronary artery disease (CAD) MSCs
did not differ from healthy MSCs with regard to ISCT min-
imal criteria. The majority of the studies did not include
healthy controls (5/8).

Three studies showed a detrimental effect of CAD on pro-
liferation; however, one study did not find any differences®® .

Two studies did not find differences between diseased
and healthy MSCs of BM or AT origin in a tubule forming
, whereas 2 others did find impairments. For
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instance, Efimenko et al. found impairment of tubulogenesis
in AT-MSC from CAD patients, possibly due to decreased
secretion of proangiogenic factors and increased production
of antiangiogenic factors. Efimenko et al. also found a
shorter telomere length and less telomerase activity in MSCs
from CAD patients in comparison with healthy controls*.

Dzhoyashvili et al. also found impaired tubulogenesis in
CAD AT-MSCs; both conditioned medium from MSCs
derived from patients with CAD only or CAD + DM2 per-
formed worse than healthy MSCs. There was no difference
between CAD only and CAD + DM2 MSCs. Vascular
endothelial growth factor (VEGF) expression secretion was
increased in CAD and CAD + DM2 MSCs as compared with
healthy MSCs*’. Dzhoyashvili et al. then show that impair-
ment of tubulogenesis is caused by an increase in anti-
angiogenic factors rather than a decrease in pro-angiogenic
factors—expression of the anti-angiogenic cytokine
thrombospondin-1 was higher in CAD patients as well.
Although they were not able to confirm higher
thrombospondin-1 secretion in the culture medium,
thrombospondin-1 mRNA levels negatively correlated with
the results of the tubulogenesis assay. Both expression and
secretion of PAI-1 were elevated in CAD and CAD + DM2
MSCs. Inhibition of PAI-1 partially restored angiogenesis®’.

Three studies evaluated the efficacy of MSC administra-
tion in an animal model of myocardial ischemia, but these
did not include healthy controls. The studies demonstrate
that CAD MSCs do display regenerative features in vivo;
no conclusions regarding dysfunction can be drawn*'*?, Liu
et al. found that DM2 in addition to CAD confers less
increase in ejection fraction, myocardial contractile ability,
and more myocardial apoptosis than CAD only or vehicle
control. The authors speculate that this is due to a decrease in
VEGF and B-cell lymphoma 2 (Bcl-2) secretion, present in
only the CAD and DM2 group, as determined by signifi-
cantly lower Bcl-2 and VEGF levels in the myocardium
posttransplantation’®.

Critical limb ischemia. CLI does not appear to affect the angio-
genic potential of MSCs, not even MSCs harvested from the
BM of an amputated leg.

Smadja et al. first examined the angiogenic effect of CLI
BM-MSCs versus control MSCs in a hind limb ischemia
model. There was no difference between CLI and control
with regard to limb perfusion®.

Gremmels et al. extensively examined MSCs derived
from iliac crest BM. They report no differences between CLI
MSCs and healthy MSCs with regard to gene expression, in
vitro tubulogenesis, scratch wound closure, and migration
toward platelet-derived growth factor (PDGF)-BB. ISCT
minimal criteria were mostly similar, though chondrogenic
differentiation was impaired in CLI donors. Senescence,
measured as -galactosidase, was increased in CLI patients.
However, these differences were age dependent; after cor-
rection for age, no significant difference was found between
healthy controls and CLI patients. Senescence was not

correlated with angiogenic potential. Most notably, the in
vivo angiogenic potential of MSCs-CLI MSCs was similar
to healthy MSCs**. Brewster et al. examined MSCs derived
from 8 amputated legs versus iliac crest BM from healthy
volunteers. Interestingly, even though the legs had not been
perfused for some time, the resulting MSCs functioned just
as well as healthy MSCs with regard to proliferation, cyto-
kine production and endothelial cell proliferation, migration,
and invasion. The only parameter that differed was MSC
invasion, which was lower in the CLI group that had been
cultured in FBS—there were no differences between MSCs
cultured in platelet lysate. There were no differences
between MSCs from CLI patients with DM2 and MSCs from
CLI patients without DM2*.

Altaner et al. assayed MSCs acquired from patients who
participated in a clinical trial that examined the effect of
autologous BM-MNC administration in CLI. While no con-
trols were included, Altaner et al. created groups based on
clinical response to BM-MNC administration, enabling
correlations between the clinical efficacy of BM-MNCs
and the in vitro assays of BM-MSCs. Various in vitro dif-
ferences were identified; responders had increased expres-
sion of the cell surface markers CD44 and CD90.
Responders also secreted more interleukin (IL)-4, IL-6, and
macrophage inflammatory protein-1b (CCL4). Protein pro-
filing of MSC lysates showed that responders expressed
more Zinc finger protein (SNAII), and nonresponders
expressed more E-cadherin and pancreatic and duodenal
homeobox-1 (PDX-1)*. The influence of MSC frequency
in the administered BM-MNC product on therapeutic effi-
cacy was not assessed. Given the low frequency of MSCs in
unfractionated BM*’, the consequences of these findings
for MSC-based therapy are uncertain.

Heart failure. Two studies examined BM-MSC function in
patients with ischemic heart failure as compared with
healthy controls. In both studies, gene expression patterns,
assayed with real-time polymerase chain reaction arrays
containing either 85 or 84 prespecified transcripts, were
found to reflect adaptation of cardiac tissue to ischemia.
Minullina et al. used the heart failure samples to assess the
relation of differentially expressed genes and patient-
specific factors due to significant differences between the
healthy and disease group (gender balance, age). Body mass
index was the only factor that could be linked to gene expres-
sion; nonobese individuals had an increase in gene expres-
sion associated with extracellular matrix (ECM) homeostasis
such as Collagen Type I Alpha 2 Chain (COL1A2) and
connective tissue growth factor (CTGF) and several matrix
metalloproteinases (MMPs) in nonobese individuals. Tran-
script levels in obese individuals were similar to healthy
controls. Interestingly, B-galactosidase activity, a measure
for cellular senescence, did not correlate with differential
gene expression in heart failure, although the authors do not
report whether healthy controls were also examined*®.
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In addition to gene expression analyses, Dmitreva and
colleagues conducted functional assays. Differentiation was
unaffected. They found a lower population doubling time at
p3 in the HF group, but no differences in CFU. This differ-
ence might be caused by a higher number of a-SMA+
CD105+ cells in the heart failure samples—possibly
reflecting fibroblast contamination™.

Two clinical trials comparing autologous versus allo-
geneic MSCs as treatment in heart failure have been con-
ducted. While these were not geared toward assessing
regenerative potential, some conclusions can be drawn. The
POSEIDON study does not clearly show benefits of one over
the other; both groups display favorable structural cardiac
changes. However, left ventricular function was only signif-
icantly improved in the allogeneic group, whereas functional
outcome measures only significantly improved in the auto-
logous group as compared with the allogeneic group®®.

The POSEIDON-DCM study in nonischemic dilated car-
diomyopathy demonstrated that patients treated with allo-
geneic MSCs had a greater improvement in clinical
parameters. Differences in circulating immune cells were
also found; in the allogeneic MSC group, patients had less
terminally differentiated effector memory T cells and more
memory B cells with a suppressed phenotype. T cell activa-
tion (measured as CD3+ CD25+ T cells) did not differ.
Importantly, patients who had received allogeneic MSCs had
an increase in EPC colony forming units, whereas patients
who had received autologous MSCs had not™.

Diabetes mellitus type |. Three studies evaluated diabetes mel-
litus type 1 (DM1) BM-MSCs versus healthy controls. No
difference between DM1 cells and healthy controls was found
with regard to differentiation and proliferation®'>*, Immuno-
modulation as measured with peripheral MNC or selected T
cell proliferation was similar in 2 studies’>>. In a mouse
model for diabetes, Yaochite et al. found that intrasplenically
injected DM1 MSCs resulted in similar glucose control as
treatment with healthy MSCs, showing that DM1 MSCs and
healthy MSCs have similar therapeutic efficacy in DM1°2,

Gene expression profiling was conducted in 2 studies
(microarrays), and differentially expressed genes were found
in DM1 MSCs”"*3. De Lima et al. most notably found differ-
ences in pathways involved in migration, so migratory capac-
ity was assessed—DM1 MSCs performed better than healthy
MSCs. Functional pathway analysis revealed upregulation of
the sympathetic nervous system. Davies et al. found increased
transcription of pathways involving growth, development and
response to stress and wounding in late DM 1. There were no
differences in the scratch wound assay (MSCs only)’'. Davies
et al. also found that baseline secretion of cytokines (IL-6,
CXCL1, CXCL6, and PGE2) was similar to healthy control
levels. Hemocompatibility was also similar, even though late
DMI cells express more CD55 (complement receptor) on the
surface of the cells. Late DM1 even had less clot formation,
possibly correlating with the lower expression of CD59 as
compared with healthy cells™.

Diabetes mellitus type 2. Nine studies examined the (dys)func-
tion of AT-derived MSCs (AT-MSCs) in patients with dia-
betes mellitus type 2 compared with nondiabetic controls.
Results are mixed—some studies point toward disease-
related dysfunction, whereas others find no differences at
all. Proliferation of AT-MSCs was reported in several stud-
ies to be similar or even better than healthy controls, but
another study found slower proliferation®*>’. Similar mixed
results were found in differentiation assays: osteogenic and
chondrogenic differentiation was unaffected in one study”
but impaired in 2 other studies’’*, and adipogenic differ-
entiation was reported to be increased in one study’® but
completely absent in another’”. The 2 studies that looked
into gene expression found that DM2 AT-MSCs express
genes implicated in the pathogenesis of DM2, demonstrating
that AT-MSCs may be affected®->’. Tubulogenesis was
unaffected®. Scratch wound healing (smooth muscle cells)
was more efficient with DM2 CM®°.

In vivo angiogenesis was evaluated by 2 studies, using the
murine ischemic skin flap model. Trinh et al. observed a
bigger necrotic surface area, less neoangiogenesis, and more
CD45+ cell infiltrate in animals treated with DM2 AT-
MSCs, but DM2 cells still performed better than vehicle
control. Trinh et al. found EGF-1 to be involved in DM2-
mediated MSC dysfunction, a pathway also affected in the
DM?2 disease phenotype. Inhibiting EGR-1 expression
increased skin survival in the ischemic skin flap model®.
Gu et al., however, did not see differences in the ischemic
skin flap model with regard to necrosis®®. This could be due
to the heterogeneity of the protocols—different mouse spe-
cies were used as well as different cell doses and injection
protocols. Expression of cytokine mRNAs and secretion of
cytokine proteins were evaluated in 4 studies. VEGF mRNA
expression was higher in DM2 AT-MSCs in one study but
lower in another study>®. Gu et al. who determined elevated
VEGF mRNA in DM2 AT-MSC subsequently showed that
VEGF protein levels were lower in CM, but still perfor-
mance in the ischemic skin flap model was similar®,
Reports are similarly mixed about IL-6; some studies find
higher baseline IL-6 levels (both protein and mRNA), others
find lower IL-6 levels as compared with controls. It is also
unclear whether transforming growth factor beta-f and
bFGF secretion are affected.

Two studies point toward a possible thrombogenic effect
of diabetic AT-MSCs. Krawiec et al. evaluated healthy,
DM2 and elderly AT-MSCs in a murine aorta interposition
model. Seeding of the constructs was successful and no dif-
ferences were seen between groups. However, DM2-MSC-
seeded grafts were thrombogenic—almost all grafts had to
be explanted within 1-wk postimplantation—28% patency at
8 wk. Subsequent assays showed that DM2 AT-MSCs pro-
duced less fibrinolytic factors as compared with healthy
MSCs®!. Acosta et al. studied the secretion of fibrinolytic
mediators by MSCs from DM2 patients after observing
2 instances of distal microvascular thrombosis in a clinical
trial that examined intra-arterial administration of AT-MSCs
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for CLI. DM2 MSCs indeed displayed impaired fibrinolytic
properties and secreted more plasminogen activator inhibitor
type 1 and less tissue plasminogen activator than healthy
MSCs, regardless of type blood serum®.

In DM2, one study reported higher senescence in DM2
AT-MSCs as compared with healthy controls. Senescence
even increased with higher glucose content of the medium
and could be rescued with insulin supplementation to the
culture medium®’.

The above studies in DM2 all examined AT-MSCs. In a
review of 14 clinical studies in which autologous BM-
MSCs were administered to 132 DM2 patients, van de
Vyver describes that the results of MSC therapy are vari-
able and that some patients do not respond at all®®. This
underscores the need for comparative studies in DM2 and
healthy BM-MSCs.

Gestational diabetes mellitus. Kim et al. found that UCB-MSCs
from mothers with diabetes mellitus gravidarum (DMG) pro-
liferate slower than UCB-MSCs derived from healthy moth-
ers. Osteogenic and adipose differentiation were negatively
affected. Kim et al. also observed signs of mitochondrial
dysfunction at both the gene expression and protein level
in DMG UCB-MSCs. Increased B-galactosidase activity was
seen in DMG MSCs®*.

Chronic kidney disease. BM-MSCs from chronic kidney fail-
ure (CKD) patients were assayed extensively by Reinders
et al. from FACS markers and differentiation to miRNA
profiles and PBMC proliferation, but no differences were
found between healthy MSCs and CKD MSCs®. Similarly,
for AT-MSC, no differences in these parameters found
between healthy controls and CKD MSCs. Roemeling-van
Rhijn et al. assayed healthy and CKD AT-MSCs under both
normal and uremic conditions with regard to suitability for
cell therapy: aside from general MSC parameters, long-term
genetic stability and apoptosis were taken into account. They
also determined MSC-mediated suppression of PBMC pro-
liferation. No differences between healthy and CKD MSCs
were found®®. Similarly, Yamanaka et al. did not find any
differences between CKD and controls in ISCT minimal
criteria, proliferation, and senescence. However, they do
report a defect in the in vivo angiogenic potential of AT-
MSCs. They also found a reduced gene and protein expres-
sion of PCAF, a regulator of HIF-a, which might underlie
this angiogenesis defect®’.

Systemic sclerosis. SSc is not traditionally considered a CVD,
however, given the disease’s profound vascular manifesta-
tions as well as the presence of fibrosis, which is ubiquitous
in CVD, research conducted in SSc MSCs might provide
valuable insights—SSc can be considered a model disease
in this sense®®. Even though in SSc loss of angiogenic poten-
tial is a key feature, SSc MSCs retain their angiogenic and
immunomodulatory properties, as shown in 2 studies, though
1 study reports impaired tubulogenesis®®’’. In a coculture

assay, Cipriani et al. furthermore showed that healthy
endothelium downregulates SSc MSC transcription of con-
tractile genes that are associated with a profibrotic pheno-
type’!. Some studies report disease-specific profibrotic
features in SSc MSCs, for example, higher expression of
contractile genes upon TGF-B signaling, and general
increased response to TGF- in terms of receptor upregula-
tion and increased downstream signaling’> "%, Whether a
priori TGF-P receptor upregulation is present is contested
by contrasting findings. Interestingly, even healthy MSCs
display some response to profibrotic stimuli, though they
also downregulate their TGF receptors, whereas SSc¢ MSCs
upregulate these. SSc MSCs generally display a more senes-
cent phenotype than healthy controls, as demonstrated by 2
studies with age-matched controls’®">.

Aging and MSC Dysfunction

Aging in MSC dysfunction can be considered as an additive
effect “on top of” potential CVD-mediated dysfunction or
as an independent factor influencing regenerative capacity.
The latter can only be detected in studies that included
healthy MSCs.

In studies lacking healthy controls, generally a degree of
age-dependent dysfunction was observed in post hoc analy-
ses. Proliferation was impaired in aged patients in 2 studies,
but one study found no such impairment***®, Extracellular
markers were not affected. With regard to regenerative
capacity, Mancini et al. found that age impaired immunomo-
dulation in AT-MSCs from CVD patients®>.

Brunt et al. furthermore reported impairment of myogenic
differentiation in older donors. Increasing age was also asso-
ciated with less activity of the WNT/fB-catenin signaling
pathway in MSCs. However, though the authors assert that
the WNT/B-catenin alterations are mainly age dependent, the
differentially expressed genes in aged patients are all but one
similar to differentially expressed genes in individuals with
high cardiovascular risk score as compared with people with
low cardiovascular risk score®”.

In studies with controls, conflicting results were seen in
the small number of studies that separately analyzed the
contribution of biological or cellular aging to possible dys-
function. MSCs derived from elderly CAD patients had less
angiogenic potential than MSCs derived from elderly
healthy patients. This was shown to be due to an age-
dependent decrease in VEGF production in combination
with a CAD-mediated increase in anti-angiogenic factors*.
On the other hand, in a study in CLI, all differences between
healthy and diseased individuals were found to be due to
advanced age in the CLI group*. Additionally, aged MCs
from DM2 patients had a strong prothrombogenic effect
whereas age-matched healthy MSCs did not®'.

The relationship between MSC donor age and treatment
efficacy in heart failure was assessed by Golpanian et al. in a
retrospective analysis of pooled data from 2 clinical trials.
Donor age did not affect the outcomes in MSC recipients.
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Fig. |. Risk of bias analyses. (A) Funnel plot depicting the distribution of senescence ratio of means. (B) Funnel plot depicting the distribution
of angiogenesis ratio of means. (C) Association of delta age versus angiogenesis ratio of means (circle: in vitro; triangle: in vivo) P = 0.65.
(D) Analysis of passage number versus angiogenesis ratio of means (circle: in vitro; triangle: in vivo) P = 0.10.

However, in pooling, the data autologous/allogeneic recipi-
ents were mixed, and no separate analysis comparing donor
age and allogeneic/autologous cells was conducted””.

Not all studies were fully age-matched, possibly introdu-
cing confounders. Therefore, we collated all the study results
and tested for an association between age-mismatched
groups (age matched: average ages within 10 yr) and MSC
dysfunction using the > test. We found that there was no
association between age matching and proliferation, cyto-
kine secretion, FACS marker expression, immunomodula-
tion, altered differentiation, angiogenesis, senescence, or
any in vitro dysfunction in general.

Linear regression analysis did not reveal a significant
association between delta age and tissue repair/angiogenesis
ratio of means (Fig. 1C). Logistic regression did not reveal
significant associations between MSC dysfunction and the
difference in average ages (delta age; CVD control) between
groups (P = 0.583). There was also no association between
MSC dysfunction and average age of CVD patients (P =
0.232), nor age of healthy controls (P = 0.597).

Risk of Bias

As no standardized criteria exist for assessing risk of bias in
in vitro studies, we assessed whether the reporting or lack
thereof of certain parameters is associated with positive
results. These parameters encompass reporting of the study
population—such as gender, age, and reporting of culture
and experimental procedures such as the media used, seeding
density, and the passage number used.

Various types of controls were utilized (see Table 1),
from screened organ or BM transplant donors to individuals
undergoing surgery not related to the CVD in question. The
N of each control type was too low to allow for direct corre-
lation with study outcomes; however, the use of screened
transplant donors trended toward an association with fewer
findings of dysfunction (P = 0.096).

There was no clear association between reporting of study
characteristics and in vitro findings, mainly because most
features were generally well reported (Table 4). Nonreport-
ing of the seeding density was significantly associated with
differentiation alterations (P = 0.018). With regard to
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Table 4. Reporting of Study Characteristics.

Association with

# # Not  Any In Vitro Dysfunction
Parameters Reported Reported (P. Fisher’s Exact Test)
N per experiment 18 21 0.163
Passage 30 9 |
Medium 37 2 0.526
Gender 30 9 |
Age 31 8 0.682
Starting seeding 22 17 0.494
density
All parameters 5 34 0.159
reported

senescence, nonreporting of the seeding density trended
toward a significant association (P = 0.061), but the total
N of studies that examined senescence was low.

Analysis of a compound measure for reporting (“all para-
meters reported”) showed that findings of dysfunction in
proliferation and angiogenesis are possibly correlated with
not reporting at least one of the parameters. However, only 5
studies reported al/l parameters. Similarly, not all studies
reported on all MSC functional characteristics. The passage
number did not affect ratio of means with regard to tissue
repair/angiogenesis (Fig. 1D).

The Hooijmans tool was used to assess risk of bias in
animal studies. Some of the studies included blinded out-
come assessment, but many of the details specified in the
Hooijmans tool were lacking (data not shown). Four of the 6
studies that included healthy controls found no difference
between healthy and CVD MSCs.

To assess publication bias, we created funnel plots using
ratio of means data from studies assessing angiogenesis and
senescence (Fig. 1A and B). No clear trend was observed
that indicates publication bias with regard to either favorable
or unfavorable effects of CVD on MSC function. It must be
noted however that there was high heterogeneity in study
results and trend toward overrepresentation of extreme find-
ings in either direction.

Discussion
Assessment of MSC (Dys)function

We provide the first comprehensive literature review on
MSC dysfunction in CVD (See figure 2 for a summary of
our findings). Reliable assessment of disease-related (dys)-
function is essential to gain more insight into the potential
clinical efficacy of MSCs in the various CVDs.

Our data show that in most studies, MSCs from CVD
patients perform less well than healthy control MSCs in in
vitro assays, but there were also studies in which multiple
tests were used and no differences were found between
healthy and CVD MSCs. In vitro assays may not fully cap-
ture the complex interactions between host and donor cells.

MSC regenerative potential in CVD

+Increased senescence and reduced proliferation were present in various CVD.
+ Disease-dependent differences in expressed genes were also common.
«There was no consistent evidence for reduced regenerative potential in CVD.

MSC regenerative potential and aging

«In studies without healthy (age matched) controls, age-dependent dysfunction was observed.
«In studies with controls, results were conflicting. DM2 and CAD seem to have an additive effect.
+ Delta-age or average age of both CVD and controls were not related to dysfunction.

« Linear regression showed no association between tissue repair / angiogenesis and age.

Potential sources of bias and confounders
«There was no association between study findings and (non) reporting of study parameters.
« Funnel plot analysis did not indicate publication bias .

Fig. 2. Summary of findings.

The emphasis on the ISCT minimal criteria in many of the
studies thus far is remarkable, as the ISCT minimal criteria
do not bear any relationship with clinical efficacy. After all,
the primary modalities of action of MSCs are through influ-
encing the local environment by secretion of paracrine fac-
tors, and direct cell-to-cell contact, not through
differentiation. No differences between diseased MSCs and
control MSCs were found with regard to the ISCT extracel-
lular marker set. In CLI, DM2 and DMG, there are indica-
tions that trilineage differentiation abnormalities are present.

Assays that do capture important aspects of MSC regen-
erative properties, such as immunomodulation, wound
repair, and angiogenesis assays, were not often performed,
and which aspect was examined varied widely. In some
disease states such as DM1, MSCs were minimally affected,
whereas in others profound MSC dysfunction was present in
multiple aspects of regeneration, for example, in DM2 and
SSc. Specific studies into disease-related dysfunction less
focused on regenerative potential were also conducted, such
as identification of disease-related alteration of cellular path-
ways or differentiation into cell types implicated in disease.
For instance, in SSc and CVD, an impairment in differentia-
tion to, respectively, endothelial and myogenic differentia-
tion was found. As these lineages were not consistently
assessed across all conditions, it is unknown whether this
is unique for these disease entities. Given the profound role
of immunomodulation in MSC-mediated tissue repair, it is
surprising that such a small number of studies (7/41) con-
ducted assays to assess this aspect of MSC function. More-
over, the assays used do not resemble in vivo immune
function, nor do they recapitulate MSC-mediated immuno-
modulation, so the question remains whether the absence of
dysfunction in these assays represents in vivo immunomo-
dulatory capacity’®.

Only few of the studies performed included in vivo test-
ing of MSCs. Additionally, these studies often showed con-
flicting results, for instance, in DM2, where one study found
DM2-associated impairment of angiogenic potential in a
skin flap model and another found no impairment. Interest-
ingly, some studies that found in vitro alterations, including
reduced cytokine secretion or increased senescence in
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diseased MSCs, did not find a difference in in vivo effi-
cacy***®. However, generally, in vitro and in vivo assays
were rarely combined. In vivo testing would be most useful
to assess disease-related MSC (dys)function, as this allows
simultaneous testing of multiple aspects of MSC function,
such as tissue repair, angiogenesis, and immunomodulation.
While, indeed, in vitro findings do not necessarily predict in
vivo efficacy, cross-referencing may shed light on the rele-
vance of detected in vitro abnormalities. Gremmels et al.
conducted a thorough analysis of the predictive value of in
vitro assays in predicting in vivo angiogenesis. The extent in
which MSC CM stimulated endothelial proliferation was
most predictive for in vivo results**. Such analyses are
essential to gain more insight into how to gauge MSC
potency. This does not only guide the decision to use auto-
logous or allogeneic cells but can also aid in individual donor
selection.

The discrepancy between in vitro and in vivo assessments
of MSC function may also reflect a difference between ani-
mal models and the human body—for example, in a murine
study, inappropriate differentiation of cells has been shown
in cardiac tissue’’, but, to date, this has not been observed in
humans yet***. The diseased environment may also drive
MSCs toward a regenerative phenotype, as has been shown
previously®'. On the other hand, it has also been shown that
implantation in a diseased tissue can derail MSCs®*. Addi-
tional indications for a negative influence of disturbed home-
ostasis in CVD were found in studies, in which diseased
conditions such as hyperglycemia and uremia were modeled
in vitro or in animal models—progenitor cell dysfunction
was found®>®°. Adding patient-derived serum to healthy
control MSCs also induces dysfunction in several dis-
eases®®*’. In line with these findings, Cramer et al. report
glucose dose-dependent dysfunction in both healthy and dis-
eased MSCs, but interestingly Roemeling-van Rhijn et al.
did not find a deleterious effect of uremia in AT-MSCs>"%¢,

Aging-related dysfunction in regenerative potential, such
as impaired proliferation, differentiation, immunomodula-
tion, and angiogenesis, was reported in CVD MSCs in a
small number of studies, corresponding with findings in
healthy, aged MSCs?3-33:40:61,

Features of premature cellular aging and increased senes-
cence were assessed in some, but not all, CVD. Cellular
aging was reported in CVD MSCs in several conditions,
which could reflect a true premature aging phenotype in the
progenitor cell compartment. For instance, individuals with
CVD have shorter telomeres than their matched controls, and
telomere length has been shown to inversely correlate with
cardiovascular events®®. Features of increased cellular senes-
cence, another consequence of aging, can also be detected in
CVD patients®®. Unfortunately, few studies assessed cellular
aging parameters, and of these, even fewer correlated the
results with patient age, precluding firm conclusions regard-
ing the relationship between premature aging, patient age,
and MSC dysfunction. In our analysis of ratio of means, we
did not find an association between delta age and senescent

phenotype, neither was delta age associated with tissue
repair/angiogenesis and immunomodulation ratio of means.

We assessed correlations between CVD patient age,
healthy control age, and the age difference between
patient and controls and study results. None of these
parameters were associated with reported MSC dysfunc-
tion. Therefore, there is no evidence that disease-related
dysfunction in CVD is due to biological age rather than
the disease itself.

Limitations

Our review evaluated cultured MSCs—bearing relevance
for possible clinical applications—and does not allow con-
clusions on the native MSC population—if such a circum-
script population exists at all. Since it has been established
that cells can lose distinctive phenotypes while in culture®,
possible differences might have been masked by the pro-
longed culturing required to generate a sufficient number of
MSCs. However, in most studies reviewed here, cells are
not cultured much beyond passages used for therapeutic
applications, enabling conclusions about the final cellular
therapy product.

Not all MSC harvesting locations were equally explored
in each CVD; thus, it is not always clear whether reported
MSC dysfunction reflects local dysfunction or a global dis-
ease phenomenon. It is not known to what extent harvesting
location influences cellular characteristics, some studies
found differences whereas others, mostly in oncologic popu-
lations, found no differences®' ™. It has been shown that not
all HSC compartments are equally perfused and that MSCs
are predominantly arranged around blood vessels®*>. Dif-
ferences in perfusion might thus account for differences in
exposure to noxious stimuli and thereby influence cell char-
acteristics in varying degrees. In CKD, no gene expression
differences were found in BM-MSCs, but distinct alterations
were present in AT-MSCs®>¢7.

It remains unknown why many conflicting findings have
been reported. Reporting of study population characteristics
is essential to identify possible confounders. For instance,
healthy controls are not always completely healthy individ-
uals but are sometimes recruited from patients who undergo
orthopedic surgery. The target population for coronary
bypass grafts and joint replacement overlaps, possibly cre-
ating a confounding effect. Furthermore, donors of control
samples are not always assessed medically, and especially in
the case of highly prevalent conditions such as the metabolic
syndrome diabetes mellitus 2 or other insidious disease, this
could also create confounding in otherwise matched sam-
ples. While it was not possible to analyze the relationship
between each type of donor and study findings, there were no
differences between studies that included screened donors
versus studies that did not include screened donors.

General cell culture parameters have been shown in other
studies to influence cell characteristics—for instance, cultur-
ing conditions influence paracrine secretion and gene
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expression in MSCs’*7. MSC passage number is inversely
correlated with differentiation protocols’, and the initial
seeding density influences proliferation®®. Furthermore,
immunomodulatory capacity has even been shown to be
affected by confluence rather than initially seeded cell den-
sity'?, though analysis of this variable was not possible as
“confluence at the start of assays” is not a regularly reported
parameter. However, reporting of specific study characteris-
tics was not associated with MSC dysfunction. Bias may also
have been introduced through mismatched control groups, as
there were a few instances in which healthy gender- and age-
mismatched controls were used in comparison with diseased,
aged individuals; and in general, individuals in the healthy
control populations were younger. However, we did not find
a correlation between mismatching and findings of dysfunc-
tion, nor was there a correlation between study participant
delta age and effect size or dysfunction.

Implications for Cellular Therapy

Disease-related MSC dysfunction in CVD may have impor-
tant consequences for cellular therapy. One solution could be
to use allogeneic donors; another solution could be to pre-
treat diseased cells to abrogate disease-specific dysfunction.

When opting for allogeneic donors, selection of these
donors for age and comorbidity is essential. A general health
screening, similar to the screening that BM transplant donors
receive, should be implemented and has already been imple-
mented in many centers. However, it should also be kept in
mind that, as discussed above, diseased MSCs may function
better in vivo than was expected based on in vitro findings.

The effect of preconditioning, or culturing under specific
circumstances to achieve a certain effect in the cell or its
efficacy, was explored in several studies, and profound
effects were found. For instance, proliferation could be
enhanced by using different concentrations of serum or even
alternatives to “serum” (e.g., umbilical cord blood—derived
serum or platelet lysate)>***. Platelet lysate did not affect
angiogenic potential of MSCs*’. Culturing of CLI BM-
MSCs under hypoxic circumstances stimulates cells to pro-
liferate and secrete beneficial paracrine factors, also leading
to better wound repair as assessed with a scratch wound
healing assay**. Administration of insulin to DM2 AT-
MSCs could rescue many disease features®’. In contrast,
hypoxic culturing of AT-MSCs derived from CKD patients
did not result in abrogation of the disease phenotype, sug-
gesting that depending on the specific CVD, different stra-
tegies should be applied®’. Other approaches focused on
repairing disease-induced dysfunction of cellular pathways.
Brunt et al. were able to increase nuclear translocation of -
catenin in aged MSCs by treating them with lithium. This
also enhanced myogenic differentiation, showing that influ-
encing the WNT/B-catenin pathway can rescue disease phe-
notypes in CAD, such as the approach of Trinh et al. to
downregulate the EGR-1 pathway in DM2 AT-MSCs and
the approach of Behfar et al. to use a cocktail of small

molecules that enhance “cardiopoiesis.” Both approaches
improved in vivo efficacy of MSCs in an animal disease
model***3. Administration of specific growth factors may
also be an option—in SSc, Cipriani et al. showed that admin-
istration of VEGF to SSc BM-MSCs enhances tubule forma-
tion (but still does not reach normal levels) and
administration of PDGF-BB decreases the expression of
contractile proteins’®’>. Given the variable results of pre-
condition strategies across the spectrum of CVD, any such
measure taken should be carefully evaluated.

Conclusion

MSC characteristics are affected by CVD in various
degrees, but studies are conflicting as to in what extent this
affects regenerative potential, if at all. Linear regression
analysis of pooled data did not show an association between
age and in vitro dysfunction, suggesting that age is not a
confounder of importance in these studies. Future studies
should focus on identifying which in vitro assay best pre-
dicts in vivo or preferably clinical efficacy, and these
assays should become a vital part of any study aiming to
assess (dys)function of MSCs.
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